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Summary. A stochastic simulation study is carried out to learn about 

quantification of uncertainties for Self-Organizing Maps (SOM). A mixture of 

Gaussian distributions is assumed as data generating process and the Monte Carlo 

generated samples are transformed according to the Kohonen (SOM) algorithm. 

Additionally, the original data matrix is resampled for a bootstrap quantification 

of parameter estimation uncertainties. 
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1. Introduction  

The purpose of this paper is to develop a stochastic model for one-layer Self Organizing 

Maps (SOM), within a frequentist bootstrap framework and to quantify the associated 

uncertainties. Simulated data were used to illustrate the methodology and learn about 

its performance. 

Kohonen (1980) developed SOM (Self Organizing Maps) to model structures such as 

cortical layers in the brain as (typically) two or in some cases three dimensional maps. 

From the statistical point of view, SOM is a clustering technique providing a reduction 

of dimensionality to typically two or three dimensions, thus producing a “visual” 

clustering.  

Initially SOM need not be formulated in a stochastic framework. The first and 

“deterministic” reference to SOM is the seminal paper by Kohonen (1980), leaning on 

Von der Malsburg (1973) and Willshaw and von Der Malsburg’s (1976) work on 

competitive learning. The theoretical background is presented in Kohonen (1997). Two 

relevant reviews of SOM are Yin (2008), and Van Hulle (2007). Haykin (2009) 

provides a sound introductory reference, noting that SOM transfers probabilities as 

proportional to the cubic roots of the original-space ones.  
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However, several papers have developed a stochastic framework for SOM, the first are 

Lutrell (1994), Yin and Alison (1997), Lampinen and Kostianen (2001) and Lampinen 

and Vetiari (2001); Guao et al (2013) is a more recent article. We consider that more 

work is necessary to enhance the stochastic formulation. Deep (more than one layer) 

SOM has been approached from a practical point of view in Solokowska et at (2013) 

and Liu et al (2015).  

In this paper we use a stochastic approach in our methodological development.  

1.1 Description of SOM  

SOM is s a neural clustering technique which assigns observations in an original p-

dimensional space to integer -valued nodes a in a (typically) two-dimensional map, in 

such way that the distances between the corresponding points in the map reflect those 

in the original space as much as possible. This approach is similar to multidimensional 

scaling (MDS), but in the latter the points in the reduced space are real numbers instead 

of (typically) pairs of integers. An interesting comparison between SOM and MDS is 

given by Trosset (2006).  

SOM is also different from the traditional k-means clustering technique in that the 

clusters are nodes in a smaller dimensional space (than the original one), and preserving 

distances as much as possible, in k-means there is no dimension reduction, the cluster 

centroids are points in the original space, although SOM nodes have associated weights 

in the original space as well as the node’s pairs of integers map coordinates. Besides, 

k-means is competitive learning and has a natural extension within the stochastic 

framework in Gaussian mixture models, but it does not include a cooperation step.  

The stochastic model would have to coincide in mean with the (deterministic) Kohonen 

algorithm. Guo et al (2013) propose a probabilistic model for the weights in the SOM 

by means of putting probabilities on the weight distribution parameters (mean vectors 
and covariance matrices in a Gaussian framework), but this is not fully Bayesian since 

there are no priors on either these parameters or the probabilities of the p-original-space 

points belonging to the nodes.  

A probabilistic approach would have to start with the assumption of a data generating 

process -dgp- also called the stochastic model, in the original space. This is a key 

assumption of the methodology. 

In this paper, we develop a quantification of uncertainties framework for SOM within 

the frequentist approach, by means of a mixture of Gaussians and the bootstrap 

technique. The methodology provides a means of quantifying the two sources of 

uncertainty inherent to the problem: the first elicits the uncertainty in the data 

generating process and the second in parameter estimation. The procedure will require 

dividing the original Monte Carlo generated sample of the mixture of Gaussians into a 

set of subsamples, as will be explained in detail below.  



The rest of this paper is organized as follows: in section 2, we review the Kohonen 

algorithm. In section 3 we describe the stochastic modelling and the procedure for 

quantification of uncertainty. In section 4 we present the results of the application of 

the procedure to a mixture of 6 3-dimensional Gaussian distributions, for illustration of 

the methodology.  

