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Summary. A stochastic simulation study is carried out to learn about
quantification of uncertainties for Self-Organizing Maps (SOM). A mixture of
Gaussian distributions is assumed as data generating process and the Monte Carlo
generated samples are transformed according to the Kohonen (SOM) algorithm.
Additionally, the original data matrix is resampled for a bootstrap quantification
of parameter estimation uncertainties.
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1. Introduction

The purpose of this paper is to develop a stochastic model for one-layer Self Organizing
Maps (SOM), within a frequentist bootstrap framework and to quantify the associated
uncertainties. Simulated data were used to illustrate the methodology and learn about
its performance.

Kohonen (1980) developed SOM (Self Organizing Maps) to model structures such as
cortical layers in the brain as (typically) two or in some cases three dimensional maps.
From the statistical point of view, SOM is a clustering technique providing a reduction
of dimensionality to typically two or three dimensions, thus producing a “visual”
clustering.

Initially SOM need not be formulated in a stochastic framework. The first and
“deterministic” reference to SOM is the seminal paper by Kohonen (1980), leaning on
Von der Malsburg (1973) and Willshaw and von Der Malsburg’s (1976) work on
competitive learning. The theoretical background is presented in Kohonen (1997). Two
relevant reviews of SOM are Yin (2008), and Van Hulle (2007). Haykin (2009)
provides a sound introductory reference, noting that SOM transfers probabilities as
proportional to the cubic roots of the original-space ones.
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However, several papers have developed a stochastic framework for SOM, the first are
Lutrell (1994), Yin and Alison (1997), Lampinen and Kostianen (2001) and Lampinen
and Vetiari (2001); Guao et al (2013) is a more recent article. We consider that more
work is necessary to enhance the stochastic formulation. Deep (more than one layer)
SOM has been approached from a practical point of view in Solokowska et at (2013)
and Liu et al (2015).

In this paper we use a stochastic approach in our methodological development.
1.1 Description of SOM

SOM s s a neural clustering technique which assigns observations in an original p-
dimensional space to integer -valued nodes a in a (typically) two-dimensional map, in
such way that the distances between the corresponding points in the map reflect those
in the original space as much as possible. This approach is similar to multidimensional
scaling (MDS), but in the latter the points in the reduced space are real numbers instead
of (typically) pairs of integers. An interesting comparison between SOM and MDS is
given by Trosset (2006).

SOM s also different from the traditional k-means clustering technique in that the
clusters are nodes in a smaller dimensional space (than the original one), and preserving
distances as much as possible, in k-means there is no dimension reduction, the cluster
centroids are points in the original space, although SOM nodes have associated weights
in the original space as well as the node’s pairs of integers map coordinates. Besides,
k-means is competitive learning and has a natural extension within the stochastic
framework in Gaussian mixture models, but it does not include a cooperation step.

The stochastic model would have to coincide in mean with the (deterministic) Kohonen
algorithm. Guo et al (2013) propose a probabilistic model for the weights in the SOM
by means of putting probabilities on the weight distribution parameters (mean vectors
and covariance matrices in a Gaussian framework), but this is not fully Bayesian since
there are no priors on either these parameters or the probabilities of the p-original-space
points belonging to the nodes.

A probabilistic approach would have to start with the assumption of a data generating
process -dgp- also called the stochastic model, in the original space. This is a key
assumption of the methodology.

In this paper, we develop a quantification of uncertainties framework for SOM within
the frequentist approach, by means of a mixture of Gaussians and the bootstrap
technique. The methodology provides a means of quantifying the two sources of
uncertainty inherent to the problem: the first elicits the uncertainty in the data
generating process and the second in parameter estimation. The procedure will require
dividing the original Monte Carlo generated sample of the mixture of Gaussians into a
set of subsamples, as will be explained in detail below.



The rest of this paper is organized as follows: in section 2, we review the Kohonen
algorithm. In section 3 we describe the stochastic modelling and the procedure for
quantification of uncertainty. In section 4 we present the results of the application of
the procedure to a mixture of 6 3-dimensional Gaussian distributions, for illustration of
the methodology.

2. The original (deterministic) SOM -Kohonen algorithm

Given a sample y;4,..y, of n observations in a p-dimensional space, the Kohonen
algorithm assigns each sample element to each of one of the I * J nodes in the map, and
produces I * J so-called weights, which are representations of the nodes in the original
p-dimensional space, in such way that the closer the nodes are in the map, the more
similar their weights will be.

The steps of the SOM algorithm are as follows:

1. Generate initial values for the p-dimensional node weights yy, ... y1.;,0, Where I, ]
are the dimensions of the map.

2. For the first observation y1, calculate the Euclidean distance from y; to the initial
node weights; assign y1 to the node with the nearest weight, which we call the
winning node G.

3. Update all weight nodes through the expression:

Vi1 = Yio + 1A G) * (Vio — Yig), i = 1,..1 ], 1)

where:

y is the weight of the winning node G.
n is the learning rate.

