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Abstract. A plethora of methodological approaches have been proferred
in recent years within the topical field of time series anomaly detection.
Despite many advancements in adjacent fields, the well-known local out-
lier factor algorithm has stood the test of time in this domain, with recent
comparative studies indicating that it remains competitive with newer
approaches in benchmark tests. In this paper, we enhance this algorithm
by leveraging ensembling techniques and GPU (graphics processing unit)
acceleration. To the best of our knowledge, our ensembling approach
establishes a new state-of-the-art accuracy of 66.8% in respect of the
well-known UCR Time Series Anomaly Detection benchmark, while our
GPU implementation was approximately eleven times faster than our
CPU (central processing unit) baseline.

Keywords: Anomaly detection · Local outlier factor algorithm · Time
series · Machine learning

1 Introduction

Time series anomaly detection is a topical field, with diverse applications in do-
mains such as medicine, finance, predictive maintenance, and intrusion detection,
to name but a few. Every year, dozens of new approaches are proposed for this
pivotal task, but the opacity of benchmark data sets, metrics, and methodologies
has made their fair comparison a complex task.

In a recent study [4], it was shown that the well-established local outlier factor
algorithm is at least competitive with newer approaches to time series anomaly
detection, even without extensive hyperparameter tuning. This means that it
should be possible to improve its performance, at least marginally, with a few
simple enhancements. In order to verify this claim, we carried out a sensitivity
analysis on the two key hyperparameters of the sub-sequence local outlier fac-
tor algorithm (namely window size and number of neighbours), and determined
that the accuracy of the algorithm depends highly on the hyperparameter values
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selected. The diverse predictive behaviour of various hyperparameter configura-
tions indicated that a simple ensembling approach might be a promising avenue
for improving accuracy.

Unfortunately, the computational demands of a large ensemble proved ex-
cessive, especially when considering that anomalies in time series typically must
be detected in real time. As a result, we explored ways to speed up the local
outlier factor algorithm. We settled for a simple, yet highly effective, approach of
accelerating the k-nearest neighbours search (the computationally most expen-
sive step of the local outlier factor algorithm) using a graphics processing unit
(GPU), resulting in a speed-up of up to 1050% for large data sets.

This significant speed-up facilitated the testing of our ensemble model. Re-
sults indicated that our proposed ensemble is significantly more accurate than
the best configuration of the local outlier factor algorithm, without being pro-
hibitively time-consuming. Moreover, our ensembling approach also outperforms
the state-of-the-art discord aware matrix profile (DAMP) algorithm (with sharp-
ening) in terms of accuracy. We anticipate that additional modifications to the
local outlier factor algorithm may improve its accuracy further, and we proffer
a handful of avenues for future work in this regard.

This paper is structured as follows. Section 2 contains a description of the
working of the local outlier factor algorithm, and this is followed in Section 3 by
an outline of how it may be applied to time series data. In Section 4, we anal-
yse and compare the performance of various hyperparameter configurations to
motivate the rationale behind our ensembling approach. Thereafter, we demon-
strate in Section 5 how GPUs may be used to accelerate the algorithm, while
Section 6 is devoted to an explanation of our proposed ensembling approach
towards improving prediction accuracy. Our experimental results are presented
and discussed in Section 7, and some conclusions are finally drawn in Section 8,
which also contains some suggestions for future work.

2 Background

In this section, a brief overview is provided of the field of time series anomaly
detection. This is followed by an exposition of the local outlier factor algorithm
and its descendants, as well as how the algorithm may be applied to time series
data.

2.1 Anomaly detection in time series

The goal of time series anomaly detection is, simply put, to identify patterns
or events in time-indexed data that deviate significantly from the expected or
normal behavior. More formally, we define a time series as an array of the form

T = [t1, t2, . . . , tn]

where ti is a real-valued number (in the case of univariate time series) or a real-
valued vector (in the case of multivariate time series) at timestep i ∈ {1, . . . , n}.
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An anomaly detection algorithm should ingest the time series T and output a
subset of the indices {1, . . . , n} corresponding to the most anomalous timesteps.
While our focus in this paper is on static univariate time series anomaly de-
tection for illustrative purposes, the general approach that we propose should
conceivably be generalisable to the multivariate case.

