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Abstract—With the quick development of mobile Internet and 

the popularity of smartphones, smartphone-based transportation 

mode detection has become a hot topic, which is able to provide 

effective data support for urban planning and traffic 

management. Though the popular GPS based transportation 

mode detection method has achieved reasonable accuracy, this 

method consumes large power, thus limiting it to be used in 

smartphones. Here, we propose a novel transportation mode 

detection algorithm using the recurrent neural network. In order 

to identify transportation modes with low power consumption, 

this algorithm only uses four low-power-consumption sensors 

(namely accelerator, gyroscope, magnetometer, and barometer) 

which are embedded in the commodity smartphones. 

Furthermore, we exploited the good representative ability of 

Long Short-Term Memory (LSTM) and applied it to recognizing 

the transportation modes to achieve higher accuracy. To filter 

noises, a preprocessing is applied. After calculating features, we 

adopt the LSTM learning algorithm to train a model of 

transportation mode recognition and employ this model to 

predict transportation modes. Extensive experimental results 

indicate that our proposed approach outperforms the compared 

state-of-the-art transportation recognition methods with 96.9% 

accuracy to detect four transportation modes, namely buses, cars, 

subways, and trains.  

Keywords—deep learning; transportation mode detection; 

recurrent neural network 

I. INTRODUCTION 

In recent years, various mobile sensing applications based 
on sensor data has attracted much attention in ubiquitous 
computing research. As a special mobile sensing application, 
transportation mode detection based on smartphones can 
provide mobile users with various value-added services. As an 
example, using the knowledge of individuals’ mode of 
transport can improve traveling safety and enable many 

intelligent applications in the traffic, such as travel guidance 
[1], low-carbon travel promotion [2], targeted advertising, 
urban transportation planning, and health monitoring [3].  

In order to meet the ever-increasing demand for various 
applications based on transportation mode detection techniques, 
a number of research efforts have been undertaken using 
various sensors. Most of the research on transportation mode 
methods rely on Global Positioning System (GPS) [4]. Though 
these methods have achieved reasonable accuracies, they suffer 
from high power consumption and are unsuitable for the 
power-limited handheld smartphones to consistently detect 
transportation modes for a long time. Furthermore, these 
approaches may not work well when GPS signals are blocked 
[5], such as in the indoor, underground environments, or in 
tunnels.   

To reduce the power consumption for detecting different 
types of transportation modes, other studies [6][7][8] attempted 
to employ light-weighted sensors (such as accelerator, 
gyroscope, and magnetometer) to capture the features of 
various transportation patterns. 

Most of the current transportation mode detection systems 
employ traditional machine learning algorithms, including 
Support Vector Machine (SVM) [6], Hidden Markov Model 
(HMM) [7], Adaptive Boosting (AdaBoost) [8]. The accuracies 
using these machine learning algorithms depend on the 
discriminability of artificial feature extraction. Thus the 
professional knowledge affects the accuracy of transportation 
mode detection [9]. 

As a machine learning method independent of artificially 
extracting features, deep learning has succeeded in many 
complex nonlinear classification problems by automatically 
extracting high-level features [10], such as computer vision 
[11], natural language processing [12], and text processing [13]. 
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Most studies reported that the neural network is able to learn 
how to extract deep features from the large-scale data, and 
performs better than traditional machine learning algorithms 
[14]. However, few attempts of applying neural networks in the 
field of transportation mode detection. This kind of approach is 
still at primary stage and most of the current deep learning-
based approaches are limited to common Deep Neural Network 
(DNN), while the other networks are rarely exploited. 

In this paper, a transportation mode detection method 
without extra infrastructure is proposed, which is robust against 
device placement and environments. The main contributions of 
this paper are summarized as follows: 

Our algorithm is based on multi-source sensor data fusion. 
Except for the most commonly used sensor for transportation 
mode detection—accelerometer, we have also gathered data 
from the gyroscope, magnetometer [15], a barometric pressure 
sensor and base station information. This kind of sensors 
proves positive effects on extending the diversity of the data 
level and helping us to improve the detection result.  

