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2. ABSTRACT 

This article reviews the literature on the application of Machine Learning (ML) to identify flood-prone areas, covering 

studies published since 2013. The review focuses on data considerations, such as the specifics of the study area and 

conditioning factors, as well as the ML algorithms used to identify flooding areas. 100 scientific articles were analyzed 

through a wide scope of geographical areas, ranging from arid to tropical climates and from small catchments to large 

river basins, to evaluate the influence of geographical features, historical flood occurrences, climatic patterns, 

urbanization, and data availability on flood susceptibility modeling (FSM). Iran, India, China, and Vietnam are the most 

frequently studied locations. The slope of the land, topographic wetness index, land use and land cover, rainfall levels 

and distance to rivers were key conditioning factors in at least 61% of the reviewed articles. Furthermore, the employed 

ML algorithms can be categorized into various types: statistical, kernel-based, tree-based, Neural Network (NN)-based, 

ensemble, and hybrid approaches. NN-based models, such as Long Short-Term Memory (LSTM) and Recurrent Neural 

Networks (RNNs), excel in solving high-dimensional problems but face challenges related to reliability and overfitting. 

Kernel-based approaches require optimal configuration through a trial-and-error process, while tree-based models offer 

simplicity and are less prone to overfitting, although they may be less precise. Among these, ensemble and hybrid models 

generally outperform traditional ML methods, despite their own limitations. These methods primarily focus on event-

based historical floods, limiting their ability to make real-time predictions due to the lack of time-series data. 

Additionally, most models face restrictions given data consistency and validity. They often use inconsistent data, where 

flood conditions and input parameter values are not aligned in time and space. This discrepancy undermines the models' 

reliability. Consistent and valid datasets are imperative for accurate model development.   

3. INTRODUCTION 

Floods cause enormous damage, mortality, and substantial adverse impacts on public health and the economy. Statistics 

indicate that floods have been a major contributor to global damage from natural disasters, accounting for over half of 

such damage in the past fifty years [1]. Between 2017 and 2022, floods affected about 244 million people globally; in 

2022 alone, there were 7398 flood-related deaths, which is the highest number recorded in the last five years [2]. Available 

evidence indicates that flood related damage will increase in the future [3-4] both given the intensity and the frequency 

of flood events [5]. Recent flash floods have had significant socio-economic impacts in various countries. Notable 

examples include the floods in Germany in July 2021 [6-8]. Thus, accurate prediction of flood-prone areas is crucial for 

emergency response, life-saving measures, and the development of early warning systems for evacuation strategies.  

 

In the early twentieth century, flood modeling was primarily based on empirical models, e.g. weight of evidence (WOE), 

analytical hierarchy process (AHP), and frequency ratio (FR). These models were based on observed data and used simple 

statistical methods to predict flood events [9]. As technology progressed, hydrological models such as the ones produced 

by the the USACE Hydrologic Engineering Center, SWAT, and HSPF were developed. These models consider various 

factors like rainfall, soil type, and land use to predict flood events [10]. Afterwards, in the later part of the twentieth  

century, hydraulic models became popular. These models simulate the flow of water through the river channel networks 

and floodplains, providing more detailed flood predictions. For example, the widely used HEC-RAS, a software that uses 

hydraulic principles to model the flow of water in rivers and channels, is a hydraulic-based model numerically models 

the flood propagation [11]. In the early twentieth-first century, integrated models that combine hydrological and hydraulic 
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models were developed. Models such as TELEMAC, DELFT3D, MIKE 11 provide a comprehensive approach to flood 

modeling [12]. However, using purely physics-based models (hydraulic- or hydrological-based models) necessitated a 

considerable amount of data, tedious parameterization, and having a detailed comprehension of flood-related parameters, 

bring extra complecity to set them up and use.  

