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In [1] the Quantum Walk was used to discuss the possibility of introducing
the concept of temperature for an isolated quantum system that evolves in a
composite Hilbert Space. Concomitantly, because of its large application on the
development and optimization of quantum algorithms, new types of Quantum
Walks have been studied. Here we discuss the meaning of temperature and
thermodynamic equilibrium for Discrete Quantum Walks with 2 and 3-sided
coins.

1 Introduction

Quantum Walks are a wide group of dynamic systems that represent the time
evolution of a walker on a graph. Those are divided on discrete-time Quantum
Walks and continuous time Quantum Walks. On this work the main interest is
on discrete-time Quantum Walks on a one-dimension position space, that is, on
the lattice points of a line.

The study of Quantum Walks started as a generalization of classical random
walks to quantum systems, however some of its properties, such as having a
ballistic behavior (σ2 ∝ t2), called the attention of researchers to the possibility of
using it as a mathematical tool to build quantum algorithms. It has been proved
that Quantum Walks, under particular conditions, can be used to implement a
model of universal computation [2,3].

The three-state Quantum Walk is a generalization of the usual Hadamard
Walk, where the probability of the walker to stay still on a time step of the
dynamics of the system is also taken in to account. On the classical case this
additional consideration does not add much difference to the behavior of the
system, the evolution of the position probability distribution is just slowed. On
the other side, for the quantum case, the addition of one degree of freedom
on the chirality space causes a huge difference on the evolution of the position
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probability distribution. The probability amplitude of staying in the same place
generates a localization the initial position. This property has been analyzed
in [4–6].

In the present work we analyze the entanglement between the position and
chirality space on the asymptotic limit of the three-state Quantum Walk using
the tools defined on [1,7–10]. Firstly, we introduce notation making an overview
of the two-state Quantum Walk on the line and summarizing the calculation of
the temperature and entropy of that system. Then, we explain the basics of
three-state Quantum Walk and, in section 3.2, we present our results concerning
the thermodynamics of the three-state Quantum Walk. At last, in section 4 we
point the last remarks and conclusions.

2 Two State Quantum Walk on the line

2.1 Overview

The Quantum Walk on the line is the quantum version of the simple random
walk. The system is composed by a coin and a walker, therefore its Hilbert
space is written as H = HC⊗HP, where HC is the coin Hilbert space and HP
the Hilbert Space associated with the positions of the walker. The state of the
system can be described as a spinor

|ψ(t)〉=
∞

∑
n=−∞

(
an(t)
bn(t)

)
|n〉 , (1)

where an and bn are the wave components correspondent to left and right chi-
rality, respectively.

As in its classical counterpart, each time step of the Quantum Walk dynamics
is composed by two operations. A rotation on the coin (chirality) space (C),
followed by a shift (S) operation. Using the variable θ to determine the bias of
the coin, the first operator can be written as

C =

(
cosθ sinθ

sinθ −cosθ

)
. (2)

If θ = π/4 the coin is unbiased and we call it the Hadamard Walk. On the other
side the shift operator is

Sh =

(
∞

∑
n=−∞

|n−1〉〈n|⊗ |L〉〈L|

)
+

(
∞

∑
n=−∞

|n + 1〉〈n|⊗ |R〉〈R|

)
. (3)

Therefore, using this two unitary operators the dynamics can be summarized to

|ψ(t)〉= (Sh(C⊗ I))t |ψ(0)〉 , (4)

where I stands for the identity on position space. The asymptotic limit distri-
bution of the two-state quantum walk on the line can be found using the Fourier
space and stationary phase method [11].
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On [12] the global left (or right) chirality probabilities (GCP) were defined
as the probability that, if measured, the state is found with chirality left (or
right) in any position, i.e,

PL(t) =
∞

∑
n=−∞

|an(t)|2,

PR(t) =
∞

∑
n=−∞

|bn(t)|2.
(5)

Evolving the system using equation (4) and applying definitions (5) the
dynamics of the GCP is found,(

PL(t + 1)
PR(t + 1)

)
=

(
cosθ2 sinθ2

sinθ2 cosθ2

)(
PL(t)
PR(t)

)
+Re[Q(t)]sin2θ

(
1
−1

)
, (6)

where Q(t) = ∑
∞
n=−∞ an(t)b∗n(t) is a interference term. If this term is left out a

classical Markovian Process [13] is recovered.

