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Abstract. Motivated by the centralised training with decentralised ex-
ecution (CTDE) paradigm, multi-agent reinforcement learning (MARL)
algorithms have made significant strides in addressing cooperative tasks.
However, the challenges of sparse environmental rewards and limited
scalability have impeded further advancements in MARL. In response,
MRRC, a novel actor-critic-based approach is proposed. MRRC tackles
the sparse reward problem by equipping each agent with both an in-
dividual policy and a cooperative policy, harnessing the benefits of the
individual policy’s rapid convergence and the cooperative policy’s global
optimality. To enhance scalability, MRRC employs a monotonic mix net-
work to rectify the state-action value function Q for each agent, yield-
ing the joint value function Qtot to facilitate global updates of the en-
tire critic network. Additionally, the Gumbel-Softmax technique is intro-
duced to rectify discrete actions, enabling MRRC to handle discrete tasks
effectively. By comparing MRRC with advanced baseline algorithms in
the "Predator-Prey" and challenging "SMAC" environments, as well as
conducting ablation experiments, the superior performance of MRRC is
demonstrated in this study. The experimental results reveal the efficacy
of MRRC in reward-sparse environments and its ability to scale well with
increasing numbers of agents.

Keywords: Multi-agent reinforcement learning · Cooperative task · In-
dividual reward rectification · Monotonic mix function.

1 Introduction

In recent years, artificial intelligence (AI) technologies have been extensively
applied in various domains such as medical services [3,15], multiplayer games
[13,34], and image processing [4,25]. Within these domains, effectively handling
multi-agent cooperative tasks has emerged as a crucial challenge. The advent of
the centralised training with decentralised execution (CTDE) [11] paradigm has
significantly advanced the field of multi-agent reinforcement learning (MARL)
in addressing such tasks through centralized agent training. However, challenges
arise due to the conditions under which the environment provides rewards to
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agents [19]. For instance, in games like Go, it is difficult to determine the winner
until the game’s completes, making it arduous for agents to obtain rewards
during gameplay. Consequently, this hampers the convergence of the algorithm,
increases the cost of sample acquisition, and diminishes the utilization of sample
[1].

To tackle the sparse reward problem, researchers have proposed various meth-
ods, including reward function reconstruction [10,20] and multi-objective learn-
ing [7,23]. While reconstructing the reward function can partially alleviate the
slow update issue caused by sparse rewards, it typically applies exclusively to
specific tasks. Moreover, migrating to a new environment necessitates designing
a novel reward function. Additionally, reconstructed reward functions occasion-
ally misguide agents and require constant debugging to provide meaningful guid-
ance, which reduces efficiency [5]. On the other hand, multi-objective learning
involves augmenting the original learning goal, enabling agents to receive re-
wards upon reaching certain milestones. This approach expedites training in the
initial stages, and the agent’s policy improves through accumulated successful
experiences. However, these additional rewards introduce significant errors that
accumulate over time, ultimately impeding the attainment of a globally optimal
solution [16].

As the number of agents participating in cooperative tasks grows, several
MARL algorithms, including FOP [35], QPLEX [28], and MADDPG [12], en-
counter challenges related to dimensionality. These challenges, commonly re-
ferred to as dimensional catastrophes, hinder the efficient operation of the al-
gorithms. To enhance the scalability of algorithms within the CTDE frame-
work, researchers have proposed various methodologies, including value-based
approaches [21,26,31] and actor-critic methods [32,36]. The value-based approach
typically revolves around Q-values updated by agents. It often employs a mix
network that combines the Q-values of each agent resulting in a joint value func-
tion Qtot with global nature. This approach improves scalability to some extent.
Nonetheless, in this approach, the agent needs to recalculate the value function
and select the next action at each moment t, leading to a significant reduc-
tion in operational efficiency. In contrast, algorithms based on the actor-critic
framework utilize policy gradients for updates. By incorporating a global state
value function, these algorithms can achieve greater scalability. However, policy
gradients are normally employed in tasks with continuous action spaces, which
imposes certain limitations [2].