One of the main challenges in the field of anomaly detection is that there
is no universal definition of what is meant by the notion of an anomaly. More
specifically, in order for a point to be considered an anomaly, we do not know
by how much it should deviate from the norm, and based on which measure.
Moreover, since anomalies are inherently scarce, labelled examples are usually
few and far between. This means that we rarely have examples of anomalies
when training our models, making this an unsupervised learning task.

The anomaly detection process is generally the same for both tabular and
time series data, and consists of two steps as articulated by Keogh [10]. These
steps are as follows:

1. The most anomalous points in the data set are identified. This involves em-
ploying an algorithm which calculates an anomaly score for each data point—
typically ranging from 0 (representing the least anomalous data points) to 1
(representing the most anomalous data points).

2. A threshold is determined which segregates normal data points from anoma-
lies. Data points with an anomaly score greater than the threshold are flagged
as anomalies.

The first step (anomaly scoring) is generally considered to be the trickier of
the two, while the second step (thresholding) depends heavily on the context or
use case. As a result, most time series anomaly detection research has focused on
developing improved approaches towards anomaly scoring. To this end, hundreds
of algorithms have been proposed in the literature, rendering time series anomaly
detection a minefield for practitioners, as there are an abundance of approaches
to choose from without having many consistent, high-quality benchmarks in
terms of which to compare them.

2.2 The original local outlier factor algorithm

One of the most prominent, and celebrated, anomaly scoring approaches is the
local outlier factor algorithm, developed in 2000 by Breunig et al. [6]. Although
it is a relatively uncomplicated algorithm, especially relative to more recent
deep learning methods, it has stood the test of time. Not only is the algorithm
relatively fast and highly parallelisable, but it also enjoys the major advantage of
not requiring any training. In other words, the algorithm may simply be applied
to test data.

The local outlier factor algorithm is based upon the intuitive notion that one
may be able to identify anomalies by comparing the density of a data point with
those of neighbouring data points. The crux of the local outlier factor algorithm
lies in finding an appropriate set of k nearest neighbours, as these neighbours



4 D. Barrish & J.H. van Vuuren

are used to calculate the density of the point in question as well as the so-called
local outlier factor. Points that exhibit a significantly lower density than those
of surrounding points may be considered anomalous.

The algorithm may be summarised in three steps:

1. A so-called reachability distance is calculated between a given data point
and the points in its neighbourhood.

2. These reachability distances are used to compute the local reachability den-
sity of the given data point.

3. The local reachability density of the given data point is compared with the
local reachability densities of its neighbours in order to obtain the local
outlier factor of the given data point.

The local outlier factor algorithm requires one key parameter to be set, which
is the number of nearest neighbours to be considered, denoted by k. Using this pa-
rameter, kDistance(x) is defined as the distance (typically Euclidean) between a
given data point x and its kth nearest neighbour. Based on the definition of this
k-distance, the reachability distance between x and another point y is defined by

RDk(x, y) = max{kDistance(y), dist(x, y)}, (1)

where dist(x, y) denotes the distance between x and y.
All points at most kDistance(x) away from x are considered to be within its

neighbourhood, denoted by K. Note that this definition means that the neigh-
bourhood may consist of more than k data points. The local reachability density
of a data point x is defined as

LRDk(x) =
|K|

Σy∈KRDk(x, y)
, (2)

which is simply the inverse of the average reachability distance between x and
points in its neighbourhood. The value in (2) is compared with the local reach-
ability densities of the neighbours of x by computing the local outlier factor

LOFk(x) =
1

|K|
Σy∈K

LRDk(y)

LRDk(x)
=

Σy∈KLRDk(y)

|K| LRDk(x)
, (3)

which represents its density relative to these neighbouring points. The value in
(3) may be interpreted as follows:

– A value close to 1 indicates that the point has a similar density to those of
its neighbours.