 

Knowledge-driven approaches (e.g. empirical models) are efficient, but only in areas where enough data is available. For 

instance, the effectiveness of the FR method is greatly influenced by the size of the sample used. To address these 

problems, ML models, which are grounded in artificial intelligence (AI), and statistical models are being used 

increasingly. ML models present certain shortcomings, such as susceptibility to overtraining, variable reliability, limited 

generalization, and the potential to produce incorrect results. This is often because they heavily depend on the input 

datasets and specified parameters. Thus, utilizing unrelated or irrelevant data and parameters can lead to inaccurate 

modeling. Despite these challenges, the simplicity, speed of execution, and reasonable accuracy of these models have 

garnered significant interest from the research community. They are capable of modeling complex, non-linear phenomena 

without requiring an understanding of the underlying mechanisms [13]. Nevertheless, they generally lack the ability to 

integrate the fundamental physics of the problems they are attempting to solve, barring some recent advancements in 

physics-based ML models, which fall beyond the scope of this article. To mitigate this limitation, it has been demonstrated 

that the effectiveness of ML models can be significantly enhanced by integrating them with other modeling approaches, 

such as metaheuristic strategies and optimization algorithms, numerical analyses, and physical models [14-15]. Figure 1 

illustrates a simplified evolution of flood modeling. 

 
Figure 1: A simplified timeline illustrating the evolution of flood modeling 

 

The current review article discusses the application of ML into flood susceptibility modeling (FSM), focusing on various 

aspects such as consideration of catchment features, conditioning factors or input parameters, and configuration of the 

developed ML models. We also discuss the synergy of ML models with metaheuristic algorithms, the development of 

ensemble models, and the evaluation of these newly developed models. Moreover, this article highlights some topics that 

have either been overlooked or not sufficiently explored in the existing literature.  

4. SCOPE 

Between 1970-2023, a total number of 1749 articles have been published and indexed in various databases such as Web 

of Science, Google Scholar, and Scopus, among others, using keywords like “Machine learning” AND "flood 

susceptibility mapping" OR "flood susceptibility" OR "flood susceptibility assessment" OR “flood prediction”. However, 

there is a clear trend indicating an increase in the number of published papers employing machine learning methods for 

flood prediction after 2013, as illustrated in Figure 2 (left pannel). These articles have been published in international 

journals affiliated with esteemed publishing entities including Elsevier, Springer Nature, MDPI, Taylor & Francis, Wiley, 

Copernicus Gesellschaft MbH, and Frontiers Media SA. In Figure 2 (right panel), the names of various journals are 

displayed along with the percentage of papers they publish relative to the total number of articles (1749 articles). The 

figure only includes journals with a contribution of more than 1 percent. For example, "Natural Hazards" accounts for 

105 articles, comprising 5.41% of the total record count, while "Journal of Hydrology" contributed 71 articles, constituting 

3.66%. 
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Figure 2: Left Panel: published articles on FSM using ML models in different years. Right Panel: journals with over 

1% of published articles on FSM using ML models from 2013 to 2023 

 

A subset of 100 articles published after 2013 was chosen for further investigation, each showcasing innovation in various 

facets such as data acquisition and preprocessing, input parameters selection, as well as model development and 

optimization. Figure 3 illustrates the distribution of selected articles for this review across different years. As shown, in 

the last five years, the number of papers that have studied FSM using ML has significantly increased compared to previous 

years.  

 
Figure 3: Number/percentage of the articles dealing with FSM using ML models selected in this review 

5. STUDY AREA (CATCHMENT) CONSIDERATIONS 

The selection of a study area is often a multi-faceted decision, impacted by geographical, climatic, human, geopolitical, 

historical, environmental conditions and geological factors. Each area has unique features that make it more or less 

suitable for FSM implementation. The study areas of the reviewed papers seem to cover various climate zones from arid 

regions in Saudi Arabia and Egypt to tropical climates like Vietnam and Malaysia to temperate zones like Canada and 

Switzerland. The areas range from small local catchments (e.g., The City of Carlisle, UK with 14.5 km2) to extensive 

river basins (e.g., The Brahmaputra River Basin, Bangladesh with 583000 km2). Some areas are densely populated cities 

like Seoul, while others are rural districts, e.g., Shangla District in Pakistan. Figure 4 illustrates the study aareas covered 

in the selected reviewed papers. Iran, India, China, and Vietnam are the most frequently selected locations for case studies 

on FSM development. 

