
EasyChair Preprint
№ 8182

Towards Synthesis in Superposition

Petra Hozzová, Laura Kovács and Andrei Voronkov

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 4, 2022

Towards Synthesis in Superposition
Petra Hozzová

petra.hozzova@tuwien.ac.at
TU Wien

Laura Kovács
laura.kovacs@tuwien.ac.at

TU Wien

Andrei Voronkov
andrei@voronkov.com

University of Manchester and
EasyChair

ABSTRACT
We present our ongoing developments in synthesizing recursion-
free programs using the superposition reasoning framework in
first-order theorem proving. Given a first-order formula as a pro-
gram specification, we use a superposition-based theorem prover
to establish the validity of this formula and, along this process,
synthesize a function that meets the specification. To this end, we
modify the rules of the superposition calculus to synthesize pro-
gram fragments corresponding to individual clauses derived during
the proof search. If a proof is found, we extract a program based
on the found (correctness) proof. We implemented our approach in
the first-order theorem prover Vampire and successfully evaluated
it on a few examples.

KEYWORDS
Program Synthesis, Superposition Reasoning, Automated Deduc-
tion

1 INTRODUCTION
Superposition-based theorem provers were recently extended with
inductive reasoning for both inductively defined datatypes [2, 4, 5,
8, 15] and integers [6]. We believe that automating inductive rea-
soning in the superposition framework opens up new directions for
using first-order reasoners in program analysis and synthesis. This
extended abstract is a first step in this direction: we demonstrate
how a first-order theorem prover can automatically synthesize
recursion-free programs.

Program synthesis is the task of producing a computable program
given a formal specification of the input-output relation that the
program should satisfy. It was noted already many years ago that
forall-exists first-order formulas ∀𝑥 .∃𝑦.𝐹 [𝑥,𝑦] can be used as such
specifications [3, 11], expressing that “for all inputs 𝑥 there exists an
output 𝑦 such that the relation 𝐹 [𝑥,𝑦] between the inputs and the
output holds”. More recent approaches to synthesis include using
templates and a correctness oracle computing counterexamples
for each incorrect candidate program [13, 16]. In this paper we
focus on the former method. The main idea of our approach is to
utilize the superposition reasoning framework to prove the given
specification and simultaneously construct a program that satisfies
the specification.

The techniquewe use is based on answer literals introduced in [3]
and further developed by adding if−then−else constructs in [17].
Compared to [17], we extend this method in several ways to include
theories and equality reasoning and making distinction between
computable and non-computable symbols, since only the former can
be used in programs. We implement it in the superposition-based
first-order theorem prover Vampire [10] based on the previous
implementation of question answering in Vampire [14].

Given the page limit, we will sometimes trade space for mathe-
matical rigour, omit details and not define some notions that we use
and discuss (such as program or computable expressions). Nonethe-
less, all we present here can be made completely formal.

2 SOME THEORY
Suppose we have a specification of the form

∀𝑥 .∃𝑦.𝐹 [𝑥,𝑦], (1)

where 𝐹 is a first-order formula. We know that, if this formula
is valid in some theory, in every model of this theory there is a
function 𝑓 such that for all elements 𝜎 of the model, 𝑓 (𝜎) holds.
When the theory has the standard model (e.g., arithmetic) and
(some) functions and predicates are computable in tis model, we
are interested in finding a computer program 𝑓 with this property.
If we have a language for expressing programs, then it suffices to
find an expression 𝑟 [𝑥] in this language such that

∀𝑥 .𝐹 [𝑥, 𝑟 [𝑥]]
is valid in the theory. This idea comes from constructive logic and
Kleene’s realizability [7], and any expression 𝑟 with this property is
called a realizer of (1). Realizers can be extracted from constructive
proofs but using constructive proofs for program synthesis turned
out to be impractical.

Instead of search for constructive proofs, we will use ordinary
(classical) proofs, but during proof search will make sure that de-
rived formulas are guaranteed to have realizers. A further bit of
magic is added by using the superposition calculus in a creative
way, where instead of searching for a proof we simply saturate
input clauses until we find a clause of a special form, in a way
similar to [9].