AQ, G) = exp(—d(i,G)/(20,% (1)), @)
with oa(t) = oa.exp(—not/n) (3)
d(i,6) = J(xit — xc1)* + (Xiz — Xa2)? 4)

where the x;are the integer indices of the map

4. Repeat iteratively 2) and 3) for all the remaining observations y.,, ..y, of the
sample.

The parameters of the Kohonen algorithm are thus oa,and mno. oa,iS a constant to
calibrate the neighborhood structure for the update process. 1o is the rate at which the
updating process slows down as the algorithm approaches convergence.



3. The stochastic model
3.1 Introduction

It is assumed that there exists a data generating process or probability distribution in
the original dimension of the data (p). This distribution is transformed, by means of the
Kohonen algorithm, into a stochastic process, the index of which is the iterations of the
algorithm, in such way that we formulate the estimation of a stochastic model in terms
of the (estimation of) limit distribution to which the process converges. For given values
of the parameters n and oa, of the Kohonen algorithm, the problem is thus just of
transformation of variables, but the above-mentioned parameters should also be
estimated within an inferential process. The marginal distributions of the node weights
along the stochastic process are a mixture distribution with as many components as map
nodes. Note that the mixture distribution is not on the original variables, but on the
Kohonen algorithm-transformed ones.

We could then follow two procedures for estimation of the final distribution of the
stochastic process: 1) Estimate a distribution in the original space and then draw
samples from it, applying the Kohonen algorithm to them in such a way that we obtain
an -as large as desired- sample of the stochastic process. 2) Divide the original sample
in N several independent subsamples and apply the Kohonen algorithm to each of these
N subsamples in such way that we also obtain a sample from the stochastic process. In
both cases, we use the final iteration of the sample to estimate the distribution of the
(last iteration) weights which would be taken as from the distribution to which the SOM
converges. Both 1) and 2) are conditional on given values of the Kohonen algorithm
parameters. Here we follow the latter solution by applying in turn a frequentist
procedure for quantification of parameter estimation uncertainty, based on
bootstrapping.

3.2 Estimating the two sources of uncertainty
3.2.1 Estimating the data generating process

Here we wish to estimate the parameters of the mixture of Gaussians corresponding to
the node weights of the last iteration, as well as the optimal values of the Kohonen
algorithm calibration parameters oa,and no.

Our starting point is the original sample of size 90000 (y1, ...yn), Where each vector y;
is 3-dimensional. If, with the purpose above, we applied the SOM algorithm to the full
original sample, we would just obtain a single value for the “last iteration node
weights”, which would just be a sample of size one, obviously not what we need to
estimate a distribution. Bearing this in mind, we have divided the sample of size 90000
in 300 subsamples of size 90000/300=300. We then apply the Kohonen algorithm to
each of these 300 subsamples and keep the 300 last iteration node weights. These values
constitute our desired sample for “last iteration node weight distribution” estimation.



Let us denote this sample with y* = (y1,...,y,), where n=300. We then apply
maximum likelihood to y* to estimate the distribution by assuming a Gaussian mixture
distribution as well (i.e., the same kind of statistical model we used to generate our
original data). We will thus obtain 6 vectors of 3-component vector means, 6 variance-
covariance matrices and a vector of six mixture component probabilities. Optimal
values for the Kohonen algorithm calibration parameters o4, and no will also be
estimated. If we assume that the variance-covariance matrix is the same for all mixture
components, we only need to estimate a single variance-covariance matrix instead of 6.

The likelihood function for the mixture model will be expressed in terms of y*.
ng 1] 1 * Ty—17.%
U= 172, 2 6k () exp (0 = w8 07 — i) (5)

For point estimation, the likelihood function above is maximized with respect to all the
parameters, i. e. (o, 0.4,, 04, i, Z5).

3.2.2 Parameter estimation uncertainty

In addition to stochastic model uncertainty, there is parameter estimation uncertainty
which is quantified by means of the bootstrap technique.: using the original data matrix
y as starting point, 50 new data matrices are obtained with the same dimension asy, by
(bootstrap) resampling, i.e. selecting from the rows with replacement. We then apply
to each of these 50 matrices the same procedure as was done for the original data matrix
in section 3.2.1. The result will be a matrix of 50 rows (one for each resampling) and
as many columns as estimated parameters Finally, this matrix is used for parameter
estimation uncertainty.

4 Application to simulated data

4.1 The experimental design

A mixture of 6 tri-variate Gaussian distributions has been simulated, where the means
are given in table 1. For each of the 6 mixture components, the 3 variables are
independent, and the variances are equal to 2 for the 3 variables of all the 6 components.

Table 1. Mixture means for simulation experiment

Y1 Y2 ¥3
10 2 3
10 7 8
12 12 13
12 8 12
13 19 15

30 30 25



Table 2. Mixture component probabilities

Component  Probability
1 0.16
2 0.16
3 0.16
4 0.20
5 0.15
6 0.17
4.2 Results

We obtain a matrix of values for the parameters. The number of rows is the number of
bootstrap resampling’s. The number of columns is the number of parameters estimated.

The list of parameters is: the k X p mixture means ;i = 1..K, j =1..p, the
k X p(p + 1)/2 elements of the k covariance matrices X, i = 1..K, the k mixture
weights 8;,i = 1..K and finally, the Kohonen algorithm parameters no, g4, .