 

 
Figure 4: The study areas in the selected papers for the review 
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By evaluating various study areas worldwide, we can draw insights into the essential parameters and conditions related 

to the study are that determine the suitability for application of ML into FSM. 

 

• Geographical and topological conditions: studies often target areas with diverse geography and terrain 

including variation in elevation, slope, and the presence of different landforms like mountains, rivers, and plains. 

Such complexities can profoundly affect the flood dynamics and susceptibility of the region. For instance, Maneh 

and Samalqan City [1] have a diverse terrain, with elevations ranging from 314 to 2,785 m, and the Haraz 

watershed [16] is characterized by mountains, hills, rivers, and streams, and elevations ranging from 300 m to 

5595 m.  

 

• Historical Occurrence of Floods or Natural Disasters: the selected areas usually have experienced past 

flooding or other natural disasters. Such historical data are crucial for calibration and validation of flood 

susceptibility models. Al-Areeq et al. [17] discusses how Jeddah city suffered from flash floods in 2009 and 

2011, causing substantial damage. Mahdizadeh Gharakhanlou & Perez [18] specifically looks at the floods of 

May 2017 in QC and November 2021 in BC, making both watersheds critical for understanding the risk factors 

leading to such events. 

 

• Climatic Patterns and Seasonal Variation: locations with a history of variable climatic conditions such as 

seasonal heavy rainfall or extreme weather events offer important insights into how climate factors into flood 

risks. Ullah et al. [19] details the heavy rainfall and snowfall in the Hindu Kush region during the summer 

monsoons, making it an area of interest for studying the impact of climate on flood susceptibility. Quang Binh 

in Vietnam  Faces frequent flooding and storms, notably recorded in 2007, 2010, and 2016, highlighting the 

need for susceptibility mapping in this climatically vulnerable area [20]. 

 

• Urbanization and Land Use: areas undergoing rapid changes in land use or that have high population densities 

provide opportunities to explore how human activity correlates with flood risks. Two different regions, Quebec 

(QC) and British Columbia (BC) in Canada, have been impacted by land use changes, making them suitable for 

studying the human impact on flood susceptibility [18]. 

 

• Data Availability: adequate and reliable data sources are crucial for modeling and validation of flood 

susceptibility maps. For instance, in South Korea Coastal Climate [21] 68 weather observatories and 46 tide 

observatories provide extensive data. Similarly, in Quang Binh, Vietnam [20] data on extreme flood events in 

2007, 2010, and 2016 are available from the Quang Binh Centre for Hydrometeorological Forecasting. 

6. CONDITIONING FACTORS 

The ML models predict flood events are based on the relationship between the dependent variable (flood suceptibility) 

and independent variables (conditioning factors or input parameters). Each of these criteria was prepared in the form of 

raster maps with different spatial resolutions, usually the 30 m × 30 m pixel sizes. In the reviewed articles, the principal 

output is generally flood susceptibility (either binary or probabilistic). Various methodologies exist for generating 

reference flood maps, such as the interpretation of digital satellite imagery or the utilization of historical flood databases. 

Though the reviewed papers employed diverse combinations of input parameters for model development, these can be 

classified into four distinct categories: topographical, hydrological, environmental, and morphological features. 

 

Topographical features like elevation (altitude), and slope relate to the shape, elevation, and layout of the land surface. 

They serve as initial indicators for predicting the flow direction of water, thereby identifying flood-prone regions. 

Distances to rivers, streams, and canals are vital, as closer proximity often increases flood risk, while metrics like Digital 

Terrain Model, curvature, and topographic wetness index provide insights into the terrain water-holding capacity.  

 

Hydrological parameters such as flow rate, flow accumulation, and flow direction reveal the water travel path during 

heavy rainfall, shaping the understanding of which areas are at imminent risk. The significance of rainfall, precipitation, 

and soil conditions (like soil hydrological groups, soil depth, and type) can not be overstated, as they define the land 

ability to absorb water before reaching a saturation point that triggers flooding.  