– A value greater than 1 indicates that the point has a lower density than
those of its neighbours, meaning that it is potentially an anomaly.

– Conversely, a value smaller than 1 indicates that the point has a higher
density than those of its neighbours, meaning that it is an inlier.

Once calculated, the local outlier factor values in (3) can be mapped to the range
[0, 1] in order to align the anomaly scores with those of other popular anomaly
detection algorithms.
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It should be noted that the local outlier factor algorithm, as described here,
was designed for tabular data, and is not suitable for application to time series
data. This is due to the fact that the algorithm makes no allowance for a tempo-
ral relationship between successive timesteps. In Section 3, we discuss how the
original local outlier factor algorithm may be adapted for time series data.

2.3 Descendants of the original algorithm

Numerous modifications and enhancements of the original local outlier factor
algorithm have been proposed. In this section, we present a broad overview of
some of the most prominent variants, although there are far too many for our
coverage to be comprehensive.

Kriegel et al. [12] introduced the notion of local outlier probabilities, or LoOP
for short. They sought to standardise the output of the local outlier factor algo-
rithm to the range [0, 1] in such a way that the score could be interpreted as the
probability of a point being an anomaly. This does, however, come at the cost
of increased computation time.

While the scope of this paper is limited to static data, it is useful to provide a
brief perspective into the streaming context. A handful of proposed approaches
were aimed at tailoring the local outlier factor algorithm for streaming data and
enhance its efficiency. These approaches may be found in the work of Pokrajac et
al. [22], Salehi et al. [24], and Li et al. [13], who introduced versions of the local
outlier factor algorithm which were designed to work incrementally. Algushairy
et al. [1], as well as Mishra and Chawla [17], have provided an overview and
comparison of these streaming variants.

Alshawabkeh et al. [2] and Zhao et al. [28] recognised the value in accelerating
the local outlier factor algorithm by using GPUs. Alshawabkeh et al. [2] discussed
their broad approach and experimental results, while Zhao et al. [28] made their
implementation available as well.

Other approaches have focused on enhancing the accuracy of the local outlier
factor algorithm. For instance, Xu et al. [26] introduced an automated hyper-
parameter tuning method, while Cheng et al. [7] outlined a two-step ensemble
method which uses the local outlier factor algorithm in conjunction with another
popular anomaly detection algorithm, called isolation forest.

The local outlier factor algorithm has been applied to countless domains and
use cases. Examples may be found in the work of Auskalnis et al. [3] (detecting
intrusions in computer networks), Ma et al. [16] (detecting anomalies in traffic
data), and Oehmcke et al. [20] (detecting special events in marine time series
data).

2.4 Related work

The matrix profile, introduced by Yeh et al. [27] in 2016, is a data structure
and family of algorithms which shares many similarities with the local outlier
factor algorithm. The data structure consists of two vectors. The first is used to



6 D. Barrish & J.H. van Vuuren

store the z-normalised Euclidean distances between all sub-sequences in a time
series and each sub-sequence’s nearest neighbour, and the second is used to store
the index of each nearest neighbour. Despite its apparent simplicity, the matrix
profile may be used to solve a wide variety of time series data mining tasks,
including motif discovery, classification, clustering, and anomaly detection.

Computing the matrix profile efficiently, however, was a major hurdle to its
scalability until Zhu et al. [30] introduced the scalable time series ordered-search
matrix profile (STOMP) algorithm, which is capable of successfully scaling to
hundreds of millions of sub-sequences. Since then, additional modifications have
made the computation of the matrix profile even more efficient.