2.2 Temperature of two sate Quantum Walk

It was shown on [12] that the global distribution of chirality has stationary long-
time limit that depend only on the initial conditions. Therefore, asymptotic
limits of the GCP and the interference term can be defined as [1]

ΠL = lim
t→∞

PL(t),

ΠR = lim
t→∞

PR(t),

Q0 = lim
t→∞

Q(t).

(7)

Since the system follows a unitary evolution, if the initial conditions define a
pure state, the state remains pure during the time evolution. This means that
the von Neumann entropy of the system is zero. However the shift operation
generates entanglement between chirality and position. Such an entanglement
can be quantified calculating the entropy of the reduced density operator. The
reduced density operator of the coin space in the limit where t→ ∞ is

ρc(t) =

(
ΠL Q0
Q∗0 ΠR

)
, (8)

and the entropy limit is

S(ρ) =−λ+ logλ+−λ− logλ−, (9)

where λ+ and λ− are the eigenvalues of (8).
Now, to define an entanglement temperature of the system, it is necessary to

connect the eigenvalues of the density operator with its associated Hamiltonian,
H. In the stationary state [H,ρ] = 0, therefore there is a basis in witch H and ρ
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Figure 1: Temperature is displayed as a function of initial conditions θ and
φ. Both figures present the same result, but on the right one, for a better
visualization, the initial conditions are shown on the Bloch sphere. T0 ≈ 2.27 is
a characteristic parameter.

can be written on a diagonal form. Since only the gap between the eigenvalues
of H are relevant for us, we call them ±ε. The explicit dependence between the
eigenvalues of both operators depend on the ensemble constructed. Assuming
canonical ensemble,

λ± =
e±βε

eβε + e−βε
, (10)

where β = 1/T is the temperature inverse. Thus, inverting the expression the
temperature is obtained

T =
2ε

log
(

λ+
λ−

) . (11)

Therefore, to see this result with clarity the bias of the walk was fixed on θ = π/4
(Hadamard walk) and the temperature per unit of ε was calculated for the
initial condition (12) for values of γ from 0 to π and φ from 0 to 2π. The
isotherms corresponding the results are displayed on figure (2.2), where T0 is a
characteristic temperature

|ψ(0)〉=

(
cos(γ/2)

eiφ sin(γ/2)

)
|0〉 . (12)

3 Three-State Quantum Walk on the Line

3.1 Overview

The principle of the three-state Quantum Walk is similar to the regular one-
dimension Quantum Walk explained above. The main difference is that on
this case the chirality state space has three dimensions, therefore besides the
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possibilities of going to left or right, a probability of staying in the same place
is also accounted. Hence the state of the system on time t is written as

|ψ(t)〉=
∞

∑
n=−∞

an(t)
bn(t)
cn(t)

 |n〉 , (13)

where the coefficients an, bn and cn corresponds to the left (L), no movement (S)
and right(R) chiralities respectively. The coin operator analog to the Hadamard
operator is

C =
1
3

−1 2 2
2 −1 2
2 2 −1

 , (14)

and the shift operator is

Sh =

(
∞

∑
n=−∞

|n−1〉〈n|⊗ |L〉〈L|

)
+

(
∞

∑
n=−∞

|n〉〈n|⊗ |S〉〈S|

)
+

(
∞

∑
n=−∞

|n + 1〉〈n|⊗ |R〉〈R|

)
.

(15)
On this walk the Global chirality probabilities are defined on analogous way

to the two-state walk, eq. (5)

PL(t) =
∞

∑
n=−∞

|an(t)|2,

PS(t) =
∞

∑
n=−∞

|bn(t)|2,

PR(t) =
∞

∑
n=−∞

|cn(t)|2.

(16)

Therefore, recurrence relation of the GCP is easily obtained from eq. (4)PL(t + 1)
PS(t + 1)
PR(t + 1)

 =
1
9

1 4 4
4 1 4
4 4 1

PL(t)
PS(t)
PR(t)

+
Re[Q1(t)]

9

−4
−4
8


+
Re[Q2(t)]

9

−4
8
−4

+
Re[Q3(t)]

9

−8
−4
−4

 , (17)

where the interference terms are

Q1(t) =
∞

∑
n=−∞

an(t)b∗n(t),

Q2(t) =
∞

∑
n=−∞

an(t)c∗n(t),

Q3(t) =
∞

∑
n=−∞

bn(t)c∗n(t).