The shallow feature vectors will be firstly calculated from 
the recorded sensor readings [16]. Raw measurements will be 
preprocessed through a mean filter. Particularly, the constant 
acceleration that results from the force of gravity should be 
erased through an algorithm proposed in [8]. Then we extract 
diversified features not only from the time domain, frequency 
domain, and statistics domain (which can capture information 
of high–frequency motion from vehicle’s engine and contact 
between its wheels and road) but also several new properties 
we design. To reduce the dimension of the input attributes for 
the classification model, we also carry out feature selection and 
determine the feature with higher identification through the 
mapping of the CDF curve. 

Under the idea that motorized transportation recordings 
during user’s traveling are similar with context information, we 
innovatively introduce LSTM (Long Short-Term Memory)[17] 
learning algorithm as our training model, which can solve 
artificial long time lag tasks and demonstrate better 
performance on sequential measurements. Through the data 
normalization, gradient-based optimization and evaluation, the 
final results have been determined, which shows that our 
approach can obtain a robust model and a high accuracy. 

II. RELATED WORK 

GPS or GSM-based transportation mode detection has 
shown some limitations including modest accuracy in the 
places where the signals are generally severely shielded during 
daily activities, or higher power consumed [18][19]. Other 
approaches attempt GIS supplements [20] but it’s prone to the 
noises brought by neighboring devices. In recent years, several 
studies suggest that the sensor-based approach is more 
appropriate and many related works have been developed. 
There is another approach that Hemminki [5] propose a 
hierarchical classifier (consisting of the kinematic motorized 
classifier, motion classifier, and stationary classifier) to 
identify five transportation modes relying only on 
accelerometer readings for minimizing the energy consumption 
of smartphones, which can achieve 85% accuracy typically. 

This strategy acquires better accuracy, but it takes too much 
time to calculate the optimal hand-crafted features. 

Numerous studies have confirmed that a deep learning 
mechanism suggests better feature representation capability. 
Wang et al. [9] leveraged both manual features and deep 
features obtained from GPS trajectory data. A DNN-based 
mechanism is adapted to detect transportation and acquire a 
mediocre accuracy of 74%. Fang et al. [21] proposed a deep 
learning framework to determine ten transportation attributes 
based on sequential sensing data obtained from an 
accelerometer, gyroscope, and magnetometer. This DNN-based 
issue achieves a better performance through offline training 
and online testing, which indicates the effectiveness and 
robustness of the model with approximately 95% accuracy 
compared with four well-known machine learning algorithms. 
We believe that it’s a convincing research but this work just 
adopt DNN-based deep learning technique, some other neural 
networks are worthy of further attempt as we concerned.  

The purpose of this paper is to leverage recent advances in 
crowd sensing and deep learning techniques for a pilot study 
on transportation mode detection. We decide to adopt LSTM 
learning into our neural network, which can learn to bridge 
minimal time lags in great large time steps and store vehicle 
travel information over extended time intervals. For the 
purpose of accelerating the convergence speed, the task of data 
normalization has been measured. During the training process, 
the proposed networks can efficiently model the nonlinear 
function between labeled attributes and sequential data by 
stacking several layers with optimal parameters, which can be 
obtained through gradient descent and backpropagation [22]. 
At last, our algorithm computes the most likely transportation 
mode according to the prediction of the fine-grained classifier. 

The approach we propose can meet the requirements of 
universality and stability since its higher accuracy and lower 
power consumption than existing representative methods. 

III. PROPOSED METHOD 

A. Framework Overview 

This section introduces the proposed approach in this study. 
Fig. 1 illustrates the flowchart of our mechanism. There are 
five main subtasks in our designed system, including data 
collection, data preprocessing and shallow feature selection as 
the data preparation stage, model training, and simulation tests 
as the classification stage. 

 

Fig. 1. The framework of the proposed detection system. 