Once computed, the matrix profile can be employed for time series anomaly
detection. This typically involves finding the time series discords—sub-sequences
of a time series that are maximally far from their nearest neighbour. A handful of
algorithms have been proposed for this purpose, including MERLIN [18], MER-
LIN++ [19], and DAMP [14,15]. The latter algorithm, in particular, was shown
to be highly effective. To the best of our knowledge, the DAMP algorithm with
pre-processing is state of the art, and consequently this is the yardstick with
which we have compared our proposed approach. Additionally, the local out-
lier factor algorithm shares its distance-based methodology, which makes their
juxtaposition even more interesting.

3 Harnessing the algorithm for time series anomaly
detection

Due to its ability to find local anomalies (and not just global outliers), the local
outlier factor algorithm is well-suited to the domain of time series. Since time
series data (typically) exhibit temporal dependencies (i.e. autocorrelation), it is
vital that these data points are considered within the context of surrounding
timesteps, instead of in isolation. The local outlier factor algorithm is demon-
strably capable of detecting contextual anomalies in this sense.

It is crucial, however, that the local outlier factor algorithm is applied to
sub-sequences, as opposed to individual points, since otherwise it would not be
able to capture any temporal dependencies. As a result, a key pre-processing
step involves applying a sliding window to the time series. Once the local outlier
factor values have been calculated for these sub-sequences, the results may be
aggregated to obtain anomaly scores for the individual points.

The size of the aforementioned sliding windows is a key parameter which
has to be decided upon, as it may affect performance significantly. In a recent
comparative study [4] in the context of a univariate time series anomaly detection
benchmark data set, it was found that the local outlier factor algorithm is at
least competitive with the best algorithms in the literature. Noting its stellar
results without any hyperparameter tuning, the sub-sequence local outlier factor
algorithm is a natural candidate for possible further improvements. In other
words, it would be sensible to assume that the algorithm’s accuracy can be
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improved if appropriate values are selected for its hyperparameters—namely the
window size and number of neighbours considered.

4 Sensitivity analysis in the context of time series

The logical next step would be to verify the above assumption, and also to
ascertain how significant potential accuracy gains might be. To this end, we
performed a simple sensitivity analysis on the sub-sequence local outlier factor
algorithm.

4.1 Experimental setup

We used the UCR Time Series Anomaly Detection benchmark data set [10] ex-
clusively, as a result of the issues raised by Wu et al. [25] concerning existing
data sets, including mislabeled anomalies, overly simple anomalies, unrealistic
anomaly densities, and a run-to-failure bias. By design, each of the 250 time
series in the data set only contains a single anomaly, which means that the
thresholding step of anomaly detection is not required and one can evaluate the
effectiveness of the anomaly scoring step in isolation. As a result, the evaluation
methodology is straightforward. The model makes a prediction, which is com-
pared with the true anomaly, and then these results are aggregated in order to
obtain an accuracy score as a percentage. We have made use of the same “wiggle
room” of 100 timesteps as suggested by the data set creator [10]. This means
that if the prediction is within 100 timesteps of the true anomaly, it is considered
correct. This evaluation metric has been selected in lieu of the commonly-used
precision and recall metrics, which have the tendency to inflate an algorithm’s
performance [8,9,11,19].

All experiments were performed on a personal computer equipped with an
Intel Core i9-12900k CPU and NVidia RTX 3080 Ti GPU. The evaluation frame-
work was written in Python, and we made use of scikit-learn’s [21] implementa-
tion of the local outlier factor algorithm for our experiments in this section.

A set of sensible parameter combinations (for the window size and the number
of nearest neighbours) were selected and their efficacy compared. For the window
size w, we considered the values 10, 25, 50, 100, 250, and 500, and for the number
of nearest neighbours k, we implemented the values 5, 10, 20, 50, and 100.