(18)
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Figure 2: Probability distributions of the two and three state Quantum Walk
after 100 time steps

Considering the Fourier transform of the wave function of the system,Ψ̃(k, t),
the equation describing the dynamics of the walk is

Ψ̃(k, t + 1) = M̃t
Ψ̃(k,0), (19)

where in its diagonal form Ũ has two time dependent eigenvalues (λ2, λ3) and
a constant one (λ1 = 1) [4, 6]. The constant eigenvalue is responsible for the
main difference in behavior of two and three state Quantum Walk, because it
causes a localization around its initial position. Figure 2 shows the probability
distributions of the two and three state Quantum Walk after 100 time steps.
Therefore using its diagonal form the evolution operator M̃ can be written as
follows

M̃t = M̃1 + λ
t
2M̃2 + λ

t
3M̃3. (20)

Then the state vector is obtained performing the inverse Fourier transform.
A more detailed explanation of this procedure can be found on [6], where the
asymptotic limit distribution was calculated with the matrices U1, U2 and U3,
defined on such a way that on the limit of t→ ∞ the state vector is

|ψ∞
n 〉= (U1 +U2 +U3) |ψ0

0〉 , (21)

where

|ψ0
0〉=

an(0)
bn(0)
cn(0)

 |0〉 ,
is the initial state of the walker. To perform the inverse Fourier transform on
the time dependent parts of M̃ the method of stationary phase was used.
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Figure 3: Temperature is displayed as a function of initial conditions. The left
figure has initial condition |ψ0

0〉= (cosθ,0,eiφ sinθ)T |0〉, while on the right figure

the initial condition is |ψ0
0〉= (cosθ/

√
2,1/
√

2,eiφ sinθ/
√

2)T |0〉. The parameters
θ ∈ [0,π] and φ ∈ [0,2π] vary keeping the condition that the initial condition is
normalized.

3.2 Temperature of Three-State Quantum Walk

To obtain the temperature of three-state Quantum Walks the results of [6] were
strongly used to calculate the density matrix of the asymptotic state of the walk,
then following the procedure established by [1] the canonical ensemble was used
to define the a temperature.

The results of [6] suggested that the cross terms of eq. (21) should not be
considered on the calculation of the asymptotic density matrix, i.e,

ρ∞ = |ψ∞
n 〉〈ψ∞

n | ≈U1 |ψ0
0〉〈ψ0

0|U
†
1 +U2 |ψ0

0〉〈ψ0
0|U

†
2 +U3 |ψ0

0〉〈ψ0
0|U

†
3 . (22)

Therefore the eigenvalues of ρ∞ can be associated with the following proba-
bilities

λ j =
eβε j

eβε1 + e−βε2 + e−βε3
, (23)

where j = 1,2,3 and ε j are the energy eigenvalues of the of the common basis of
ρ∞ and the Hamiltonian. Thus the temperature is defined with respect to the
energy difference between two of the eigenvalues. Any pair of eigenvalues could
be used, here we chose

T =
ε1− ε2

log
(

λ1
λ2

) . (24)

Figure 3.2 shows the temperature in units of energy difference as a function of
initial conditions.

The asymptotic entanglement entropy was also calculated using expression

S(ρ) =−λ1 logλ1−λ2 logλ2−λ3 logλ3. (25)
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Figure 4: Entanglement entropy for initial conditions |ψ0
0〉 =

(cosθ,0,eiφ sinθ)T |0〉, with θ ∈ [0,π] and φ ∈ [0,2π].

The result obtained for the initial condition |ψ0
0〉 = (cosθ,0,eiφ sinθ)T |0〉 is dis-

played on Figure 4.

4 Conclusions

Using the definitions proposed by [1] for thermodynamic variables and the meth-
ods used by [6], to find the asymptotic wave function, we were able to calculate
entropy and temperature per unit energy for different initial conditions. This
investigation together with a deep analysis of the possible correlation between
these thermodynamic variables and localization will be analyzed elsewhere.
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