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Generalization Capability of the Diet Network Model
on Genomic Data

1 Introduction

The recent availability of a vast amount of genomic data has raised hopes in the field of personalized
medicine, motivating research in risk prediction of complex diseases at the individual level [1, 2, 3,
4]. Despite all the efforts made towards risk prediction, building predictive models of complex human
phenotypes is still a challenge. While machine learning is a promising approach given it’s capacity to
model interactions between variables, the application of machine learning to genomic data poses an
important obstacle, the fat data problem: the number of input features is orders of magnitude larger
than the number of training examples, which causes models trained on genomic data to overfit.

A novel neural network architecture, the Diet Network (DN) [5], has been proposed to address the fat
data problem by reducing considerably the number of free parameters arising from the high number
of features. This architecture has been developed and experimented on the 1000 Genomes Project
(1000G) [6], a fat dataset, and has proven to be effective at determining individuals’ population given
their Single Nucleotide Polymorphisms (SNPs). However, given the heterogeneity of genomic data
collection protocols and the high number of missing data in genomic datasets, it is important to assess
if a trained model can generalize well to independent datasets.

To evaluate the generalization capability of the approach, we tested the model on individuals from an
alternative dataset, the Human Genome Diversity Project (HGDP) [7]. We also evaluated population
classifications on previously unseen populations, by training a DN model on non-admixed populations
and investigating the model’s predictions for admixed individuals.

2 Methods

Data We used the publicly available 1000G genotype data to train DN models. The HGDP dataset
[7] was used as test. Autosomal SNPs from 3450 individuals the 1000G dataset come from the
Genome-Wide Human SNP Array 6.0 by Affymetrix, phased and imputed using SHAPEIT2 [8].
We harmonized alleles to match the Reference Human Genome Build 37 (GRCh37). To do so, we
used Harmonizer tool [9] and BCFtools [10]. We removed SNPs with a minor allele frequency
(MAF) lower than 0.05 and pruned SNPs in linkage disequilibrium (LD) using PLINK indep-parwise
command (window size = 50 kb, step size = 5, r2 threshold = 0.5) [11]. The final set of SNPs used for
DN training contains 294,427 SNPs (refers herein as 1000G dataset). The HGDP genotype data comes
from the Stanford HGDP Dataset, that genotyped 1043 individuals on Illumina HumanHap650Y array
[12]. We performed a lift over of positions from GRCh36 to GRCh37 (positions with no coordinates
were excluded), we excluded SNPs with MAF<0.01 and performed standard quality control steps
[5]. The alleles were then harmonized to GRCh37, as described above. SNPs overlapping with
1000G dataset were retained, yielding 256,160 SNPs in HGDP (refers herein as HGDP dataset). A
separate dataset was constructed to run RFMix (see below), selecting 15 non-admixed populations of
the 26 included in the 1000G dataset within three continental populations (reference populations):
European (EUR, N=670), African (AFR, N=783) and East Asian (EAS, N=617). We used 418,230
SNPs pruned as described above, but no MAF filter was applied.

Improvement on Diet Network method We have made modifications to the published DN im-
plementation [5]. These are mainly brought forward to alleviate the training process and add new
functionalities. Briefly, biases have been eliminated in the last layer of the auxiliary network, which
improved the time per epoch, the amount of learning done per epoch and has stabilized the perfor-
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mance of the model during training. A missing data functionality has been added to allow the DN
to be applied to datasets that do not include all the SNPs used during training. Missing values are
set to 0 after the pre-processing of genotypes and the remaining inputs are multiplied by a constant
to compensate the missing values. In this work, out of the 294,427 SNPs used for training with the
1000G dataset, ∼250K SNPs were found in the HGDP dataset, other SNPs were given to the model
as missing values. The mean misclassification error obtained for the improved model trained on
1000G dataset is 4.96± 0.19 compared to 7.44± 0.45 for the previous published model. [Code can
be shared after double-blind review]