 

Environmental parameters encompass natural and man-made factors affecting the flood, such as land use, vegetation, and 

climate. For instance, the land use and urban areas directly affect the permeability of the ground, thereby influencing 

surface runoff and altering flood patterns. Additionally, natural factors like wind and evapotranspiration rates can either 

accelerate or decelerate the water cycle inputs and outputs.  

 

Morphological parameters describe the form and structure of channels and basins, like the depth and shape of riverbeds. 
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These features such as aspect, compactness coefficient, and elongation ratio offer a lens through which the land capability 

to channel water can be assessed. Geological structures may act as natural barriers or conduits for water flow. Parameters 

like stream density, drainage density, and bifuration ratio provide insights into how efficiently an area can channel away 

water. Lastly, land roughness metrics (comprising roughness, texture ratio, and terrain roughness index) help to gauge 

the friction offered by the land to the flow of water, which can serve as a vital clue for predicting the speed of flood 

progression.  

 

These parameters collectively provide a robust framework for understanding the intricacies involved in flood modeling, 

enabling us to develop more accurate and actionable predictive models. Table 1 summarizes all the input parameters used 

in the reviewed papers to develop ML models and their contribution in the flood susceptibility. 

 

 

Category Parameter Parameter contribution to flooding 

Topographical 

Slope 
Steeper slopes lead to rapid runoff, potentially causing flash floods, 

while gentler slopes cause water to accumulate [22]. 

Elevation 
Higher elevations are less prone to flooding, while lower elevations are 

likely to collect water, making them more susceptible to floods [23]. 

Terrain Roughness Index 

(TRI) 

TRI is a measure of the local variability in elevation within a landscape 

[18]. 

Topographic Position 

Index (TPI) 

It is a measure of the relative elevation of a point within a landscape 

[16]. 

Digital Terrain Model 

(DTM) 

It represents the topography of the Earth surface as a grid of elevation 

values [1-5]. 

Curvature 
Indicates how flat or curved a land slope is, it influences the speed of 

flows over the landscape, potentially leading to localized flooding [24]. 

Hydrological 

Topographic Wetness 

Index (TWI) 

It measures the degree to which a landscape is saturated with water 

[16&25]. 

Rainfall 
Excessive rainfall in a short period can overwhelm drainage systems 

and natural barriers, leading to immediate runoff and flooding [21]. 

River (stream) Density 

(Riv-Den) 

Higher river density can lead to a more complex network of water 

paths, potentially accelerating flood spread. 

Drainage Density (Drain-

Den) 

Increased drainage density facilitates quicker runoff, possibly 

heightening flood risk. 

Flow Accumulation 

(FloAcc) 

Represents the number of cells that flow into each cell in a grid, helping 

to identify where water will accumulate and potentially flood [1&17]. 

Flow Direction (FlowDir) 
Indicates the direction in which water will flow across a landscape, 

helping to predict the path and extent of potential flooding [26-27]. 

Environmental 

Land Use Land Cover 

(LULC) 

Urban or agricultural land uses can create impermeable surfaces that 

lead to rapid runoff, thereby increasing flood risk [1]. 

Distance to river (DisRiv) 
Proximity to a river can signify a higher risk of riverine flooding, 

especially if the river is prone to overflow its banks [20]. 

Lithology 
The type of rock or sediment that makes up the ground surface can 

affect water absorption and runoff [16-17]. 

Soil type 
Different soil types have varying capacities to absorb water, and less 

absorbent soils can contribute to faster runoff and flooding [26-27]. 

Normalized Difference 

Vegetation Index (NDVI) 

It is a criterion of the health and density of vegetation that can act as a 

natural barrier against floods by absorbing water [24]. 

Distance to the road 

(DisRoa) 

Roads can act as barriers or channels for water flow, affecting how 

water accumulates and disperses during a flood [26]. 

Distance to a fault 

(DisFau) 

Fault lines can sometimes lead to changes in the terrain or water table, 

indirectly affecting flood patterns [1&19]. 

Morphological 

Stream Power Index (SPI) 
SPI relates to the erosion power of floods and has a direct relationship 

with slope angle and watershed area [18-19]. 

Plan Curvature 
It  affects the horizontal curvature of the land surface, influencing the 

direction and distribution of water flow during flooding. 