2. The original (deterministic) SOM -Kohonen algorithm  

Given a sample 𝑦𝑖1, . . 𝑦𝑛  of n observations in a p-dimensional space, the Kohonen 

algorithm assigns each sample element to each of one of the 𝐼 ∗ 𝐽 nodes in the map, and 

produces 𝐼 ∗ 𝐽 so-called weights, which are representations of the nodes in the original 

p-dimensional space, in such way that the closer the nodes are in the map, the more 

similar their weights will be.  

The steps of the SOM algorithm are as follows: 

1. Generate initial values for the p−dimensional node weights 𝑦10 , … 𝑦𝐼∗𝐽,0, where 𝐼, 𝐽 

are the dimensions of the map.  
2. For the first observation y1, calculate the Euclidean distance from y1 to the initial 

node weights; assign y1 to the node with the nearest weight, which we call the 

winning node G.  
3. Update all weight nodes through the expression: 

𝑦𝑖1 = 𝑦𝑖0 +  𝜂Λ(𝑖, 𝐺) ∗ (𝑦𝑖0 − 𝑦𝑖𝐺), 𝑖 = 1, . . 𝐼 ∗ 𝐽, (1) 
 

        where: 

         yG is the weight of the winning node G. 

         𝜂 is the learning rate. 

𝛬(𝑖, 𝐺)  =  𝑒𝑥𝑝(−𝑑(𝑖, 𝐺)/(2𝜎𝛬
2

 
(𝑡))), (2) 

with  𝜎𝛬(𝑡) = 𝜎𝛬0𝑒𝑥𝑝(−𝜂0𝑡/𝑛) (3) 

          𝑑(𝑖, 𝐺) =  √(xi1 −  xG1 )
2 

+ (xi2 −  xG2 )
2 (4) 

         where the xj are the integer indices of the map  

4. Repeat iteratively 2) and 3) for all the remaining observations 𝑦2, . . 𝑦𝑛 of the 

sample. 

The parameters of the Kohonen algorithm are thus σΛ0 and η0. σΛ0 is a constant to 

calibrate the neighborhood structure for the update process. η0 is the rate at which the 

updating process slows down as the algorithm approaches convergence.  

  



3. The stochastic model  

3.1 Introduction  

It is assumed that there exists a data generating process or probability distribution in 

the original dimension of the data (p). This distribution is transformed, by means of the 

Kohonen algorithm, into a stochastic process, the index of which is the iterations of the 

algorithm, in such way that we formulate the estimation of a stochastic model in terms 

of the (estimation of) limit distribution to which the process converges. For given values 

of the parameters η and σΛ0 of the Kohonen algorithm, the problem is thus just of 

transformation of variables, but the above-mentioned parameters should also be 

estimated within an inferential process. The marginal distributions of the node weights 

along the stochastic process are a mixture distribution with as many components as map 

nodes. Note that the mixture distribution is not on the original variables, but on the 

Kohonen algorithm-transformed ones.  

We could then follow two procedures for estimation of the final distribution of the 

stochastic process: 1) Estimate a distribution in the original space and then draw 

samples from it, applying the Kohonen algorithm to them in such a way that we obtain 

an -as large as desired- sample of the stochastic process. 2) Divide the original sample 

in N several independent subsamples and apply the Kohonen algorithm to each of these 

N subsamples in such way that we also obtain a sample from the stochastic process. In 

both cases, we use the final iteration of the sample to estimate the distribution of the 

(last iteration) weights which would be taken as from the distribution to which the SOM 

converges. Both 1) and 2) are conditional on given values of the Kohonen algorithm 

parameters. Here we follow the latter solution by applying in turn a frequentist 

procedure for quantification of parameter estimation uncertainty, based on 

bootstrapping.   

3.2 Estimating the two sources of uncertainty  

3.2.1 Estimating the data generating process  

Here we wish to estimate the parameters of the mixture of Gaussians corresponding to 

the node weights of the last iteration, as well as the optimal values of the Kohonen 

algorithm calibration parameters σΛ0 and η0. 

Our starting point is the original sample of size 90000 (y1, ...yn), where each vector yi 

is 3-dimensional. If, with the purpose above, we applied the SOM algorithm to the full 

original sample, we would just obtain a single value for the “last iteration node 

weights”, which would just be a sample of size one, obviously not what we need to 

estimate a distribution. Bearing this in mind, we have divided the sample of size 90000 

in 300 subsamples of size 90000/300=300. We then apply the Kohonen algorithm to 

each of these 300 subsamples and keep the 300 last iteration node weights. These values 

constitute our desired sample for “last iteration node weight distribution” estimation. 