The motivation behinds this work is to explore 
characteristics from multiple sensors and appropriate neural 
networks to design a robust transportation detection algorithm. 
After the data collection, we apply the data preprocessing with 
noise elimination and acceleration decomposition, next we 
calculate the shallow feature including both traditional 
eigenvalues and several new properties. Finally, we output the 
selected measurements which symbolizes the end of the data 
preparation stage. In the classification stage, 169 shallow 
features are fed into our LSTM model. Owing to the 
sequentially of the attributes and different construction of 
multiple hidden layers, our model can effectively characterize 
complex mapping functions between input feature vectors and 
output labels. When testing measurements are transformed into 
features and fed to the pre-trained models, the detection result 
can be demonstrated by the confusion matrix and other 
evaluation indicators. 

B. Data Collection and Preprocessing 

Since Android smartphones perform easy programmability 
of built-in sensors, data collection is conducted with an 
Android application designed under a sampling frequency of 
100Hz. The dimension of raw data is 11 because of 3-axis 
accelerometer, 3-axis gyroscope, 3-axis magnetometer, one 
dimension of barometer pressure and one dimension of base 
station signal strength. Meanwhile, we add a corresponding 
label (1, 2, 3 and 4) to each reading which represents four 
transportations. 

To enrich the data dimension of raw measurements from 
sensors, we adopt a series of data preprocessing methods like 
windowing technique and noise filtering to calibrate the sensor 
data. Specifically, we estimate the gravity component of the 
accelerometer, transform the recorded data from a 
smartphone’s coordinate system to a vehicle’s coordinate 
system as Fig. 2 depicts, decompose the accelerometer 
measurements into horizontal and vertical representations 
without the impact of gravity. In order to erase the dirty data 
and smooth the Gaussian noise, we discard the zero-value data 
from several phones which miss fractional related sensors, split 
the recorded reading into a number of smaller data segments 
and integrate 256 contiguous samples into a frame to extract 
diversified features in the next step, then we use a sliding 
window [8] with 50% overlap to smooth data continually. 
Since the monitoring period of each frame is 2.56 s under a 
sampling rate of 100Hz, 50% overlap implies we reuse the 
previous frame with a period of 1.28s to reduce the detection 
delay and prevent noise interference. 

 

Fig. 2. The difference between a smartphone’s coordinate system and a 

vehicle’s coordinate system. 

C. Feature Selection 

In this task, we mainly focus on the behavior feature 
mining of transportation movement patterns without mobile 
posture influence. The feature calculation and selection process 
are undertaken on a frame-by-frame basis. The frame-based 
features are generated by a moving average strategy to remove 
the jitter and other noise from the initial measurements. 

Firstly, we calculate a multitude of attributes of different 
levels from sensor data and integrate them into a feature 
domain, then the feature is filtered [23] by mapping the 
cumulative distribution function (CDF) which can extract 
effective feature and abandon useless feature that may lead to 
misleading detection. Through the analysis of several 
comparative experiments, we choose 169 features as the input 
of our neural network. All sets of features are summarized in 
TABLE I.  which are used as independent samples for training 
or testing. 

TABLE I.  FEATURE LIST 

Sensors Domain Features 

Horizontal 

acceleration 

Statistical 

Mean, STD, variance, Median, Min, 

Max, Range, Interquartile range, 

Kurtosis, Skewness, RMS 

Time 
Integral, Double integral, Auto 

Correlation, Mean-Crossing Rate 

Frequency 
FFT DC, 1, 2, 3, 4, 5, 6 HZ, Spectral 
Energy, Spectral Entropy, Spectrum 

peak position, Wavelet Entropy 

Vertical 

acceleration 

 

Gyroscope 

 
Magnetometer 

Statistical 

Mean, STD, variance, Median, Min, 

Max, Range, Interquartile range, 

Kurtosis, Skewness, RMS 

Time 
Integral, Double integral, Auto 

Correlation, Mean-Crossing Rate 

Frequency FFT DC, 1, 2, 3, 4, 5, 6 HZ 

Turn Turn frequency 

Stationary Stationary duration, frequency 

Barometric 
pressure 

Statistical 
Mean, STD, variance, Median, Min, 

Max, Range, Interquartile range 

Base station Innovation Signal strength 

 

From the table we can see that: in addition to the popular 
features based on the domain including statistical, time and 
frequency, we also propose several new measurements. 