Aspect 
It impacts how water flows over it, as well as other factors like solar 

radiation and evapotranspiration that influence hydrological processes. 

Sediment Transport Index 

(STI) 

Measures how sediment is carried by water flow, which can either 

reduce or enhance flood risk depending on the landscape [28]. 

Table 1:  The categories and common indicatores of selected input parameters used to FSM in the reviewed papers. 
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In our review of 100 research articles focusing on machine learning models for flood prediction, several input parameters 

consistently emerged as crucial for effective modeling. Specifically, the topographic wetness index (TWI), slope of the 

land (Slope), types of land use and land cover (LULC), rainfall levels, and the distance to the nearest river (DisRiv) were 

identified as the most commonly used conditioning factors. Remarkably, DisRiv was noted as a significant factor in 61% 

of the examined articles, while TWI was highlighted in 68%. These findings underscore the prevailing importance of 

these variables in the field of flood modeling. Figure 5 illustrates the frequency of various parameters that contributed to 

the development of ML models in the reviewed articles. It is worth noting that only parameters reported here which used 

more than five times in the reviewed articles (i.e. they are used at least in five papers for the modeling procedure). 

 

 
Figure 5: Frequency of the input parameters used in the reviewed paper to model flooding (only parameters are 

reported here whose contribution in the reviewed articles is more than 5%). 

7. ML MODELS EMPLOYED FOR FLOOD SUSCEPTIBILITY MAPPING 

The reviewed articles employed a diverse array of machine learning configurations and statistical methods for predicting 

flood susceptibility. The ML models encompasses: (1) NN-based models that mimic biological neural networks are 

capable of learning from data for tasks such as classification and regression [29-30]. An example of this is artificial neural 

networks (ANN); (2) Kernel-based models that utilize kernel functions to map input data into a higher-dimensional space, 

aiding linear algorithms in solving non-linear problems such as support vector machines (SVMs) [31]; (3) Tree-based 

models such as M5' model tree and alternating decision tree (ADtree) that employ decision tree structures to make 

predictions through a series of binary "if-then" decision thresholds, suitable for both regression and classification tasks 

[32-33]; (4) Ensemble models such as random forest (RF) and rotation forest (ROF) that combine multiple base predictive 

models to improve overall accuracy and robustness of predictions [34]; (5) Hybrid models such as adaptive fuzzy neural 

inference systems (ANFIS) that merge different types of models or model architectures to leverage strengths of individual 

models, enhancing performance and explainability [35]. Statistical models are mathematical models embodying statistical 

assumptions about data generation to analyze relationships between variables and make inferences about a population 

based on sample data [36]. The implemented statistical models for flood prediction can be categoried into regression-

based such as logistic regression (LR), multi-criteria decision analysis (MCDA) such as FR, bayesian such as Naïve Bayes 

(NB), instance-based like K-nearest neighbor (KNN), among others. Figure 6 illustrates the diverse ML configurations 

and statistical approaches utilized in the selected articles for the review.   

 

 
Figure 6: Different ML and statistical models used for FSM in the reviewed literature 
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Table 2 summarizes various ML and statistical model types, each accompanied by examples; additionally, it reports the 

frequency with which these configurations and models are cited in the reviewed papers.  

Ensemble models are particularly prevalent, appearing 107 times in various papers. These models can be categorized into 

Bagging-based ensembles (Bagging-Ens), Boosting-based ensembles (Boosting-Ens), and Forest-based ensembles 

(Forest-Ens). Bagging-Ens take multiple random samples from the data and build a separate model for each before 

averaging the predictions. Boosting-Ens, including AdaBoost, boosted generalized linear model (GLM), and gradient 

boosting machine (GBM), build an initial model, identify its errors, and then create another model to correct those errors. 

Forest-Ens like Random Forest (RF) and Rotation Forest (RoF) are built on forest algorithms. Some models do not neatly 

fit into these categories and include methods like statistical ensembles and SGD-WOE (Stochastic Gradient Descending-

Weights of Evidence). 