A novel method, Multi-agent Reinforcement learning with Rectification
Capability in cooperative tasks (MRRC), is proposed in this study to address
the challenges of sparse reward and scalability in multi-agent cooperative tasks.
The MRRC method incorporates both individual and cooperative policies for
each agent, with the individual policy aiming for individual rewards and the co-
operative policy targeting cooperative rewards. By employing an actor network,
the individual reward rectifies the policy and produces the action a, while the
critic network generates Q-values based on this action. These Q-values are fur-
ther adjusted by the mix network to form a global value function Qtot. The loss
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value is calculated using Qtot, and the MRRC’s network is updated accordingly.
MRRC incorporates a discrete action corrector to handle discrete actions and
estimate the policy gradient. The key contributions of this study are as follows:

– A novel MARL method based on the actor-critic framework is proposed,
specifically designed to tackle multi-agent cooperative tasks.

– An individual reward rectification module is introduced which equips each
agent with two policies: a individual policy and a cooperative policy. By com-
bining the benefits of rapid convergence from the individual policy and the
global optimal solution from the cooperative policy, the actor network effi-
ciently outputs the optimal next action, effectively addressing the challenges
posed by sparse rewards.

– The mix network rectification module and the discrete action rectification
module are introduced in this study, which significantly enhance the scal-
ability of the algorithm. The linear combination of the value functions Q
from all agents forms the global joint value function Qtot, which proves to
be effective, even in situations with changing environments.

2 Background

2.1 Dec-POMDP

In the pursuit of solving fully cooperative multi-agent tasks, it is often neces-
sary to decompose the task and model it as a decentralized partially observ-
able Markov decision process (Dec-POMDP) [17]. This modeling approach is
normally represented by a one-tuple, denoted as G = <S,A, P, r, γ,N,Ω,O>.
Among the tuple N ≡ {1, 2, ..., n} represents the set of all agents, S represents
the set of environment states, and the observation oi ∈ Ω is obtained from the
observation kernel O(s, i). The discount factor is denoted as γ ∈ [0, 1). At time
step t, each agent i selects an action ai ∈ A based on its observation oi and the
collective actions of all agents form a joint action denoted as a. This joint action
influences the environment, leading to a change in the state and the generation
of a reward value r = R(s,a). Each agent then transitions to the next state s′
through the state transition function P (s′|s,a) : S × A → [0, 1]. Based on their
respective observation values, each agent maintains its own action-observation
history, denoted as τi ∈ T ≡ {Ω ×A}. The overarching objective throughout
this process is to discover a joint policy that maximizes the joint action-value
function Q(st,at) = E[Rt|st,at]. In tasks where actions are continuous, agents
utilize a continuous policy µ, while discrete actions correspond to a discrete
policy π.

2.2 MERL and IRAT

MERL [14] and IRAT [30] are both approaches aimed at addressing the sparse
reward problem in multi-agent tasks. They utilize gradient-based optimizers to
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train agents with higher reward potential, ultimately maximizing the overall
reward.

MERL takes a hierarchical approach and employs two optimization processes
to handle different objectives. Initially, an evolutionary algorithm is utilized to
neuroevolve the entire population of agents, focusing on maximizing the collec-
tive reward in scenarios with sparse rewards. Subsequently, policy gradients are
incorporated into the agent population for training. This involves information
transfer between agents and the population, and culminates in the optimization
of the overall policy using the acquired rewards.

In contrast, IRAT utilizes a team policy to guide the optimization of agent-
specific policies. For a specific agent i, the optimization goal is to maximize
its individual rewards, denoted as J(θi) = E [

∑∞
t=0 γ

trti ]. Since the team policy
in IRAT represents a joint policy, the actions outputted by each agent i are
executed using the respective individual policies πi. The objective for each agent
i is to maximize the following function:

J(θi) =

{
E[max(JCLIP (θi), J

IRAT (θi))], σ
t
i ≤ 1

E[min(JCLIP (θi), J
IRAT (θi))], σ

t
i > 1

, (1)

where σti is the coefficient of similarity. JIRAT (θi) =
E [clip (σti (θi) , 1− ξ, 1 + ξ)Ati] is a cooperation-oriented goal and
JCLIP (θi) = E[min(ηtiA

t
i, clip(η

t
i , 1 − ϵ, 1 + ϵ)Ati)] is a goal reward of a

single agent.