Let us denote this sample with  𝑦∗ = (𝑦1
∗ , … , 𝑦𝑛𝑠

∗ ), where n=300. We then apply 

maximum likelihood to y* to estimate the distribution by assuming a Gaussian mixture 

distribution as well (i.e., the same kind of statistical model we used to generate our 

original data). We will thus obtain 6 vectors of 3-component vector means, 6 variance-

covariance matrices and a vector of six mixture component probabilities. Optimal 

values for the Kohonen algorithm calibration parameters σΛ0 and η0 will also be 

estimated. If we assume that the variance-covariance matrix is the same for all mixture 

components, we only need to estimate a single variance-covariance matrix instead of 6.  

The likelihood function for the mixture model will be expressed in terms of y∗. 

𝑙 = ∏ ∑ 𝜃𝑘 (
1

|Σ𝑘|
) exp ((−(𝑦𝑖

∗ −  𝜇𝑘)𝑇Σ𝑘
−1(𝑦𝑖

∗ − 𝜇𝑘)𝐼𝐽
𝑘=1

𝑛𝑠
𝐼=1 ) (5) 

For point estimation, the likelihood function above is maximized with respect to all the 

parameters, 𝑖. 𝑒. (𝜂0, 𝜎𝛬0 
, 𝜃𝑖, 𝜇𝑖, 𝛴𝑖).  

3.2.2 Parameter estimation uncertainty  

In addition to stochastic model uncertainty, there is parameter estimation uncertainty 

which is quantified by means of the bootstrap technique.: using the original data matrix 

y as starting point, 50 new data matrices are obtained with the same dimension as y, by 

(bootstrap) resampling, i.e. selecting from the rows with replacement. We then apply 

to each of these 50 matrices the same procedure as was done for the original data matrix 

in section 3.2.1. The result will be a matrix of 50 rows (one for each resampling) and 

as many columns as estimated parameters Finally, this matrix is used for parameter 

estimation uncertainty.  

4 Application to simulated data  

4.1 The experimental design 

A mixture of 6 tri-variate Gaussian distributions has been simulated, where the means 

are given in table 1. For each of the 6 mixture components, the 3 variables are 

independent, and the variances are equal to 2 for the 3 variables of all the 6 components.  

Table  1. Mixture means for simulation experiment  

y1 y2 y3 

10 2 3 

10 7 8 

12 12 13 

12 8 12 

13 19 15 

30 30 25 



 

Table  2. Mixture component probabilities 

Component Probability 
1 0.16 

2 0.16 

3 0.16 

4 0.20 

5 0.15 

6 0.17 

4.2 Results  

We obtain a matrix of values for the parameters. The number of rows is the number of 

bootstrap resampling’s. The number of columns is the number of parameters estimated.  

The list of parameters is: the 𝑘 ×  𝑝 mixture means 𝜇𝑖𝑗, 𝑖 =  1. . 𝐾, 𝑗 = 1. . 𝑝, the 

𝑘 ×  𝑝(𝑝 +  1)/2 elements of the k covariance matrices 𝛴𝑖, 𝑖 = 1. . 𝐾, the k mixture 

weights 𝜃𝑖 , 𝑖 =  1. . 𝐾 and finally, the Kohonen algorithm parameters 𝜂0 , 𝜎𝛬0 
.  

4.3 Summary of results  

As mentioned above, the results of the bootstrap procedure are a matrix of estimates of 

the parameters, with as many rows as bootstrap resampling’s and as many columns as 

parameters. A descriptive statistic of the most relevant (for sparcity reasons, we no not 

present the covariances) for marginal distributions of this sample is shown as follows. 

Table  3.  Results of the estimation of node weight means. 