 

Hybrid models are also frequently used, 102 times in the reviewed articles. These models have several subcategories 

including Fuzzy Logic-based hybrids (FL-Hyb), Tree-based hybrids (Tree-Hyb), Neural Network-based hybrids (NN-

Hyb), Weighted Average-based hybrids (WAve-Hyb), and kernel-based hybrids (Kernel-Hyb). FL-Hyb models rely 

predominantly on fuzzy logic (FL) but also incorporate other ML methods such as neural networks (e.g., FART (Fuzzy 

Adaptive Resonance Theory) & FL-NN (Fuzzy Logic-Neural Network)), ensemble methods (e.g., FL-RF (Fuzzy Logic-

Random Forest)), and evolutionary algorithms (EA) to improve both accuracy and robustness. Tree-Hyb models primarily 

use a tree-based model but are integrated with statistical methods like Naïve Bayes Tree (NBT) and evolutionary 

algorithms such as combined Random Forest and Genetic Algorithm (RF-GA). NN-Hyb models use a neural network as 

their core component but implement their training algorithms using fuzzy logic, ensemble methods, or evolutionary 

algorithms like DNN-AO (Deep Neural Network-Aquila Optimizer) and ELM-PSO (Extreme Learning Machine-Particle 

Swarm Optimization). WAve-Hyb models statistically integrate the results from various ML methods to produce a final 

outcome, often using weighted averages. For example, in the case of RF-SVM (Random Forest-Support Vector Machine), 

the results of RF and SVM are separately produced and then combined using weighted averages. Kernel-Hyb models use 

a kernel-based model like SVM at their core and are integrated with statistical methods such as combined AdaBoost and 

radial base function (RBF), ensemble methods like Bagging-RBF, and evolutionary algorithms such as support vector 

regression (SVR) optimized by bat algorithm (BA). 

 

NN-based models (employed 62 times) can be categorized into the following types based on different configurations and 

applicabilities. Shallow learning NNs (Shallow-NN) models like ANN are generally used for tasks like classification, 

regression, and pattern recognition. Grid-based neural networks (Grid-NN) like convolutional neural networks (CNN) 

are specialized for processing grid-structured data like images. Sequential neural networks (Sequential-NN), such as 

LSTM, a type of RNN, are capable of learning long-term dependencies and are useful for sequential data like time series 

or natural language processing. Deep neural networks (Deep-NN) have multiple layers between the input and output, 

enabling the learning of more complex data representations. 

 

Tree based models have been employed 36 times in the selected papers and range from basic to advanced models. Basic 

models (Basic-DT) are primarily used for classification tasks and include methods like decision trees (DT) and 

classification and regression tree (CART). Advanced models (Advanced-DT) incorporate specialized, rule-based methods 

such as Logistic Model Trees (LMT) and reduced error pruning trees (REPT). 

 

Kernel based models have been employed 31 times in the reviewed articles and are divided into three major categories: 

SVM-based models (Kern-SVM), Kernel-based regression models (Kern-Reg), and Kernel-based classification models 

(Kern-Class). SVM-based models, e.g. weakly labeled support vector machine (WELLSVM) and SVM-RBF, are used 

for tasks like classification and regression. They are particularly effective when the dataset is not fully labeled or when it 

is expensive to obtain such labels. 

 

Statistical models have also been employed frequently, appearing 74 times across different papers. These range from 

regression models used to predict a numerical value based on one or more variables (e.g., Linear Regression or LR), 

instance-based models like K-Nearest Neighbors (K-NN) that make predictions based on similarity to known examples, 

multi-criteria decision analysis (MCDA) such as FR that evaluates and compares alternatives based on multiple criteria 

to arrive at the most favorable option, and Bayesian methods such as NB that use Bayes' theorem to update probabilities 

based on new evidence. Some models do not fit neatly into any of these categories, for example, Generalized Linear 

Models (GLM) or Maximum Entropy models. 
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Configiration 

(No. of usage) 
Model type 

Frequency of 

utilize 
Example(s) 

Ensemble 

(107) 

Forest-Ens 38 RF, RoF 

Boosting-Ens 37 AdaBoost, Boosting GBM, BRT 

Others 22 EMca, EMmean, RS-GAM, RS-MARS  

Bagging-Ens 10 Bagging Ensembles 

Hybrid 

(102) 