4.2 Results and discussion

The performance of each of the thirty hyperparameter combinations is illustrated
graphically in Figure 1. It is evident, based on these results, that the window size
and number of nearest neighbours hyperparameters have a significant impact
on the accuracy of the algorithm. For instance, the best configuration solved
62.4% of the problem instances correctly, while the worst only managed 17.6%.
This reinforces our claim for a need to select these hyperparameter values very
carefully.
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Fig. 1. A comparison of the accuracy of thirty hyperparameter combinations.

One may notice that configurations with a large window size tended to per-
form poorly. This is most likely due to the fact that large sliding windows tend to
have a “smoothing” effect, making it difficult to distinguish true anomalies from
normal points. It is also worth noting that small values of k tended to perform
poorly. This may be explained by configurations with a small value of k being
particularly susceptible to noise in the data set.

A natural follow-up question is whether the different predictive behaviours
of various algorithm configurations have distinct strengths and weaknesses—in
other words, whether the poorly performing configurations are capable of out-
performing the best performing configurations in certain situations. The perfor-
mance of each configuration on each problem instance is illustrated in Figure 2.

As may clearly be seen in Figure 2, certain algorithm configurations thrive in
certain problem contexts, while others struggle—and vice versa. If one were able
to select the most appropriate hyperparameter configuration for each problem
instance, then a remarkable accuracy of at most 86% would be achievable—22%
higher than the accuracy of the best configuration (although this upper bound
is realistically unattainable). Moreover, the diverse predictive behaviour of the
various configurations suggests that an ensemble might be suitable for enhancing
prediction accuracy.

It is also worth noting which 35 problem instances none of the configurations
were able to solve correctly. These were problems 1, 36, 40, 42, 45, 53, 57, 74,
78, 79, 80, 81, 82, 93, 104, 105, 107, 108, 109, 152, 153, 161, 182, 187, 188,
189, 190, 210, 211, 222, 230, 240, 241, 244, and 247. A deeper examination of
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Fig. 2. A comparison of the performance of each configuration in respect of each bench-
mark problem instance, with the most accurate models at the top. Blue indicates that
a problem instance was correctly solved, while black represents the opposite.

these problems might reveal potential shortcomings of the local outlier factor
algorithm, and ways in which it could be improved.

5 Accelerating the algorithm

While the results above bode well in terms of potential accuracy improvements,
techniques involving ensembling and/or hyperparameter tuning are most likely
not computationally feasible if the goal is to detect anomalies in real time. As a
result, it is evidently necessary to speed up the local outlier factor algorithm in
order to reduce its runtime.

The utility of GPUs in significantly accelerating the training of neural net-
works is widely known, while their usefulness in speeding up many traditional
learning algorithms is arguably somewhat neglected and underutilised. Although
some research has been conducted on harnessing GPUs in conjunction with the
local outlier factor algorithm, these papers unfortunately typically do not include
implementations with source code. In our experimentation with one of the rare
exceptions, PyTOD [28], the speed-up was not as significant as we had hoped,
and the implementation ran into memory problems when applied to larger data
sets. As a result, we sought to develop our own solution.

By far the computationally most expensive step of the local outlier factor
algorithm is the calculation of the k-nearest neighbours for all of the data points
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(or sub-sequences, in our case) in the data set. More specifically, in our experi-
mentation on large data sets, up to 99.5% of the local outlier factor algorithm
runtime was consumed by the k-nearest neighbours subroutine, as illustrated
in Figure 3. As a result, it stands to reason that if the k-nearest neighbours
subroutine were to be optimised, then the entire local outlier factor algorithm
would be accelerated significantly.

Fig. 3. The percentage of the local outlier factor algorithm’s runtime consumed by the
k-nearest neighbours subroutine.

Fortunately, in the case of the k-nearest neighbours algorithm, performant
GPU implementations with source code do exist. We made use of the RAPIDS
cuML library [23], which was found to have a highly efficient k-nearest neigh-
bours implementation while still retaining a similar API to scikit-learn [21]. As
a result, our solution simply involved integrating this k-nearest neighbours im-
plementation into an otherwise fairly standard version of the sub-sequence local
outlier factor algorithm. The pseudocode for our approach is shown in Algo-
rithm 1.