Models Three DN models were trained on the 1000G dataset. For all models, the embedding
provided to the auxiliary network was the genotypic frequencies computed in populations over which
the classification task was done (26, 15 or 3 populations). Inputs to the network were provided using
an additive encoding scheme where alternative alleles are counted, such that genotype 2 corresponds
to the homozygote with 2 alternative alleles. Hyperparameters proposed in the original publication
were maintained for training, and models were trained using 5-fold cross validation. The first model
(Model 1) was trained on 1000G dataset with the harmonized set of SNPs and tested on HGDP
dataset. The two other models were trained using only non-admixed 1000G populations (15 of the
26 populations). We defined a first model where individuals were classified into 15 populations (15
labels, Model 2) and a second model where individuals from populations within continents (EUR,
AFR and EAS) were merged under the same label (3 labels, Model 3). These two models were tested
on Americans of African Ancestry in South-West USA (ASW) individuals, an admixed population
never seen at training. Models return, for each individual, a vector of class-membership probabilities
over populations seen at training. These probabilities are referred to as DN scores.

Population genetics analyses We used the F-statistic (FST ) to measure genetic differentiation
between populations. Specifically, we computed pairwise FST for all HGDP and 1000G population
pairs according to [13] using vcftools [14]. FST values were calculated on common SNPs between
1000G and HGDP dataset. We took the mean FST computed on all SNPs to get a single FST value
for each population pair. We used RFMix [15], a state-of-the-art local ancestry inference method,
to assess proportions of ancestry in individuals from populations of interest. The method looks at
haplotypes (obtained by SHAPEIT2) in a reference panel and uses random forest parametrization to
infer local ancestry. Inferences are compiled over genome to produce proportions for each haplotype.
We compared these RFMix proportions for ASW individuals with the scores obtained by testing
the DN on the same individuals. Furthermore, using results from RFMix on each haplotype, we
can compute the number of positions in the genome for which the two alleles of a SNP come from
different ancestry populations. From these measures, we computed the proportion of the genome that
is ancestrally heterozygous.

3 Results

In order to assess the generalization capability of the DN approach, we set up an experiment where
we trained a DN model on a population stratification task using one dataset coming from specific
sample recruitment and genotyping protocols, and tested the trained model on a second dataset
generated with different protocols. Here, we compare 1000G dataset (training data), genotyped on an
Affymetrix genotyping platform in 2013 to the HGDP dataset (test data) genotyped on an Illumina
genotyping platform circa 2007. To make the approach applicable to the HGDP dataset, we trained
and tested the model on a set of harmonized SNPs (Model 1, see Methods). This allows to encode
HGDP individuals’ SNPs so they could be fed to the network without ambiguity, such that alleles
represent nucleotides coming from the same DNA strand in both datasets.

Model 1 was then used to test the 1043 individuals of the HGDP dataset. Figure 1a shows the
predictions made by the model for these HGDP individuals. Despite the fact that labels in the HGDP
dataset are not equivalent to the ones in the 1000G dataset, reflecting different sampling locations,
the confusion matrix shows that the predictions match the true labels at the continental level for
most individuals. However, some out-of-continent classifications were made by the model. For
example, individuals from Oceania (New Guinea and Bougainville), which are only found in the
HGDP dataset, were classified as ASW, a highly admixed population. This classification makes sense
since individuals from New Guinea and Bougainville are known to have African ancestors [16].
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To further our analysis of the classifications made by the network, we compared the scores returned
by the DN with FST , a statistic measuring population differentiation. We show in Figure 1b that the
DN model returns high scores for 1000G populations that have a low FST value (low differentiation)
with the HGDP population of the individuals being classified.

(a) Confusion Matrix
(b) DN Scores and FST values for 1000G
and HGDP population pairs

Figure 1: (a) Confusion matrix of classifications made by Model 1 tested on new individuals from
the HGDP dataset. Since the DN model was trained using 5-fold cross validation, scores for HGDP
individuals from all folds were averaged to get a single prediction by individual. True labels (y-axis)
are not equivalent to the 1000G labels predicted by the network (x-axis). Black lines separate
continental populations. (b) Relationship between DN scores and FST values for HGDP/1000G
population pairs. DN scores were averaged on individuals from the same HGDP population. Each
HGDP population is represented in the plot by 26 dots (see Fig. 1a for colors associated to HGDP
populations). Each dot indicates the FST value between the given HGDP and a 1000G populations
(y-axis) and the DN score for the 1000G population averaged on all individuals of the given HGDP
population (x-axis).