In order to distinguish motorized transportations in the 
situation that the vehicle keeps stationary when we travel, two 
effective measurements have been extracted as stationary 
features, which is called stationary duration and frequency. 
Instead of adopting previous stationary identification with the 
speed information acquired by GPS, we calculate this two 
properties through a novel algorithm we design, which is 
realized through the judgment whether the variance value of 
vertical acceleration on each frame is less than the set threshold 
or not. Fig. 3 demonstrate that there is a threshold of 0.1 under 
a great number of experiments we conduct. When the value 
less than this threshold, the corresponding status and the reality 
of the marked stationary period is basically consistent. 



 

Fig. 3. The Variance of Vertical Acceleration from Different Vehicles. 

The turn frequency of different transportation modes is also 
distinguishable since the degree of distinction is relatively 
obvious. This paper proposes a turn detection algorithm. 
Therefore, we can record the amount of turn behavior and 
capture the different turn frequency of those vehicles based on 
a fixed time step and regard this frequency as a feature. In this 
algorithm we calculate the turning angle by using 
accelerometer and gyroscope readings with the following 
formula: 

  
2 2 2

x y z

gyr gravity
angle T

gravity gravity gravity


 

 

        (1) 

We adopt the sum of turning angle attribute in a sliding 
window of 20 frames and compare it with a fixed threshold. If 
the calculated result is beyond the threshold, the corresponding 
frame is considered to be a turning status, and we conclude the 
current vehicle has resulted in a turn behavior. Meanwhile, we 
consider that the user’s behavior, such as rotating the phone, 
will affect the outcome of our turn detection seriously. This 
issue can be solved through another threshold to filter user’s 
interference behavior. 

Moreover, we also introduce base station information since 
it can transmit a message to the mobile phone terminal in a 
range of radio coverage area. Since the signal strength can be 
obtained through the Android smartphone, and the switching 
frequency of base station strength is identifiable among 
different transportations (Especially trains), we take this 
characteristic into account by calculating the difference 
between the maximum and minimum signal strength of the 
base station between adjacent frames. 

After all this process for our feature data, we still notice 
that the imbalance of data and consider that it may cause the 
deviation of classification. So the final step in the data 
preparation stage is to ensure the balance of our dataset for 
each vehicle by setting a threshold which is 80% of the 
smallest sample number for the four categories. 

D. Normalization 

In order to generalize the size and distribution of the feature 
measurements, speed up the convergence of the model through 
a gradient descent algorithm, we choose Z-score Normalization 
to standardize the selected feature vectors. 

Before fed these features into the recurrent neural network, 
this issue raises an important point about the influence of 
serialized data processing. Since the LSTM layer needs a fixed 
time step which will be spanned through a sequence learning 
algorithm seeking to model the following measurement after 
this time block, we regard five samples as a time step and 
reshape the input data into a proper form. Our work with this 
novel sample construction implies a long-range sequential 
dependency behind the series of vehicle measurements. 

E. Long Short-Term Memory Architecture 

1) Network Structure 

We take LSTMs into account because they are responsible 
for many state-of-the-art sequence modeling results. Fig. 4 
illustrates our LSTM structure. Each input feature sample with 
a shape of 5×169 represents a series of sequential 
transportation attributes. We fed them into the model and stack 
an LSTM layer as our first layer, which consists of a set of 
memory blocks. Then we add a fully connected layer with 32 
neurons to enhance the recognition accuracy of the model. The 
softmax [24] classifier is used as the top layer of the model to 
identify four kinds of transportation modes. Besides, there is a 
dropout layer stock between LSTM layer and dense layer so as 
to prevent overfitting. 

 

Fig. 4. The Network Structure. 