2.3 MADDPG, QMIX and FACMAC

MADDPG [12], QMIX [21], and FACMAC [18] are all algorithms employed in
the CTDE paradigm to address cooperative tasks involving multiple agents.
QMIX is a value-based algorithm, while MADDPG and FACMAC are actor-
critic framework-based algorithms. In MADDPG, each agent possesses its own
independent actor and critic, enabling autonomous learning. For agent i, a joint
action value function Qµ

i (s, a1, ..., an;ϕi) is maintained, and the critic network
is updated by minimizing the following loss function:

LOSS(ϕi) = ED[(yi −Qµi (s, a1, ..., an;ϕi))
2], (2)

where yi = ri+γQ
µ
i (s

′, a′1, ..., a
′
n;ϕ

−
i ),a

′
i = µi(τ

′
i ; θ

−
i ) and ri represent the reward

for agent i, {a′1, ..., a′n} denotes the set of actions taken by other agents obtained
from the replay buffer D, and ϕ−i represents the parameter of the target critic for
agent i. In contrast, the QMIX algorithm builds upon Q-learning and utilizes
a linear, monotonic mix function to compose the global value function Qtot,
expressed as:

Qtot(τ ,a, s;ϕ, ω) = fω (s,Q1 (τ1, a1;ϕ1) , . . . , Qn (τn, an;ϕn)) , (3)

where ω represents the parameter of the monotonic mixture function f .
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Taking advantage of both MADDPG and QMIX, the FACMAC algo-
rithm is introduced. It incorporates mix functions within the actor-critic
framework. Specifically, the Q-values of each agent is combined with nonlin-
ear functions to obtain the joint action value function Qµ

tot(τ ,a, s;ϕ, ω) =
gω(s, {Qµi

i (τi, ai;ϕi)}
n
i=1), parameters ϕ and ϕi represent the parameters of the

joint value function Q and Qµi

i for agent i, respectively. The parameter of the
nonlinear function is represented by ω. The critic network is updated by mini-
mizing the following loss function:

LOSS(ϕ, ω) = ED[(ytot −Qµ
tot(τ ,a, s;ϕ, ω))

2], (4)

where ytot = r + γQµ
tot(τ

′,µ(τ ′;θ−), s′;ϕ−, ω−), ω−, θ−, and ϕ− denote the
parameters of the mix function, the target actor network, and the critic network,
respectively.

3 Method

This section describes the components and processes of MRRC, and the overall
framework of MRRC is shown in Fig. 1.

（b） （c）（a）

Fig. 1. Overview of the proposed method MRRC.(a) The overall process of
individual reward rectification. (b) Sampling of continuous policy and policy
gradients using discrete action rectification. (c) Computation of the joint value
function Qtot using mix network

3.1 Individual Reward Rectification

By leveraging the widespread implementation of the CTDE paradigm in MARL
algorithms, researchers have achieved remarkable advancements in addressing
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collaborative multi-agent tasks, including QMIX [21] and MADDPG [12]. Nev-
ertheless, such tasks often provide cooperative rewards exclusively upon accom-
plishing specific objectives. As the complexity of the environment escalates,
agents encounter difficulties in attaining rewards within a designated timeframe,
leading to sparse reward predicaments which yield sluggish policy convergence
[33]. To tackle this issue, the integration of individual reward rectification into
the actor-critic framework is proposed in this study. Individual reward rectifi-
cation involves utilizing each agent’s personal reward to rectify cooperative re-
ward, thereby mitigating the sparsity inherent in the reward environment. Unlike
IRAT, this approach necessitates the acquisition of two policies per agent—an
individual policy and a cooperative policy—rendering it more compatible with
the actor-critic framework and significantly enhancing the agent’s learning effi-
ciency. The exact process of Individual Reward Rectification is shown in Fig.2.

...