Despite its simplicity, this approach had the desired effect. As may be seen
in Figure 4, the GPU version of the local outlier factor algorithm was up to
eleven times faster than the CPU version. Note that these results are obviously
extremely dependent on the hardware—we should reiterate our usage of an Intel
Core i9-12900k and NVidia RTX 3080 Ti for this comparison. Both the CPU
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Algorithm 1 A GPU-optimised sub-sequence local outlier factor algorithm

Input:
T: A time series (1D array) consisting of n real numbers.
k: The number of neighbours for the KNN algorithm.
w: The sub-sequence window size.

Output:
pointScores: The anomaly scores for each point ti determined using the local
outlier factor.

Assume:
• kNN(array, k): The GPU-enabled k-nearest neighbours implementation. Returns
the indices and distances of the k-nearest neighbours.
• applyWindowing(array, w): Converts a 1D time series to a 2D matrix containing
n− w − 1 sub-sequences of length w.
• reverseWindowing(subsequences, w): Converts the array of size n − w − 1
containing anomaly scores for the sub-sequences into an array of size n containing
the anomaly scores for the points in T .
• getReachDist(indices, distances, k): Calculates the reachability distance for
all sub-sequences as defined in (1) in §2.2.
• getLRD(indices, distances, k): Calculates the local reachability densities for
all sub-sequences as defined in (2) §2.2.
• getLOF(localReachabilityDensities, indices): Calculates the local outlier
factor for all sub-sequences as defined in (3) §2.2.

1: subsequences← applyWindowing(T, w)
2: indices, distances← kNN(subsequences, k)
3: reachabilityDistances← getReachDist(indices, distances, k)
4: localReachabilityDensities← getLRD(reachabilityDistances)
5: subsequenceScores← getLOF(localReachabilityDensities, indices)
6: pointScores← reverseWindowing(subsequenceScores, w)
7: return pointScores

and GPU are widely-available consumer-grade hardware, and at a comparable
price.

6 Enhancing the accuracy of the algorithm

The dramatic speed increase demonstrated in Figure 4 unlocks techniques for
improving real-time anomaly detection accuracy which might not have been
feasible otherwise. This includes ensembling, which is a technique that combines
multiple weaker models into a single, stronger model.

6.1 Our ensembling approach

Based on the diverse predictive behaviour exhibited by the various hyperparam-
eter configurations considered in Section 4, an ensemble model suggests itself.
As a result, we modified Algorithm 1 for this purpose, as shown in Algorithm 2.
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Algorithm 2 Ensembling local outlier factor models

Input:
T: A time series (1D array) consisting of n real numbers.
neighbours: The set of neighbour parameter values in the ensemble.
windows: The set of window sizes in the ensemble.

Output:
combinedScores: The anomaly scores for each point ti determined using an ensem-
ble of local outlier factor models.

Assume:
• All the function definitions in Algorithm 1 apply here too.
• getSubsets(indices, distances, k): Returns the subset of indices and neigh-
bours for only the nearest k neighbours.
• addNewScores(combinedScores, pointScores): Adds the new scores to
combinedScores array in such a way that scores are “spread” to neighbouring
points (in this case, within 100 timesteps) to make the ensemble less sensitive to
each ensemble member’s noise.

1: combinedScores← {}
2: for w in windows do
3: subsequences← applyWindowing(T, w)
4: indices, distances← kNN(subsequences, k)
5: for k in neighbours do
6: kIndices, kDistances← getSubsets(indices, distances, k)
7: reachabilityDistances← getReachDist(kIndices, kDistances, k)
8: localReachabilityDensities← getLRD(reachabilityDistances)
9: subsequenceScores← getLOF(localReachabilityDensities, kIndices)
10: pointScores← reverseWindowing(subsequenceScores, w)
11: combinedScores← addNewScores(combinedScores, pointScores)

12: return combinedScores
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Fig. 4. A comparison of the computational times of the CPU and GPU versions of the
local outlier factor algorithm.