Let us add a new uninterpreted unary predicate symbol ans
(answer predicate) and new (skolem) constants 𝜎 . Suppose we can
prove the formula

∀𝑦.(¬𝐹 [𝜎,𝑦] ∨ ans(𝑦)) =⇒ ans(𝑡 [𝜎]),
where 𝑡 [𝜎] is a ground term denoting a program. Since ans is
uninterpreted, we can replace ans(𝑦) by any formula. Let us replace
it by 𝑦 ≠ 𝑡 [𝜎]. We obtain

∀𝑦.(¬𝐹 [𝜎,𝑦] ∨ 𝑦 ≠ 𝑡 [𝜎]) =⇒ 𝑡 [𝜎] ≠ 𝑡 [𝜎]),
hence∀𝑦.(¬𝐹 [𝜎,𝑦]∨𝑦 ≠ 𝑡 [𝜎]) is unsatisfiable, and so ∃𝑦.(𝐹 [𝜎,𝑦]∧
𝑦 = 𝑡 [𝜎]) is valid. This formula is equivalent to 𝐹 [𝜎, 𝑡 [𝜎]]. Since 𝜎
are fresh symbols, we obtain that the formula ∀𝑥 .𝐹 [𝑥, 𝑡 [𝑥]] is valid,
and hence 𝑡 [𝑥] is a realizer.

The good news is that one can use the superposition calculus
saturation algorithm to implement this idea. To search for a proof of
(1), we saturate the set of clauses obtained from ¬𝐹 [𝜎,𝑦] with the
aim of obtaining an empty clause (Section 3). To search for a realizer,
we saturate the set of clauses obtained from ¬𝐹 [𝜎,𝑦] ∨ans(𝑦) with

https://orcid.org/0000-0003-0845-5811
https://orcid.org/0000-0002-8299-2714

Petra Hozzová, Laura Kovács, and Andrei Voronkov

Superposition:
𝑙 = 𝑟 ∨𝐶 𝐿[𝑙 ′] ∨ 𝐷

(𝐿[𝑟] ∨𝐶 ∨ 𝐷)𝜃
𝑙 = 𝑟 ∨𝐶 𝑠 [𝑙 ′] ≠ 𝑡 ∨ 𝐷

(𝑠 [𝑟] ≠ 𝑡 ∨𝐶 ∨ 𝐷)𝜃
𝑙 = 𝑟 ∨𝐶 𝑠 [𝑙 ′] = 𝑡 ∨ 𝐷

(𝑠 [𝑟] = 𝑡 ∨𝐶 ∨ 𝐷)𝜃
where 𝜃 := mgu(𝑙, 𝑙 ′), 𝑟𝜃 ⪰̸ 𝑙𝜃 , (first rule only) 𝐿[𝑙 ′] is not an equality literal, and (second and third rules only) 𝑡𝜃 ⪰̸ 𝑠 [𝑙 ′]𝜃 .

Binary resolution:
𝐴 ∨𝐶 ¬𝐴′ ∨ 𝐷

(𝐶 ∨ 𝐷)𝜃
where 𝜃 := mgu(𝐴,𝐴′).

Factoring:
𝐴 ∨𝐴′ ∨𝐶

(𝐴 ∨𝐶)𝜃
where 𝜃 := mgu(𝐴,𝐴′).

Equality resolution:
𝑠 ≠ 𝑡 ∨𝐶

𝐶𝜃

where 𝜃 := mgu(𝑠, 𝑡).

Equality factoring:
𝑠 = 𝑡 ∨ 𝑠 ′ = 𝑡 ′ ∨𝐶

(𝑠 = 𝑡 ∨ 𝑡 ≠ 𝑡 ′ ∨𝐶)𝜃
where 𝜃 := mgu(𝑠, 𝑠 ′), 𝑡𝜃 ⪰̸ 𝑠𝜃 , and 𝑡 ′𝜃 ⪰̸ 𝑡𝜃 .

Figure 1: The superposition calculus Sup for first-order logic with equality.

the aim of obtaining a clause of the form ans(𝑡 [𝜎]), where 𝑡 is a
term denoting a program (Section 4).

One can also use a tuple of output terms 𝑦 instead of a single
variable 𝑦. In this case we use ans(𝑦) instead of ans(𝑦).