Conversion  func�on  

Learning path using coopera�ve reward

Learning path using individual reward

Learning path using individual
reward rec�fica�on

Prefer to use individual reward to learn

Time spent on the three learning paths

Prefer to use coopera�ve reward to learn

Ini�al state

Reward

Subop�mal policy
Op�mal policy

Fig. 2. Example of individual reward rectification

In Fig.2, the far-right blue line represents the cooperative policy, which relies
on sparse cooperative rewards for learning, resulting in a slow learning process.
Conversely, the far-left orange line represents the individual policy, which utilizes
dense individual rewards for learning, leading to a faster learning process but
with a tendency to converge towards local optima. In order to leverage the
strengths of both approaches while mitigating their drawbacks, we introduce
individual reward rectification. This approach combines the benefits of dense
individual rewards for rapid learning in the initial stage, and subsequently relies
on the cooperative policy to attain the optimal reward position in the later stage.

Regarding the concept of "two policies per agent", specifically, agent i is re-
quired to acquire an individual policy π̂i with parameter θ̂i and a cooperative
policy πi with parameter θi. Their objectives encompass maximizing the cumula-
tive individual reward R̂(θ̂i) = E [

∑∞
t=0 γ

tr̂ti ] and the cumulative cooperative re-
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ward R(θi) = E [
∑∞
t=0 γ

trti ], respectively. It is noteworthy that these two policies
have mutually influencing effects. The process of individual reward rectification
employs cumulative increasing KL regularization [27] and cumulative decreas-
ing KL regularization to strike a balance between the two policies, ultimately
leading to the optimal action produced by the individual policy. The cumulative
decreasing KL regularization is employed to learn the actions performed by the
individual policy, while the cumulative increasing KL regularization refines and
samples the actions of the cooperative policy.

The cumulative increasing KL regularization does not exert its influence dur-
ing the initial stages of learning for agent i. Consequently, the actions acquired
by agent i tend to learn individual policies. This accelerates the learning ef-
ficiency and assists in escaping the sparse reward state in the early stages of
learning. Subsequently, the role of the regularizer employed to learn cooperative
policies gains prominence in the later stages of learning. Agent i becomes in-
clined to acquire cooperative policies associated with substantial reward values,
thus eliminating the drawback of suboptimal solutions yielded by solely learning
individual policies.

Based on the aforementioned analysis, the current challenge focuses on de-
termining the optimal balance between the influence of the individual and the
cooperative policies, and the difference between the two should not be sufficient
to generate conflicts between the policies. Similar to IRAT, a similarity coeffi-
cient is utilized to ascertain the equilibrium point, denoted as δ. The similarity
coefficient is defined as follows:

δti(θi, θ̂i) =
π̂(ati|τ ti , θ̂i)
π(ati|τ ti , θi)

, (5)

where δti represents the similarity coefficient of agent i at time t and δti ∈
[1− x, 1 + x], therein x serving as the limiting factor. Examining the expression
of the similarity coefficient reveals a distinction from IRAT. In this research,
each agent corresponds to an individual policy π̂ and a cooperative policy π,
which facilitates the computation of the similarity coefficient, enhances opera-
tional efficiency, and adapts more effectively to the actor-critic framework within
the CTDE paradigm.

In the initial execution of individual reward rectification, significant emphasis
is placed on the individual reward, necessitating the utilization of a decreasing
KL regularizer to amplify the effectiveness of the individual policy. The target
reward for the individual policy R̂(θ̂i) is represented as follows:

R̂(θ̂i) = E[Iδ≥1 max(δti(θi, θ̂i), δ̂
t
i(θ̂i, θi))Âi

+ Iδ<1 min(δti(θi, θ̂i), δ̂
t
i(θ̂i, θi))Âi

+ αKL(πi, π̂i)],

(6)

where I denotes the conditional selection function, α indicates the decreasing
coefficient, and Âi denotes the set of actions taken by agent i using the individual
policy. Subsequently, a progressively increasing KL regularizer is introduced to



8 S. Yu et al.

enhance its influence when a cooperative policy is required, and the target reward
for the cooperative policy R(θi) is expressed as:

R(θi) = E[Iδ≥1 min(δti(θi, θ̂i), δ̂
t
i(θ̂i, θi))Ai

+ Iδ<1 max(δti(θi, θ̂i), δ̂
t
i(θ̂i, θi))Ai

+ βKL(π̂i, πi)],

(7)

where β represents the incremental coefficient, and Ai denotes the set of actions
taken by agent i using the cooperative policy. Following the computation of the
individual and cooperative rewards, which necessarily translate into the target
reward for individual reward rectification RIRR(θ), which can be described as:

RIRR(θi, θ̂i) =

{
Cti R̂(θ̂i)− (Cti − Ct−1

i )R(θi), Cti ≥ 0

−CtiR(θi) + (Ct−1
i − Cti )R̂(θ̂i), Cti < 0

, (8)

where Cti denotes the conversion function and Cti = rti + γV (st) − V (st−1),
V (st) = Est+1:∞,at:∞[

∑∞
l=0 rt+l] [22]. When Cti ≥ 0, the individual reward holds

dominates, whereas when Cti < 0, the cooperative reward takes precedence. The
output action set AIRR is calculated from the rectified individual policy and
AIRR = {a1, a2, ..., an}.

3.2 Mix Network Rectification

As a prominent representative of the CTDE paradigm, MADDPG excels at
swiftly attaining the global optimal solution through centralized critic training.
However, as the number of agents increases, obtaining a single global state-value
function through centralized training for all agents becomes challenging [24]. To
address this issue, mix network rectification is proposed, wherein a mix network
[6] is employed to factorize the Q-value of each agent and derive the global value,
denoted as Qtot. Distinct from FACMAC, the factorization function employed is
linear, which promotes scalability.

Specifically, in mix network rectification, the critic undergoes centralized
training using the value functions of all agents to acquire Qtot, as depicted by:

Qπ
tot(τ ,a, s;ϕ, ω) =gω(s,Q

π1
1 (τ1, a1;ϕ1),

..., Qπn
n (τn, an;ϕn)),

(9)

where Qtot, the joint action value function, depends on the parameters ϕ. On the
other hand, the value function for a single agent, Qn, depends on ϕn. The mix
network parameter is denoted as ψ, and the mixing function, gψ, is a linear func-
tion. During the training process, the critic network is updated by minimizing
the loss function, which is given by:

LOSS(ϕ, ω) = ED[(ytot −Qπ
tot(τ ,a, s;ϕ, ω))

2], (10)

where ytot = r+γQπ
tot(τ

′,π(a, τ ′;ψ−), s′;ϕ−, ω−), and D represents the replay
buffer. The parameters ψ−, ϕ−, and ω− represent the target actor, target critic,
and target mix network, respectively.
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Once the global state value function Qtot is computed, the actor network
requires updating. Taking MADDPG as an example, each agent’s actor param-
eters are updated through its own policy gradient, where the policy gradient
of each agent is affected by the actions of all agents, typically obtained from
the replay buffer D. Nevertheless, this approach typically leads to reduced com-
putational efficiency. To overcome this challenge, a mix network is adopted to
introduce a novel policy gradient calculator. This innovation effectively acceler-
ates the efficiency of global policy updates for actor networks, thereby enhancing
the algorithm’s scalability.

Similar to FACMAC, during actor network updates, the action set is denoted
as A = {a1, a2, ..., an}, is extracted from the current policies of all agents rather
than solely relying on the replay buffer D. However, unlike FACMAC, the mix
network in this study utilizes linearity, which facilitates the implementation of
policy gradient estimation and reduces computational complexity. The actor
network’s policy gradient can be expressed as follows:

∇ψJ(π) = ED[∇ψπ∇πQ
π
tot(τ , π1(τ1, a1), ..., πn(τn, an), s)], (11)

where π = {π1(τ1, a1|ψ1), ..., πn(τn, an|ψn)} denotes the set of current policies
for all agents, and ψ indicates the actor network’s parameter.

3.3 Discrete Action Rectification

Conventionally, policy gradients are computed based on continuous policies, de-
noted as µ. However, many cooperative tasks inherently involve discrete actions.
This poses a challenge for algorithms like MADDPG, as they struggle to handle
tasks with discrete actions effectively. The discrete action rectification is intro-
duced to settle this issue. Specifically, the Gumbel-Softmax [9] technique is uti-
lized to sample from the continuous policy, resulting in the output of the sampled
agent being π(at−1, τ ). Moreover, Gumbel-Softmax enables the computation of
gradients for discrete samples, thereby approximating the policy gradient. The
process of gradient approximation is described as follows:

∇ψJ(µ) = ED[∇ψµ∇µQ
µ
tot(τ , µ1(τ1), ..., µn(τn), s)]

≈ ED[∇ψv∇vQ
v
tot(τ , v1, ..., vn, s)] = ∇ψJ(π),

(12)

where v = π(a|τ ), and v = {v1, ..., vn} demonstrates the actions performed
during the continuous sampling process.