To interpret the scores returned by the DN approach, we trained models (Models 2 and 3) on
only non-admixed populations of the 1000G dataset. Scores returned by the two models for ASW
individuals, which are admixed individuals unseen during training, were compared with ancestry
proportions computed by RFMix on EUR, AFR and EAS populations. Figure 2a,2b,2c shows
relationships between DN scores for the fine (Model 2) and coarse (Model 3) models and RFMix
ancestry proportions for each of the three reference populations. In the coarse model, we observe
a bimodal behavior: the DN scores for EUR and AFR are 0 and 1 respectively, unless the EUR
proportion exceeds 0.5. This indicates that when trained with labels defined at the continental level,
the network does not capture the admixture in the ASW genomes. For the fine model on the other
hand, a positive correlation between the scores and proportions returned by RFMix is observed, which
suggests that this model captures the admixed nature of the genome of ASW individuals. However,
the fine model shows a clear overestimation of EAS scores when compared to RFMix’s proportions
(Figure 2c).

To understand this overestimation of the EAS component by the DN, we used RFMix to compute
the proportion of the genome where the two chromosomes of an individual are of different ancestry
(ancestrally heterozygous regions). We refer to this as the ancestrally heterozygous proportion (AHP),
calculated for each ASW individual. These ancestrally heterozygous regions are only observed in
admixed populations and therefore represent special cases never seen by the DN model during training.
We report in Figure 2d,2e,2f the relationship between DN scores and AHP for ASW individuals. The
relationship for EAS component shows increased DN scores for individuals with higher AHP (r2
= 0.34). This suggests that the overestimation of the EAS component in ASW individuals is partly
explained by ancestrally heterozygous regions found in admixed populations. Moreover, Figure 2e
and 2d shows that the DN model returns smaller AFR scores and larger EUR scores for individuals
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with a higher AHP. This reflects the fact that ASW individuals are descendant of African populations
that have then been mixed with Europeans.

(a) EUR Component (b) AFR Component (c) EAS Component

(d) EUR Component (e) AFR Component (f) EAS Component

Figure 2: EUR(a), AFR(b) and EAS(c) scores for models trained on the 1000G dataset and tested
on ASW compared to ancestry proportions inferred by RFMix. In purple are the scores returned by
Model 2 (fine), in green by Model 3 (coarse). Correlation between fine model scores and RFMix
proportions, from left to right, are r2 = 0.63, r2 = 0.65 and r2 = 0.61. EUR(d), AFR(e) and EAS(f)
scores returned by the fine model compared to the ancestrally heterozygous proportion (AHP) from
RFMix. From left to right we have r2 = 0.41, r2 = 0.66 and r2 = 0.34.

4 Conclusion

In this work, we showed that the DN approach is applicable to new datasets. In fact, we have shown
that the DN model trained on 1000G dataset can classify individuals of HGDP dataset reasonably
well at the continental level. The comparison of DN scores with FST values shows that the model
gives higher scores to 1000G populations that are genetically similar to the given HGDP population.
We have also shown that the DN scores capture intricacies and the composite nature of the ASW
genomes, even if it was not trained to recognize admixture. Indeed, scores returned by Model 3
correlate well with ancestry proportions inferred by RFMix (r2 > 0.6), which suggests that a model
trained to recognize fine population structure learns a representation which integrates discrete ancestry
signal over the genome. On the contrary, when trained with labels defined at the continental level, the
DN scores don’t capture ancestry composition in the admixed ASW population, which suggests that
this DN model only has a superficial understanding of how genetic diversity is mapped to define a
population. This is to be expected, as the task performed here was only to differentiate continental
populations, which is a relatively easy task. Also, while investigating the DN scores, we noted an
overestimation of the EAS component in ASW. We showed that this overestimation can be explained
by ancestrally heterozygous regions as reported by RFMix. Despite all those findings, the proposed
approach to interpret information leveraged by the network is low resolution. In the next steps, we
will be using integrated gradients [17] to interpret information leveraged by the network at the SNP
level and try to reveal a more precise picture of what the DN learns.

The DN approach proposes a first attempt in addressing the fat data problem in genomics. The fact
that the network is able to generalise well on genomic data from independent datasets is promising
for predicting more complex phenotypes such as human diseases using data from multiple sources.
Furthermore, discerning the features leveraged by the model to make predictions will be crucial to
assess the validity of these predictions and could be extended to reveal new insights on complex
diseases.
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