3 SUPERPOSITION-BASED PROOF SEARCH
We assume familiarity with standard multi-sorted first-order logic
with equality. Variables are denoted with 𝑥 , 𝑦, skolem constants
with 𝜎 , terms with 𝑡, 𝑠 , all possibly with indices. We assume a distin-
guished integer sort, denoted by Z. When we use standard integer
predicates <, ≤, >, ≥, we assume that they denote the corresponding
interpreted integer predicates with their standard interpretations.
Additionally we assume a conditional term constructor: If 𝐴 is an
atom and 𝑠, 𝑡 are terms of the same sort, then if 𝐴 then 𝑠 else 𝑡
is a term of the same sort interpreted in the standard way – as
the interpretation of 𝑠 if the interpretation of 𝐴 is 𝑡𝑟𝑢𝑒 , and the
interpretation of 𝑡 otherwise.1

A literal is an atom or its negation. A disjunction of literals
is a clause. We denote atoms by 𝐴, literals by 𝐿, clauses by 𝐶, 𝐷

and reserve the symbol □ for the empty clause which is logically
equivalent to ⊥. We denote the clausal normal form of a formula 𝐹
by cnf(𝐹).

A substitution 𝜃 is a mapping from variables to terms. A sub-
stitution 𝜃 is a unifier of two terms 𝑠 and 𝑡 if 𝑠𝜃 = 𝑡𝜃 , and is a
most general unifier (mgu) if for every unifier 𝜂 of 𝑠 and 𝑡 , there
exists substitution 𝜇 s.t. 𝜂 = 𝜃𝜇. We denote the mgu of 𝑠 and 𝑡

with mgu(𝑠, 𝑡). We write 𝐹 [𝑥1, . . . , 𝑥𝑛] to denote that the formula 𝐹
contains 𝑘1, . . . , 𝑘𝑛 occurrences of the variables 𝑥1, . . . , 𝑥𝑛 , respec-
tively, with 𝑘𝑖 ≥ 0 for all 𝑖 . For simplicity, 𝐹 [𝑡1, . . . , 𝑡𝑛] denotes the
formula 𝐹 [𝑥1, . . . , 𝑥𝑛]𝜃 , where 𝜃 maps each 𝑥𝑖 to the term 𝑡𝑖 .

3.1 Saturation and Superposition
We briefly introduce saturation-based proof search [10].

First-order theorem provers work with clauses. Given a set 𝑆
of input clauses, first-order provers saturate 𝑆 by computing all
logical consequences of 𝑆 with respect to a sound inference system
I. The saturated set of 𝑆 is called the closure of 𝑆 and the process
of computing the closure of 𝑆 is called saturation. If the closure
of 𝑆 contains the empty clause □, the original set 𝑆 of clauses is
unsatisfiable. Note that a saturation algorithm proves validity of

1By abusing the notation, we use if𝐴 then 𝑠 else 𝑡 to denote the tuple (if𝐴 then 𝑠1
else 𝑡1, . . . , if𝐴 then 𝑠𝑛 else 𝑡𝑛) .

𝐵 by establishing unsatisfiability of ¬𝐵; we refer to this proving
process as a refutation of ¬𝐵.

The superposition calculus, denoted as Sup, is the most common
inference system employed by saturation-based first-order theorem
provers for first-order logic with equality [12], such as the theorem
prover Vampire [10]. A summary of superposition inference rules is
given in Figure 1. Due to a lack of space, we present simplified rules
of the calculus. The superposition calculus Sup is sound. It is also
refutationally complete for the logic of uninterpreted functions: for
any unsatisfiable set of clauses 𝑆 , the empty clause can be derived
from 𝑆 .

3.2 Question Answering Using Answer Literals
Answer literals have been used in Vampire in the past for question
answering [14]. Given a question in the form ∃𝑦.𝐹 [𝑦], Vampire
saturates ∀𝑦.cnf(¬𝐹 [𝑦] ∨ ans(𝑦)). While the the answer literals
are in general treated as any other literal, they are never selected to
actively participate in any inferences – they are only carried over
and substituted into (as parts of 𝐶 or 𝐷 in the inference rules from
Figure 1). However, if Vampire derives a clause only containing
answer literals ans(𝑡1) ∨ · · · ∨ ans(𝑡𝑚), it means that that the ques-
tion is provable, and it extracts the (possibly disjunctive) answer
𝑡1 ∨ · · · ∨ 𝑡𝑚 . This answer means that 𝐹 [𝑡1] ∨ · · · ∨ 𝐹 [𝑡𝑚] holds. In
particular, if 𝑛 = 1, then 𝑡1 is a definite answer, that is, 𝐹 [𝑡1] holds.