Instead of ingesting just one value each for w and k, the ensembling algorithm
makes use of two lists of parameter values, namely neighbours and windows.
The ensemble comprises all combinations of k and w.

We employed a number of small tricks to optimise the ensemble runtime.
Most importantly, we only call the k-nearest neighbours subroutine once per
value of w (for the largest value of k) instead of for every value of k. This
saves a significant amount of time, since the output of the k-nearest neighbours
algorithm for smaller values of k is a subset of the output for the largest value
of k.

We attempted to combine the predictions of the ensemble members in a few
different ways. Based on the results of our experimentation, we opted for a hard
voting approach where the anomaly scores were first “spread” to neighbouring
points (within 100 timesteps). “Spreading” the scores was necessary since the
naive approach of simply adding up the anomaly scores of each point and then
returning the timestep with the highest combined score performed relatively
poorly (this was highly susceptible to noise). For example, if many ensemble
members predict slightly different timesteps within the correct region, they might
be outvoted by a small handful of members who predicted exactly the same
timestep in the wrong region.

Although our suggested approach works well, it is possible that other en-
sembling methods might work better. For instance, a soft voting approach could
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work well, where each ensemble member’s vote is weighted by its performance
in respect of a validation set (if available) or based on some heuristic.

6.2 Other ideas to improve accuracy

While our ensembling approach was a success, we also experimented with a few
other ideas aimed at improving accuracy even further. These ideas were not
particularly successful, but we offer a brief description of some of the things
we tried since better implementations than ours might lead to more favourable
outcomes.

As illustrated in Section 4, the performance of the sub-sequence local outlier
factor algorithm is highly sensitive to two parameters—the window size and the
number of neighbours. Based on Figure 2, selecting the ideal hyperparameter
configuration for each data set would yield an accuracy improvement of 22%. A
manual approach may involve examining the time series and setting the window
size based on its periodicity, although this is not necessarily feasible, realistic,
or accurate for many large data sets. As a result, we experimented with the
method employed by Lu et al. [15], who set the window size to the peak of the
autocorrelation in the range 10 to 1000.

Deciding on the number of nearest neighbours to consider is also far from
trivial. Breunig et al. [6] provided some guidelines, however, which include a
minimum of 10 in order to remove undesirable statistical fluctuations. This is
borne out by our results in Figure 1, where configurations with k = 5 performed
particularly poorly. Moreover, they suggested setting a range of possible k-values
based on cluster sizes, although this introduces further hurdles. Not only would
clustering the sub-sequences increase the computational time significantly, but
these clustering algorithms have their own hyperparameter values which would
have to be tuned. In short, our attempts to tune the hyperparameters without
a validation set were not particularly successful, and we did not manage to
outperform the best configuration in Figure 1 (namely w = 50, k = 50).

We also attempted to pre-process the data in a better way using the sharp-
ening method, as in DAMP [14,15]. Unfortunately, this also did not seem to
improve our results, and actually made them worse. While we do suspect that
better pre-processing or hyperparameter tuning should be able to improve upon
the results in Figure 1, our experiments did not bear fruit.

7 Results and discussion

In Table 1, we summarise our results, and contrast them with the best approaches
in the literature. The comparison is carried out in terms of runtime as well as
accuracy, in order to give some indication of how feasible each approach might
be when applied to large data sets or in an online setting. We implemented
configurations typeset in boldface ourselves, while the rest of the results were
borrowed from the papers referenced. The computation times are not directly
comparable due to the different hardware setups, and are provided merely for
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informative purposes. For instance, our models were executed on an NVidia RTX
3080 Ti GPU, while DAMP and NormA were run on an Intel Core i7-9700 CPU.