2) Model Training and Optimization 

To build our LSTM network with a set of training data and 
its corresponding output labels, we formulate a cross entropy 
cost function [25] as:  

         1
[ ln (1 ) ln(1 )]

x

C y a y a
n

                  (2) 

where y denotes the true value, and a denotes the predictive 
output of the neuron. Cross-entropy is commonly used in 
multi-class classification to find the error in prediction.  

Unlike standard RNNs, there are three multiplicative units 
including the input gate, output gate and forget gates in each 
memory block, which prompt LSTM memory cells to store and 



access the vehicle ’s travel information over long periods of 
time. Through this gating mechanism and self-connected 
memory cells, the network will decide how much of the input 
state should be “remembered” or “forgotten”, which allows 
past information of motorized transportation modality to be 
reinjected at a later time [17]. 

In this study, we adopt the backpropagation with Adam 

[26] optimization algorithm to fine tune the parameters. Adam 

(Adaptive Moment Estimation) computes individual adaptive 

learning rates for different parameters from estimates of first 

and second moments of the gradients. In this way, the training 

process will not be stuck in a saddle, which can more 

effectively fine tune the model parameters and need little 

memory requirements. Besides, we adopt the dropout [27] 

mask (which randomly picks visible and hidden neurons to 

drop from the network) at each time step inside the LSTM 

layer. It’s possible to obtain more characteristic expression 

and each neuron will not depend entirely on other neurons. 

3) Complexity 

The LSTM learning algorithm is local in time and space 
[28]. we assume that each memory blocks have the same size 
and gates operation do not possess outgoing connections, the 
LSTM’s computational complexity on each time step and 
weight is O(1). While storage complexity per weight is still 
O(1) because it does not rely on the length of our input vector. 

F. Algorithm Flow 

Consider that our dataset is based on sequential data like 
language or speech, we choose the LSTM learning algorithm to 
model our vehicle measurements. The overall algorithm flow 
we implement according to our proposed approach is 
demonstrated in Fig. 5. 

Alg. 1  Transportation mode Detection with LSTM Learning  
1：    Start sensor data sampling, frame size = m 

2：    Preprocessing with a sliding window 

3：    Repeat： 

4：        calculate features for each frame with 50% overlap 

5：        store the corresponding feature vector 

6：    sf ← form shallow feature vectors 

7：    Normalize sf measurements 

8：    Input sf, reshape_size = time_step × n(#feature) 

9：    Repeat： 

10：        Forward Propagation: 

11：        lstm ← LSTM(sf) 

12：        Dropout 

13：        fc ← Fully_connected(lstm, sigmoid) 

14：        class label ← softmax(fc) 

15：        Backward Propagation 

16：  Until loss convergences 

Fig. 5. Algorithm Flow of the proposed system. 

Firstly, we trigger our whole algorithm with data sampling. 
Through preprocessing with a sliding window we acquire 169 
feature measurements including several new attributes like 
stationary duration, turn frequency and signal strength of base 
station. These vectors have been normalized and reshaped 
before fed into the network so as to adjust the proper input 
form of the LSTM layer. At the starting point of LSTM 

learning, we employ Xavier to initialize trainable parameters. 
Next step is to gradually adjust these weights based on a 
training loop. In detail, we run our network on a batch with 128 
training samples and obtain predictions through forward 
propagation, then compute the loss of the network on this batch. 
Finally, we update all weights of this network through back 
propagation in an exact way (Adam) to slightly reduce the loss. 
We eventually end up with the network until we find the proper 
parameters and the loss convergences. 

IV. EXPERIMENT RESULTS AND ANALYSIS 

A. Dataset and Experimental Equipment 

The datasets were collected from an Android-based 
application we have developed, then the feature selection is 
completed through a Matlab script. Finally, the model training 
tasks and simulation tests are both done offline on PC based on 
a Python project. 