4 PROGRAM SYNTHESIS IN THE
SUPERPOSITION CALCULUS

The programs that we aim to synthesize from specification (1)
correspond to terms not containing any variables except for 𝑥 (the
input variables) and possibly using if−then−else.

Compared to Vampire’s previous use of answer literals, we need
to exclude disjunctive answers, that is, clauses having more than
one answer literal. Such clauses may appear by applying rules
with more than premise to clauses with a single answer literal. To
solve this problem, we modify inference rules with two premises
containing answer literals as follows. Let ans(𝑟1) and ans(𝑟2) be
answer literals of the first and the second premise, respectively. We
replace the binary resolution rule from Figure 1 to binary resolution
with answer literals, abbreviated AnsBR:

𝐴 ∨𝐶 ∨ ans(𝑟1) ¬𝐴′ ∨ 𝐷 ∨ ans(𝑟2)
(𝐶 ∨ 𝐷 ∨ ans(if 𝐴 then 𝑟2 else 𝑟1))𝜃

(AnsBR)

That is, instead of creating a clause with two answer literals we
combine the realizers represented by 𝑟1, 𝑟2 into a single realizer

Towards Synthesis in Superposition

(𝑎) 𝑦 < 𝜎1 ∨ 𝑦 < 𝜎2 ∨ 𝑦 ≠ 𝜎1 ∨ ans(𝑦) [input]
(𝑏) 𝑦 < 𝜎1 ∨ 𝑦 < 𝜎2 ∨ 𝑦 ≠ 𝜎2 ∨ ans(𝑦) [input]
(𝑐) ¬𝑥 < 𝑥 [< axiom]
(𝑑) ¬𝑥1 < 𝑥2 ∨ ¬𝑥0 < 𝑥1 ∨ 𝑥0 < 𝑥2 [< axiom]
(𝑒) 𝜎1 < 𝜎1 ∨ 𝜎1 < 𝜎2 ∨ ans(𝜎1) [ER (a)]
(𝑓) 𝜎2 < 𝜎1 ∨ 𝜎2 < 𝜎2 ∨ ans(𝜎2) [ER (b)]
(𝑔) 𝜎1 < 𝜎2 ∨ ans(𝜎1) [BR (c), (e)]
(ℎ) 𝜎2 < 𝜎1 ∨ ans(𝜎2) [BR (c), (f)]
(𝑖) ¬𝑥0 < 𝜎2 ∨ 𝑥0 < 𝜎1 ∨ ans(𝜎2) [BR (d), (h)]
(𝑗) 𝜎1<𝜎1 ∨ ans(if 𝜎1<𝜎2 then 𝜎2 else 𝜎1) [AnsBR (g), (i)]
(𝑘) ans(if 𝜎1 < 𝜎2 then 𝜎2 else 𝜎1) [BR (c), (j)]

Figure 2: Proof with program-capturing answer literals.

using the if−then−else constructor. Here we assume that 𝐴
represents a computable predicate. We have a different rule for the
case when 𝐴 is not computable but it is not included here for the
lack of space. Note that this rule (and all other rules of this section)
are sound, that is, the conclusion is a logical consequence of the
premises.

We alsomodify the three superposition inference rules of Figure 1
analogously:

𝑙 = 𝑟 ∨𝐶 ∨ ans(𝑟1) 𝐿[𝑙 ′] ∨ 𝐷 ∨ ans(𝑟2)
(𝐿[𝑟] ∨𝐶 ∨ 𝐷 ∨ ans(if 𝑙 = 𝑟 then 𝑟2 else 𝑟1))𝜃
𝑙 = 𝑟 ∨𝐶 ∨ ans(𝑟1) 𝑠 [𝑙 ′] ≠ 𝑡 ∨ 𝐷 ∨ ans(𝑟2)