FL-Hyb 34 FART, FL-NN, FL-RF, FL-EA, FL-NN-EA 

Tree-Hyb 21 NBT, RF-GA 

NN-Hyb 17 DNN-AO, ELM-PSO 

WAve-Hyb 17 RF-SVM 

Kernel-Hyb 13 AdaBoost-RBF, Bagging-RBF, SVR-BA  

Statistical 

(74) 

Regression 23 LR, MARS 

Instance-based 17 KNN 

MCDA 17 FR, AHP 

Others 11 Maximum Entropy 

Bayesian 6 NB 

NN-based 

(62) 

Shallow-NN 34 ANN 

Grid-NN 13 CNN 

Sequential-NN 11 LSTM/RNN 

Deep-NN 4 DNN 

Tree-based 

(36) 

Basic-DT 20 Classification Tree, J48 DT, CART 

Advanced-DT 16 LMT, REPT, FT, CDT 

Kernel-based 

(31) 

Kern-SVM 26 SVM, SVM-RBF, K-SVM, WELLSVM 

Kern-Reg 4 SVR 

Kern-Class 1 SVC 

Table 2:  various ML and statistical model types employed in the reviewed papers, each accompanied by examples 

(the new abbreviation are BRT: boosted regression tree; EMca: ensemble model committee averaging; EMmean: 

Ensemble Model to estimate the mean; RS-GAM: random subsampling-generalized additive model; RS-MARS: 

random subsampling-multivariate adaptive regression splines; MARS: multivariate adaptive regression splines; CDT: 

credal decision tree; K-SVM: Kernel support vector machine; SVC: support vector classification) 

8. SUMMARY AND CONCLUSIONS 

In the article, 100 papers focusing on flood modeling through machine learning methods are reviewed. In the reviewed 

papers, various criteria are thoroughly examined. These criteria encompass the selection of the study area, the parameters 

that contribute to the modeling process, as well as the type and configuration of the models used for flood modeling. 

 

In the selection of catchment areas in which flood modeling using machine learning is possible, it is crucial to choose 

areas that offer a wide range of values for influential parameters. For example, should an area with limited variability in 

factors like elevation or slope be chosen, the machine learning algorithm could incorrectly treat these parameters as 

constants. This would result in an physically unsound model that neglects the contributions of certain parameters, 

affecting its final robustness and reliability. Selecting expansive enough area ot only improves the model accuracy but 

also broadens its applicability to various future scenarios. Additionally, it is important for the chosen area to have a 

reliable dataset for model development. Incomplete or erroneous datasets can lead to inaccurate models. Finally, to ensure 

the models account for extreme events, it is advisable to select areas that have a history of severe flooding. This will make 

the models more applicable to future extreme events. 

 

An analysis of the input parameters for the ML revealed that the most relevant conditioning factors used in the develoment 

of ML models are slope and elevation representing topographical parameters, TWI and rainfall representing hydrological 

features, land use/cover and distance to the nearest river representing environmental parameters, and finally stream power 

index and plane curvature representing morphological parameters . 

 

The trend in using ML models for flood modeling has significantly increased recently, particularly focusing on ensemble 

and hybrid models. The reviewed papers featured a wide range of ML approaches, from neural network-based models 

like ANNs to kernel-based solutions like SVMs, as well as tree-based and ensemble methods like random forests. 

Statistical models also varied, covering regression-based, multi-criteria, Bayesian, and instance-based techniques such as 

logistic regression and K-nearest neighbor. This diversity in ML and statistical methods highlights the evolving 

complexity and capability in flood susceptibility prediction.  
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The discussion in this article will be further developed to encompass the types of ML implemented models, the 

development flowchart for ML models, methods for data collection and preprocessing (selection of train, validation and 

test datasets), and input parameters selection using statistical and ML methods. Furthere, the performance of these models 

to guide the selection of the most appropriate approaches, and ultimately focus on optimizing model hyperparameters for 

improved accuracy and efficiency, will also be assessed in the future. 
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