Name n Mean Sd Median Mad Min Max Skew Kurtois 

X11 50 10.00 0.04 10.00 0.03 9.86 10.15 0.16 5.12 

X12 50 2.22 0.93 2.04 0.03 1.97 6.95 4.56 19.26 

X13 50 3.20 0.88 3.03 0.04 2.93 8.26 4.83 22.69 

X21 50 10.32 0.94 10.16 0.72 8.82 13.95 1.32 2.49 

X22 50 7.11 1.44 7.01 0.17 2.00 11.30 -0.63 6.25 

X23 50 8.76 2.11 8.23 0.81 2.96 13.74 0.08 1.07 

X31 50 11.18 1.17 11.27 0.70 8.90 13.76 0.30 -0.33 

X32 50 8.07 1.50 7.30 0.63 6.68 12.59 1.07 0.00 

X33 50 10.61 1.99 11.04 1.95 7.13 13.92 -0.38 -1.16 

X41 50 12.11 1.23 11.37 0.64 10.59 13.98 0.43 -1.63 

X42 50 10.24 1.03 10.35 0.69 7.17 12.47 -1.55 2.94 

X43 50 13.31 0.95 13.36 0.49 10.64 15.57 -0.35 1.68 

X51 50 12.81 1.25 13.38 0.67 9.75 14.00 -0.81 -0.98 

X52 50 10.22 0.62 10.20 0.25 6.83 11.10 -3.04 15.48 

X53 50 13.77 1.17 13.81 0.63 7.62 15.53 -2.57 13.02 

X61 50 29.97 0.03 29.97 0.02 29.91 30.03 -0.25 -0.29 

X62 50 30.01 0.03 30.01 0.03 29.92 30.09 -0.25 0.13 

X63 50 24.98 0.03 24.97 0.03 24.90 25.06 0.30 -0.42 



 

Table  4. Results for the node weights standard deviations 

Name n Mean Sd Median Mad Min Max Skew Kurtois 

sdX11 50 2.72 0.09 2.71 0.09 2.55 3.08 1.15 2.77 

sdX12 50 2.86 0.17 2.82 0.10 2.62 3.77 3.12 14.88 

sdX13 50 2.80 0.18 2.80 0.10 1.76 3.05 -3.74 20.01 

sdX21 50 2.45 0.49 2.64 0.21 1.09 3.02 -1.50 1.07 

sdX22 50 2.85 0.77 2.82 0.63 1.80 6.27 2.17 6.58 

sdX23 50 3.37 0.83 3.18 0.66 2.39 6.20 1.49 2.36 

sdX31 50 2.06 0.68 2.23 0.84 0.96 3.62 -0.01 -1.21 

sdX32 50 3.54 1.69 2.98 1.22 1.59 6.91 0.89 -0.79 

sdX33 50 3.62 1.04 3.53 1.21 2.17 6.15 0.66 -0.38 

sdX41 50 1.51 0.58 1.28 0.22 0.98 2.86 1.35 0.20 

sdX42 50 4.31 1.07 4.22 0.49 1.93 6.54 0.00 0.30 

sdX43 50 3.73 0.64 3.96 0.42 2.14 4.66 -1.20 0.58 

sdX51 50 1.54 0.63 1.24 0.22 0.96 3.00 1.28 0.00 

sdX52 50 4.31 0.78 4.31 0.62 2.92 6.72 0.97 1.09 

sdX53 50 3.63 0.75 3.95 0.43 2.08 4.60 -0.89 -0.68 

sdX61 50 2.84 0.08 2.84 0.08 2.61 3.01 -0.29 0.32 

sdX62 50 2.74 0.09 2.73 0.10 2.58 2.94 0.13 -0.78 

sdX63 50 2.79 0.09 2.80 0.09 2.59 2.95 -0.28 -0.70 

 

Table  5.  Results for the mixture component probabilities 

Name n Mean Sd Median Mad Min Max Skew Kurtois 

Prob1 50 0.16 0.01 0.16 0.00 0.08 0.18 -5.52 34.55 

Prob2 50 0.15 0.03 0.15 0.04 0.09 0.20 -0.10 -1.26 

Prob3 50 0.15 0.03 0.15 0.03 0.08 0.21 -0.03 -0.60 

Prob4 50 0.19 0.03 0.19 0.02 0.10 0.23 -1.09 0.36 

Prob5 50 0.19 0.03 0.20 0.02 0.11 0.23 -1.02 0.06 

Prob6 50 0.17 0.00 0.17 0.00 0.17 0.17 -0.15 -0.59 

 

Table  6. Results for the Kohonen algorithm parameters 

Name n Mean Sd Median Mad Min Max Skew Kurtois 

etaoptimo 50 0.04 0.01 0.03 0.02 0.02 0.07 0.51 -1.22 

sigmaoptimo 50 4.38 0.03 4.24 2.03 2.21 6.91 0.10 -1.37 

 

5. Discussion of the results 

We observe that the means are very close to those of the original mixture distribution, 

with low variability. The estimates for the variances are significantly less close to those 

of the mixture and with also significantly larger variability. The mixture component 

probabilities are very close to the original ones, and so the Kohonen algorithm 

parameters, although the estimation procedure was more directed to trying values in the 

range of the values estimated for the original (non-bootstrapped) data matrix.  
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