(𝑠 [𝑟] ≠ 𝑡 ∨𝐶 ∨ 𝐷 ∨ ans(if 𝑙 = 𝑟 then 𝑟2 else 𝑟1))𝜃
𝑙 = 𝑟 ∨𝐶 ∨ ans(𝑟1) 𝑠 [𝑙 ′] = 𝑡 ∨ 𝐷 ∨ ans(𝑟2)

(𝑠 [𝑟] = 𝑡 ∨𝐶 ∨ 𝐷 ∨ ans(if 𝑙 = 𝑟 then 𝑟2 else 𝑟1))𝜃
With these modifications, all clauses generated in saturation

contain at most one answer literal. The proof search successfully
finishes if it obtains a clause only containing an answer literal
ans(𝑟). In that case we postprocess 𝑟 by replacing all free variables
𝑧 by new constants 𝑐𝑧 of suitable types (representing an arbitrary
value) and the skolem constants 𝜎 by the corresponding variables
𝑥 from the input formula, and thereby obtain the final synthesized
program.

Note that in order to produce a computable program, all terms
substituted for the variables 𝑦 need to be computable.

Example 4.1. Consider the problem of synthesizing themaximum
function for two integer arguments, specified by the following
formula:

∀𝑥1, 𝑥2 ∈ Z. ∃𝑦 ∈ Z.
(
𝑦 ≥ 𝑥1 ∧ 𝑦 ≥ 𝑥2 ∧ (𝑦 = 𝑥1 ∨ 𝑦 = 𝑥2)

)
(2)

The corresponding derivation using theory axioms of Z is displayed
in Figure 2. The clauses (a) and (b) are the clausified skolemized
negation of (2) with added answer literal, with skolem constants
𝜎1, 𝜎2 corresponding to 𝑥1, 𝑥2, respectively. Clauses (c) and (d) are
the irreflexivity and transitivity axioms for <, respectively. We
obtain (e) and (f) by equality resolution of (a) and (b) with sub-
stitutions 𝑦 ↦→ 𝜎1 and 𝑦 ↦→ 𝜎2, respectively. These two inferences
instantiate the 𝑦 in the answer literal. Clauses (g) and (h) result

from binary resolution of (c) with (e) and (c) with (f), respectively.
We then obtain clause (i) by binary resolution of (d) and (h). Then
we apply the modified binary resolution with answer literals on
(g) with (i), which results into (j) containing an answer literal with
if−then−else combining the program fragments from the answer
literals of (g) and (i). In the final step we apply one more binary
resolution on (c) and (j), obtaining a clause containing the answer
literal ans(if 𝜎1 < 𝜎2 then 𝜎2 else 𝜎1). By replacing the skolem
constants 𝜎1 and 𝜎2 by 𝑥1 and 𝑥2, we obtain the realizer 𝑓 defined
as

𝑓 (𝑥1, 𝑥2) = if 𝑥1 < 𝑥2 then 𝑥2 else 𝑥1 .

4.1 Implementation Prototype
We implemented our new inferences rules, in the theorem prover
Vampire. Besides adding answer literal versions of the binary reso-
lution and superposition rules, we also modified the unit resulting
resolution of Vampire. Many other rules of Vampire can be reduced
to a combination of the rules from Figure 1. However, for the sake
of efficiency and for making program synthesis practical, in future
we should implement answer literal variants of all, or the majority
of, Vampire’s rules.

Our implementation prototype, consisting of approximately 530
lines of C++ code, is available at https://github.com/vprover/vampire/
tree/hzzv-answer-lits-newfn. The synthesis functionality can be
turned on using the option --question_answering_synthesis.

In addition to the maximum function, our implementation can
synthesize the identity function, exclusive disjunctive answers or a
solution to a simple polynomial equation, as well as some simple
benchmarks from SyGus competition [1]2 (after translating them
into forall-exists formulas).

5 CONCLUSIONS AND FUTUREWORK
We synthesise recursion-free programs using superposition the-
orem proving. We extend question answering to handle complex
forall-exists queries over computable programs. Synthesizing com-
putable programs when proofs can contain both computable and
non-computable functions and predicates can also be done but is
not included here.