To obtain a sufficiently large, diverse and balanced dataset 
to train and test our model, we start our collection since 2016 
over two years, involving 58 volunteers and containing more 
than 500 hours’ data with four transportation modes from daily 
collection through different Android smartphones (Huawei 
mate8, Samsung S6, and MI Note2, etc.), which are both 
equipped with needed sensors including an accelerometer, 
gyroscope, magnetometer, a barometric pressure sensor and a 
SIM card to collect base station information. We recommend 
the volunteers to freely place the smartphones in multiple ways, 
such as putting it into a bag, trouser pockets, on the seat, or just 
being held in hand, which is aiming to evaluate whether our 
algorithm is sensitive to the placement of the sensor. The 
collection scene consists of several urban and suburban areas in 
Beijing, Tianjin, Shanghai, Shenzhen, Hangzhou and other 
cities, covering a variety of road tracks and different traffic 
condition so that we can ensure a strong scene universality of 
the training classifier we build and avoid the problem of poor 
generalizability caused by data sources from similar traffic 
tracks. 

There are totally 230,192 samples and the specific number 
of each transportation modes are illustrated in TABLE II. The 
use of massive data in this work makes the result more general 
and convincing. We divide the dataset into a training set, a 
validation set and a testing set with a ratio of 6:2:2. The 
validation set is used to evaluate the performance of the model 
during the training process, not to participate in parameter 
adjustments and weight updating. For the purpose of avoiding 
the contingency of experimental results, we carry out totally 20 
experimental runs on the samples for training, validating and 
testing with randomly selected, afterward we evaluate the 
average accuracy of the pre-trained model. 

TABLE II.  DATASET DISTRIBUTION 

Label Sample Number 

Bus 53778 

Car 56769 

Subway 61603 
Train 58042 



Moreover, we prepare separate new datasets and we will 
use both internal and external data to assess the generalization 
capability of our framework.  

B. Model Training Process 

The experiments are performed using Keras [29] which is a 
lightweight deep learning framework built on TensorFlow and 
its highly modularized neural network programming with 
python provides considerable convenience. All the training and 
testing tasks like loading data, initialization, backpropagation 
and updating parameters are under CPU mode. Our 
experiments are completed on a PC with Python2.7, Ubuntu 
16.04, Intel i5-4440, 8GB RAM. 

The model training task is usually done with empirical 
approaches. We eventually set the batch size of 128 and 10 
epochs during the training process. 

In our model, we define the network structure by 
combining one LSTM layer with one fully connected layer and 
constructing the optimized network structure in terms of the 
performance under various numbers of neurons and results of 
applying different sets of parameters. Faced with a multi-class 
classification task in deep learning, we evaluate the Cross-
Entropy Error (CEE) of the network with different parameters. 
Through the results in TABLE III. we stack an LSTM layer 
with 50 neurons and a fully connected layer with 32 neurons, a 
softmax function (which conducts a multinomial logistic 
regression that is paired with cross entropy) is placed on the 
top of the hidden layer to perform classification with four 
transportation modes. 

TABLE III.  CEE OF DIFFERENT  LSTM STRUCTURE 

Input LSTM Dense Softmax CEE 

169 64 64 4 0.0612 

169 50 64 4 0.0428 

169 50 32 4 0.0367 

169 50 None 4 0.0595 

169 32 None 4 0.0912 

169 32 32 4 0.0430 

 

In addition, we set a dropout layer between the LSTM layer 
and Dense. The tanh function is adopted as the activation 
function in LSTM, while in the fully connected layer is 
sigmoid. We also utilize 10-fold cross-validation to tune the 
model and lead to a more reliable result. Fig. 6 and Fig. 7 
manifest the accuracy and error rate in the training process. We 
can observe that the model becomes generally converged after 
10 epochs. Although there is a slight fluctuation in the 
validation set, the overall accuracy is more than 98% during 
the training task. 

 

Fig. 6. Train and Validation accuracy of the model. 

 

Fig. 7. Train and Validation loss of the model. 

C. Prediction Evaluation 

We measured the performance of our model with 
classification accuracy and confusion matrix. Furthermore, the 
F1 score [30] which represent a harmonic mean of precision 
and recall has also been estimated. TABLE IV. illustrates our 
result on this different evaluation indicators for the pre-trained 
LSTM model. 