Model name Accuracy Total time

LOF ensemble 66.8% 2h 5m
DAMP (sharpened data) [15] 63.2% 4h 16m
LOF with w = 50, k = 50 62.4% 1m 43s
DAMP (out-of-the-box) [15] 51.2% 4h 16m
NormA [5] 47.4% 17m 48s
MERLIN++ [19] 42.4% 14m 30s
SCRIMP [29] 41.6% 24m 30s
LOF with w = 1, k = 50 14.4% 33s

Table 1. The accuracy and computational time results for a selection of algorithms
tested on the univariate time series benchmark dataset of Keogh [10].

The first point worth noting is that our proposed ensembling approach com-
fortably outperforms all other models, including DAMP with sharpened data,
meaning that it is, to the best of our knowledge, the new state-of-the-art algo-
rithm for the UCR Time Series Anomaly Detection benchmark data set [10]. It
achieves this feat without being prohibitively time-consuming. These promising
results are particularly impressive considering how little fine-tuning was required.
Not only does the local outlier factor algorithm have no need for a training set,
but its only two hyperparameters (the lists of values for k and w) are relatively
simple to set based on a given computational budget.

A second major takeaway is that the ensemble model is 4.4% more accurate
than the best local outlier factor configuration (of those we tested), which in-
dicates that hyperparameter tuning in isolation is very unlikely to outperform
ensembling. We also included the results returned by the local outlier factor algo-
rithm without windowing (i.e. a window size of 1) in our comparison to illustrate
two closely-related points. First, we wanted to demonstrate the necessity of ap-
plying sliding windows on time series data—without this, performance is dread-
ful. Secondly, we aimed to show that the problem instances in the benchmark
data [10] are far from trivial, and that most are unsolvable without accounting
for the temporal relationship between timesteps.

Something worth pointing out is the distinct lack of deep learning approaches
in Table 1. Numerous authors [4,15,25] have noted the poor performance of deep
learning approaches on the benchmark data set, and have postulated that deep
learning is overkill and unsuitable for univariate time series anomaly detection
in general. It remains to be seen, however, whether the remarkable performance
of the local outlier factor ensemble translates to similar performance in complex,
multivariate time series.
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8 Conclusion and future work

In this paper, we proferred a new approach towards solving the topical problem of
anomaly detection in time series by putting a fresh twist on the well-established
local outlier factor algorithm. This involved two relatively simple, but highly
effective enhancements.

The first of these involved accelerating the local outlier factor algorithm
significantly. We achieved this by parallelising the most expensive step of the
local outlier factor algorithm (namely finding the k-nearest neighbours, which
took up to 99% of the total computation time for large data sets) on a GPU.
This resulted in a significant speed-up of up to 1100% for large data sets.

The second enhancement was aimed at improving the prediction accuracy
of the local outlier factor algorithm by leveraging ensembles. After noticing the
diverse predictive behaviour of different hyperparameter configurations, we de-
veloped an ensemble model that combined the predictions of these configurations
by means of hard voting. This approach was simple but effective in establish-
ing what is, to the best of our knowledge, a new state of the art of 66.8% on
the benchmark data set. Moreover, thanks to the GPU acceleration, this was
achieved within a very reasonable time.

In spite of the very promising results reported in this paper, we have no
doubt that there is plenty of room for further algorithmic improvement. It is
likely that even higher accuracy scores might be achieved by integrating some
hyperparameter tuning and more advanced data pre-processing, or by developing
a smarter way of selecting ensemble members. Although we limited ourselves to
the local outlier factor algorithm in this paper, we anticipate that adding other
anomaly detection algorithms (such as isolation forest or one-class support vector
machines) to the ensemble would improve accuracy further. Another key avenue
for future research is to extend and evaluate our approach in respect of streaming
and multivariate time series data. We hope that our findings pave the way for
further refinements in anomaly detection algorithms and continued progress in
the quest for improved anomaly detection accuracy and efficiency.
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