4.3 Summary of results

As mentioned above, the results of the bootstrap procedure are a matrix of estimates of
the parameters, with as many rows as bootstrap resampling’s and as many columns as
parameters. A descriptive statistic of the most relevant (for sparcity reasons, we no not
present the covariances) for marginal distributions of this sample is shown as follows.

Table 3. Results of the estimation of node weight means.

Name n Mean Sd Median Mad Min Max Skew Kaurtois
X121 50 10.00 0.04 10.00 0.03 9.86 10.15 0.16 5.12
X2 50 222 093 2.04 003 197 6.95 456 19.26
X3 50 3.20 0.88 3.03 0.04 293 8.26 4.83 22.69
X2 50 1032 094 1016 072 882 1395 132 2.49
X22 50 7.11 144 7.01 0.17 200 11.30 -0.63 6.25
X23 50 8.76 211 8.23 0.81 296 13.74 0.08 1.07
Xat 50 11.18 1.17 11.27 0.70 890 13.76 0.30 -0.33
X2 50 807 150 7.30 0.63 6.68 1259 1.07 0.00
X33 50 10.61 1.99 11.04 1.95 7.13 13.92 -0.38 -1.16
Xar 50 1211 1.23 11.37 0.64 1059 1398 043 -1.63
Xaz2 50 10.24 1.03 10.35 069 7.17 1247 -1.55 2.94
Xs3 50 1331 095 1336 049 1064 1557 -0.35 1.68
Xst 50 1281 125 1338 0.67 975 14.00 -0.81 -0.98
Xs2 50 1022 062 1020 025 6.83 1110 -3.04 1548
Xs3 50 13.77 1.17 13.81 063 7.62 1553 -257 13.02
Xer 50 29.97 0.03 2997 0.02 2991 30.03 -0.25 -0.29
Xe2 50 30.01 003 3001 0.03 2992 30.09 -0.25 0.13
Xe3 50 24.98 0.03 24.97 0.03 2490 25.06 0.30 -0.42




Table 4. Results for the node weights standard deviations

Name n Mean Sd Median Mad Min Max Skew Kurtois
sdXi1 50 272 0.09 271 0.09 255 3.08 1.15 2.77
sdXi2 50 286 0.17 2.82 0.10 262 377 312 14.88
sdXiz 50 280 0.18 2.80 0.10 176 3.05 -3.74 20.01
sdX21 50 245 049 2.64 021 1.09 3.02 -150 1.07
sdX22 50 285 0.77 2.82 0.63 180 6.27 217 6.58
sdX2s 50 337 0.83 3.18 0.66 239 6.20 1.49 2.36
sdXs1 50 2.06 0.68 2.23 0.84 096 362 -0.01 -1.21
sdXs> 50 354 1.69 2.98 122 159 691 0.89 -0.79
sdXss 50 3.62 1.04 3.53 121 217 6.15 0.66 -0.38
sdXs1 50 151 0.58 1.28 022 098 286 1.35 0.20
sdXs2 50 431 1.07 4.22 049 193 654 0.00 0.30
sdXs3 50 373 0.64 3.96 042 214 466 -1.20 0.58
sdXs1 50 154 0.63 1.24 0.22 096 300 1.28 0.00
sdXs2 50 431 0.78 431 0.62 292 6.72 0.97 1.09
sdXs3 50 3.63 0.75 3.95 043 2.08 460 -0.89 -0.68
sdXs1 50 2.84 0.08 2.84 0.08 261 301 -0.29 0.32
sdXe2 50 2.74 0.09 2.73 0.10 258 294 0.13 -0.78
sdXes 50 2.79 0.09 2.80 0.09 259 295 -0.28 -0.70

Table 5. Results for the mixture component probabilities

Name n Mean Sd Median Mad Min Max Skew Kurtois
Probl 50 0.16 0.01 0.16 0.00 0.08 0.18 -552 3455
Prob2 50 0.15 0.03 0.15 0.04 009 020 -0.10 -1.26
Prob3 50 0.15 0.03 0.15 0.03 0.08 0.21 -0.03 -0.60
Prob4 50 0.19 0.03 0.19 0.02 0.10 0.23 -1.09 0.36
Prob5 50 0.19 0.03 0.20 0.02 011 023 -1.02 0.06
Prob6 50 0.17 0.00 0.17 0.00 0.17 017 -0.15 -0.59

Table 6. Results for the Kohonen algorithm parameters

Name n Mean Sd Median Mad Min Max Skew Kurtois
etaoptimo 50 0.04 0.01 0.03 0.02 0.02 0.07 051 -1.22
sigmaoptimo 50 4.38 0.03 4.24 203 221 691 0.10 -1.37

5. Discussion of the results

We observe that the means are very close to those of the original mixture distribution,
with low variability. The estimates for the variances are significantly less close to those
of the mixture and with also significantly larger variability. The mixture component
probabilities are very close to the original ones, and so the Kohonen algorithm
parameters, although the estimation procedure was more directed to trying values in the
range of the values estimated for the original (non-bootstrapped) data matrix.
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