TABLE IV.  MODEL EVALUATION USING PRECISION, RECALL, AND F1-
SCORE 

 precision recall F1-score 

bus 0.93 0.99 0.96 

car 0.97 0.98 0.97 

train 0.99 0.97 0.98 

subway 0.96 0.94 0.95 

 



Fig. 8 demonstrate that our proposed model using LSTM 
outperforms the other two machine learning model (AdaBoost 
and SVM) in general. 

 

Fig. 8. Model Evaluation by F1 Score using LSTM, AdaBoost, and SVM. 

To strengthen the classification ability of our proposed 
algorithm, we do not just shuffle all samples together because 
this kind of evaluation using single dataset deviates from the 
real-world situation and it will not reveal the generalizability 
and robustness of the model. In another way, we ask the system 
providing additional sensor data for the new sample, which is 
closer to real-world life and can help us identify the stability of 
our detector while facing with the new measurements the 
model has never seen. 

Though the accuracy of our presented transportation mode 
detection method decreases by a small percentage, it still 
achieved nearly 92.3% accuracy on the test dataset, as TABLE 
V. depicts. From the confusion matrix, we can also observe 
that cars and buses are almost accurately differentiated, trains 
and subways are prone to be confused because of the high 
similarity of these modes. Moreover, there are a number of bus 
samples have been misjudged as subway, we consider that a 
portion of new bus data are collected from electric buses 
during recent collection and its motivation mode are almost as 
smooth as the subway. 

TABLE V.  CONFUSION MATRIX OF PREDICTIONS 

Predicted 

 

Actual 

Bus Car Train Subway 

Bus 12051 160 881 6744 

Car 16 32299 0 10 

Train 58 7 39327 297 

Subway 103 29 212 18376 

 

This issue also makes an effort to GRU (Gated Recurrent 
Unit) model [31] which is another variant of the recurrent 
neural network. We compare AUC (Area Under the Curve) 
between LSTM and GRU by mapping ROC (Receiver 

Operating Characteristic) curve [32] generated to measure the 
sensitivity versus specificity. Fig. 9 shows the average ROC 
curve and the corresponding AUC value can both achieve more 
than 90% of these two RNN models, which reflects favorable 
generalization performance. We can also see that GRU get a 
better outcome and we will keep GRU-based experiment in our 
future work. 

 

Fig. 9. Average ROC curve using LSTM and GRU. 

D. Computation Complexity 

In our experiment, the model training and simulation 
testing are undertaken offline on PC. On the basis of the same 
dataset, the computation cost of training among LSTM, 
AdaBoost, and SVM are shown in TABLE VI.  

TABLE VI.  COMPUTATION COST OF THE DIFFERENT MODEL 

Model Training Time(s) Testing Time(s) 

LSTM 106 5 
AdaBoost 1124 57 

SVM 118 5 

 

We compare the execution time of this three algorithms so 
as to address practical issues. It can be observed that LSTM 
performs a better training speed, meanwhile, it also shows a 
higher detection accuracy. 

V. CONCLUSION 

This paper proposes a deep learning method for detecting 
transportation mode from smartphone sensor data and proves 
reliable and robust detection with fine-grained motorized 
transportation while mobile users are traveling. The extensive 
experimental results confirm the effectiveness of our sensor-
based approach, which achieves 96.9% classification accuracy 
and outperforms traditional machine learning methods. In 
addition to average accuracy, this paper also evaluates the 
computation cost of the LSTM model to address practical 
measurements. 



Our studies are able to meet the requirement of low-power 
consumption and high-accuracy, which will be used with great 
success in the challenge for urban planning and traffic 
management purpose.  

There are still several issues for the future work. On one 
hand, we will focus on the transportation that is most often 
misclassified and enrich more transportation modes to further 
improve the diversification of our detection. On the other hand, 
we will look for other public datasets instead of our own 
collected data, because we consider that public datasets could 
be used to compare the results with other approaches much 
more extensive. 
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