The most challenging task is extending our synthesis method
to recursive programs and proofs using induction. We also aim
to integrate answers literal into the AVATAR framework [18] and
simplify synthesized programs by post-processing.

ACKNOWLEDGMENTS
This work was partially funded by the ERC CoG ARTIST 101002685
and the FWF grant LogiCS W1255-N23.

REFERENCES
[1] Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. 2017.

SyGuS-Comp 2017: Results and Analysis. In SYNT@CAV. 97–115.
[2] Simon Cruanes. 2017. Superposition with Structural Induction. In FroCoS. 172–

188.
[3] Cordell Green. 1969. Theorem-Proving by Resolution as a Basis for Question-

Answering Systems. Machine Intelligence (1969), 183–205.

2Namely fg_array_search_2, fg_array_sum_2_5, and fg_fivefuncs.sl of the CLIA track.

https://github.com/vprover/vampire/tree/hzzv-answer-lits-newfn
https://github.com/vprover/vampire/tree/hzzv-answer-lits-newfn

Petra Hozzová, Laura Kovács, and Andrei Voronkov

[4] Márton Hajdú, Petra Hozzová, Laura Kovács, Johannes Schoisswohl, and Andrei
Voronkov. 2020. Induction with Generalization in Superposition Reasoning. In
CICM. 123–137.

[5] Márton Hajdu, Petra Hozzová, Laura Kovács, and Andrei Voronkov. 2021. Induc-
tion with Recursive Definitions in Superposition. In FMCAD. 1–10.

[6] Petra Hozzová, Laura Kovács, and Andrei Voronkov. 2021. Integer Induction in
Saturation. In CADE. 361–377.

[7] S.C. Kleene. 1945. On the Interpretation of Intuitionistic Number Theory. Journal
of Symbolic Logic 10 (1945), 109–124.

[8] Laura Kovács, Simon Robillard, and Andrei Voronkov. 2017. Coming to terms
with quantified reasoning. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20,
2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 260–270. https:
//doi.org/10.1145/3009837.3009887

[9] Laura Kovács and Andrei Voronkov. 2009. Finding Loop Invariants for Programs
over Arrays Using a Theorem Prover. In Fundamental Approaches to Software
Engineering, 12th International Conference, FASE 2009, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5503),
Marsha Chechik and Martin Wirsing (Eds.). Springer, 470–485. https://doi.org/

10.1007/978-3-642-00593-0_33
[10] Laura Kovács and Andrei Voronkov. 2013. First-Order Theorem Proving and

Vampire. In CAV. 1–35.
[11] Zohar Manna and Richard Waldinger. 1980. A Deductive Approach to Program

Synthesis. ACM Trans. Program. Lang. Syst. 2, 1 (1980), 90–121.
[12] R. Nieuwenhuis and A. Rubio. 2001. Paramodulation-Based Theorem Proving.

In Handbook of Automated Reasonings. Vol. I. 371–443.
[13] Elizabeth Polgreen, Andrew Reynolds, and Sanjit A. Seshia. 2022. Satisfiability

and Synthesis Modulo Oracles. In VMCAI. 263–284.
[14] Giles Reger. 2018. Revisiting Question Answering in Vampire. In Vampire Work-

shop. 64–74.
[15] Giles Reger and Andrei Voronkov. 2019. Induction in Saturation-Based Proof

Search. In CADE. 477–494.
[16] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay

Saraswat. 2006. Combinatorial Sketching for Finite Programs. (2006), 404–415.
[17] Tanel Tammet. 1994. Completeness of Resolution for Definite Answers with

Case Analysis. In CSL. 309–323.
[18] Andrei Voronkov. 2014. AVATAR: The Architecture for First-Order Theorem

Provers. In CAV. 696–710.

https://doi.org/10.1145/3009837.3009887
https://doi.org/10.1145/3009837.3009887
https://doi.org/10.1007/978-3-642-00593-0_33
https://doi.org/10.1007/978-3-642-00593-0_33

	Abstract
	1 Introduction
	2 Some Theory
	3 Superposition-Based Proof Search
	3.1 Saturation and Superposition
	3.2 Question Answering Using Answer Literals

	4 Program Synthesis in the Superposition Calculus
	4.1 Implementation Prototype

	5 Conclusions and Future Work
	Acknowledgments
	References