4 Experiments and Results

This section presents the experimental results of the MRRC algorithm conducted
in two cooperative environments: "Predator-Prey" and "StarCraft Multi-Agent
Challenge (SMAC)". To assess the effectiveness of MRRC, it was compared
against several state-of-the-art actor-critic algorithms, namely FACMAC [18]
and MASAC [8], as well as the value-based algorithms QMIX [21] and QTRAN
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[26], and the policy-based algorithm IRAT [30]. Additionally, ablation experi-
ments were performed to evaluate the impact of the "Individual Reward Recti-
fication" and "Mix Network Rectification" modules in MRRC. Specifically, two
new algorithms were created in this study, "MRRC-IRR" by removing individ-
ual reward rectification, and "MRRC-MNR" by excluding mix network rectifica-
tion. In the "Predator-Prey" environment, all experiments were conducted with
a training duration of 1 million steps, while for the more challenging "SMAC"
environment, the training duration was set to 2 million steps. Each experiment
was executed with seven random seeds, and the 95% confidence interval is shown
shaded.

4.1 Predator-Prey

Experiments were conducted in the "Predator-Prey" environment, utilizing a
12×12 grid world. The preys were controlled by built-in AI, and the objective of
the MARL algorithm was to manipulate the predators to capture these preys.
The observation range of the predators was limited to a 2×2 grid. The aim was
to verify the effectiveness of the MRRC algorithm in environments with sparse
rewards and scalability when the number of agents increases. Two experimental
scenarios were established for this purpose: Predator-Prey with decreasing preys
and Predator-Prey with increasing agents. Three experiments were conducted in
the Predator-Prey with decreasing preys. The number of predators was fixed at
6, while the number of preys varied, specifically 3, 2, and 1. The experimental
results are presented in Fig.3. Similarly, three experiments were conducted in
the Predator-Prey with increasing agents. The number of predators was set to
3, 6, and 9, respectively. The corresponding results are illustrated in Fig.4.

(a) 6 predators and 3 preys (b) 6 predators and 2 preys (c) 6 predators and 1 prey

Fig. 3. Median test returns of Predator-Prey with decreasing preys

As depicted in Fig.3, the MRRC algorithm exhibits superior performance
compared to all other baseline algorithms in Predator-Prey with decreasing
preys. When the number of preys is high, as illustrated in Fig.3(a), most al-
gorithms manage to maintain relatively better performance. However, as the
number of preys decreases, resulting in increasingly sparse rewards in the en-
vironment, only MRRC, MRRC-MNR, and IRAT demonstrate significant per-
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(a) 3 predators and 3 preys (b) 6 predators and 6 preys (c) 9 predators and 9 preys

Fig. 4. Median test returns of Predator-Prey with increasing agents

formance, particularly when only one prey remaining, as shown in Fig.3(c). No-
tably, the reward value of QMIX algorithm decline over time, indicating its
poor performance in an environment with extremely sparse rewards. Among all
the ablation experiments conducted in the sparse reward scenario, MRRC-MNR
achieves the best performance, suggesting that individual reward rectification
effectively addresses the challenges posed by sparse rewards in the environment.
Remarkably, the performance of both MRRC and MRRC-IRR is lower than that
of MRRC-MNR, suggesting that mix network rectification may introduce addi-
tional complexity to the algorithm, which potentially leads to negative effects.

Fig.4 demonstrates that MRRC surpasses all other baseline algorithms in
the Predator-Prey with increasing agents. When the number of agents is small,
as illustrated in Fig.4(a)and4(b), most algorithms exhibit better performance.
Nevertheless, as the number of agents increases, as shown in Fig.4(c), the per-
formance of the baseline algorithms QMIX and FACMAC declines significantly,
highlighting their poor scalability. In contrast, the MRRC algorithm which in-
corporates the monotonic mix function performs better, emphasizing the crucial
role of mix network rectification in enhancing scalability. The performance of
MRRC is noticeably lower than that of MRRC-IRR in Fig.4(c), indicating that
individual reward rectification has a negative impact on scalability.

4.2 More Challenging SMAC

To assess the adaptability of the MRRC algorithm in complex tasks, six distinct
experiments were conducted in the more challenging SMAC environment. The
details of the experimental maps and parameters can be found in Table 1, and
accroding to the research of Wang et al. [29] the other parameters were set. The
results of these experiments were illustrated in Fig.5.

As presented in Fig.5, the MRRC algorithm demonstrates strong perfor-
mance across SMAC environments with varying maps and difficulty levels. In
simpler tasks, as shown in Fig.5(a)and5(b), MRRC, MRRC-IRR, MRRC-MNR,
FACMAC, and QMIX all exhibit excellent performance. As task complexity in-
creases, as indicated in Fig.5(c),5(d),5(e)and5(f), the MRRC algorithm consis-
tently outperforms the other baseline algorithms, demonstrating its superiority
and adaptability in diverse cooperative environments. Notably, the QTRAN and
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Table 1. The maps and parameters of the SMAC in experiment
Map name Difficulty Ally Opponent

2s3z Easy 2 Stalkers & 3 Zealots −
3s5z Easy 3 Stalkers & 5 Zealots −

3s_vs_5z Hard 3 Stalkers 5 Zealots
5m_vs_6m Hard 5 Marines 6 Marines

3s5z_vs_3s6z Super hard 3 Stalkers & 5 Zealots 3 Stalkers & 6 Zealots
27m_vs_30m Super hard 27 Marines 30 Marines

(a) 2s3z (b) 3s5z (c) 3s_vs_5z

(d) 5m_vs_6m (e) 3s5z_vs_3s6z (f) 27m_vs_30m

Fig. 5. Median test win for easy(a)(b), hard(c)(d) and super-hard (e)(f) maps
of SMAC

MASAC algorithms consistently underperform across all tasks, indicating their
limited adaptability in different environments.

The results were analyzed in detail in the ablation experiments. In simpler
tasks, as shown in Fig.5(a)and5(b), both the MRRC-IRR and MRRC-MNR al-
gorithms outperform the MRRC algorithm. This suggests that in simple tasks,
excessive optimization may be unnecessary, as solving such tasks does not require
the full range of modules. Alternatively, incorporating an excessive number of
modules increases computational burden and degrades algorithm performance.
As task complexity increases, the MRRC algorithm outperforms the two module-
removed algorithms, indicating the significance of both individual reward rec-
tification and mix network rectification in challenging environments. Fig.5(e)
shows that MRRC-MNR outperforms MRRC-IRR in the "3s5z_vs_3s6z" task,
which features sparse rewards. This highlights the effectiveness of individual
reward rectification in addressing the sparse reward problem. Notably, in an en-
vironment with a large number of agents, as depicted in Fig.5(f), MRRC-IRR
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outperforms MRRC-MNR, indicating that mix network rectification excels at
enhancing algorithm scalability.

5 Conclusion

In this study, we propose a novel actor-critic based method called MRRC for ad-
dressing multi-agent cooperation tasks. MRRC leverages the rapid convergence
of the individual policy to rectify agent behaviors and effectively tackle the issue
of sparse rewards. To enhance the scalability of the algorithm, a monotonic mix
network is introduced to rectify the agents’ value functions and constructs global
state value functions. Additionally, Gumbel-Softmax is combined to handle dis-
crete actions. Through extensive experiments conducted in the "Predator-Prey"
and "StarCraft Multi-Agent Challenge (SMAC)" environments, we demonstrate
that MRRC effectively guides the actions of agents, enabling them to overcome
the slow convergence caused by sparse rewards and improving the scalability
of the algorithm. Moreover, the results indicate that a superior performance of
MRRC is achieved compared to other baseline algorithms. In future work, we aim
to further optimize the algorithm to mitigate the negative impacts of individ-
ual reward rectification and mix network rectification on the overall algorithm’s
performance.
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