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Abstract—Mobile Edge Computing (MEC) is an emerging
computing paradigm that offloads cloud center functions to the
edge server. In a MEC environment, edge servers’ limited storage
and processing capacity require selective service caching, where
only a part of required content can be placed directly upon
the destination edge server and the remaining at remote cloud
end. A primary challenge in this context is the creation of an
effective and responsive service caching algorithm that improves
the Quality of Service (QoS) perceived by users while reducing
operational costs. This study applies an M/G/1 queuing model as
the foundational framework and transforms the service caching
problem as an adversarial semi-bandit problem. We propose
a delay-aware Genetic-Follow-the-Regularized-Leader (GFRL)
algorithm, which is capable of guiding decentralized caching
decisions. Experimental results indicate that GFRL outperforms
traditional methods across various performance metrics.

Index Terms—Mobile edge computing, service caching, adver-
sarial semi-bandits, queuing theory, genetic algorithm

I. INTRODUCTION

As an emerging computational paradigm, MEC is evolving
rapidly to meet the challenges posed by the swift advancement
of the Internet of Things (IoT), the extensive deployment of
5G communications, and the burgeoning demand for real-
time, low-latency processing [1]. The core idea of MEC is
to bring computational power to the requestor side, enabling
proximity-based provisioning of computation resources in the
context of big data applications. Compared to traditional cloud
computing, where long delay and low system responsiveness
can often be experienced by resource requestors, MEC shifts
task processing from the centralized cloud to the edge, such
as IoT devices, end-user devices, and edge servers. Such
distribution enhances responsiveness, thereby effectively ex-
ploiting limited bandwidth provided and guaranteeing low
latency [2]. Moreover, 5G base stations are densely deployed
[3] with projections of approximately 40-50 stations per square
kilometer. Such density offers an ideal infrastructure for the
integration and deployment of edge servers.

Fetching the content directly from its producer through tra-
ditional connections can usually bring high acquisition delays
and error likelihood. In the MEC context, the requested content
can be partly placed in the end consumers’ proximity for
enhanced quality of experience (QoE) to reduce the fetching
latency and favor its reuse. Nevertheless, due to capacity
constraints, edge-end terminals and servers are often too weak
to accommodate all required content. Hence, effective and
collaborative cloud-edge caching mechanisms are in high need
to manage content placement for multiple mobile users. More-
over, the growing complexity of traffic patterns associated
with rapidly time-varying communication channels and the
high mobility of the users have made allocating caching
resources in a mobile environment extremely challenging due
to intermittent communications [4].

In this article, we investigate the service caching challenge
in MEC and introduce a delay-aware adversarial semi-bandits
approach for dynamically generating service caching sched-
ules. The main contributions are outlined as follows:

1) To minimize user request latency under long-term energy
constraints, we model the service caching problem in
MEC as an M/G/1 queuing model. The model captures
long-term energy consumption and provides a funda-
mental framework for estimating the effectiveness and
performance of caching strategies.

2) We develop and implement a decentralized decision-
making mechanism, termed GFRL, which utilizes
Follow-the-Regularized-Leader(FTRL) and genetic
strategies for updates service caching schedules
dynamically.

3) We derive the regret upper bound of GFRL.
4) We conduct extensive simulations to validate our pro-

posed method.



II. RELATED WORK

Task offloading is a pivotal topic in MEC research [5] [6]
and gains considerable research attention from both academy
and industry. There are three types of service caching tech-
niques. The first and most common one is proactive service
caching. In proactive service caching, the contents are cached
before the request of users. The user’s requested contents are
predicted using the previous request history, mobility patterns,
and learning user preferences. The second is reactive service
caching, which caches the content after a user sends a request.
There is no such prediction involved in reactive caching. In co-
operative service caching, different caching entities cooperate
to fulfill the user’s demands of service [7].

Recently, machine learning-based methods demonstrated
high potency in the area of service caching. Chen et al. [8]
devised a strategy network using an encoder-decoder model
to address computational service placement, employing an on-
policy reinforcement method for training. Ke et al. [9] pro-
posed a decentralized model-free deep reinforcement learning-
based service caching optimization strategy (DDSCOP) to
minimize long-term weighted average costs. Huang et al.
[10] introduced the Independent Learners Service Caching
Scheme (ILSCS) utilizing stateless Q-learning for optimal
service caching scheme discovery. Wei et al. [11] developed
a geometric model to predict user mobility and used a Back
Propagation (BP) neural network for online prediction of
popular services. Hao et al. [12] proposed an enhanced deep
Q-network-based service placement algorithm for optimal
resource allocation through convex optimization. Moreover,
the potential of multi-armed bandits algorithms has been
exploited. Ou et al. [13] described dynamic service placement
with limited system information as a contextual multi-armed
bandits learning problem, utilizing an online learning algo-
rithm based on Thompson sampling. Han et al. [14] combined
generalized global bandit with standard multi-armed bandit to
address service area overlap issues. Su et al. [15] converted
the multi-base station caching optimization problem into a
resource-constrained multi-agent multi-armed bandit problem,
solving it with online learning and cache rounding algorithms.
Malazi et al. [16] proposed the Distributed Combinatorial
Contextual Multi-Armed Bandit (DCC-MAB) method, using
UCB as the core algorithm.

Considerable attention is paid on collaborative caching
and offloading. Xu et al. [17] pioneered jointly optimizing
these two aspects, developing an online algorithm based on
Lyapunov optimization and Gibbs sampling. Yao et al. [18]
introduced a graph attention-based multi-agent reinforcement
learning (GatMARL) algorithm for optimal strategy learning
in edge networks. Wang et al. [19] formulated the joint
optimization problem as a Markov decision process, proposing
a scheme based on the Double Deep Q-Network (DDQN)
algorithm. Chen et al. [20] tackled the problem as a mixed-
integer nonlinear programming issue, applying a Deep De-
terministic Policy Gradient (DDPG) algorithm. Furthermore,
to address service demand fluctuations and user distribution

changes, Wang et al. [21] proposed a dynamic server switch-
ing algorithm. It targets at reducing the energy cost of network
domains.

III. SYSTEM MODELS AND PROBLEM FORMULATION

A. System model

Fig. 1: MEC system model.

As shown in Figure 1, we consider that a MEC environment
comprises multiple mobile user devices, multiple edge servers,
and a cloud center. The environment comprises n groups of
base station and a set of edge servers B = {es1, es2, . . . , esn}.
A task offloading algorithm assigns tasks from users’ devices
to computing nodes. The service caching algorithm updates
the caching schemes of edge servers according to their storage
capacity limitations. We use ci to denote the storage capacity
of the edge server esi. In environments with high task loads,
edge servers are presumed to operate at maximum computing
capacity, where fi indicates the maximum computing power
of edge server esi.

The set of services is S = {s1, s2, s3, . . . , sl}, where the j-
th service in this set is sj and |S| = l is the number of services.
Due to the capacity constraint, edge servers offer only a part
of services, whereas cloud center provides all l services. For
sj , its corresponding task workload (measured in CPU cycles)
is assumed to follow an exponential distribution with a mean
of gj . dj represents the storage space required by sj . Tasks
generated by mobile devices can be processed either locally
or transmitted to servers (edge or cloud) for processing. All
key symbols used in this paper are summarized in Table I.

B. Task Offloading and Service Caching Model

Task Offloading Model: In the coverage area of a base
station, users connect to it via a wireless network. We use pi(t)
to represent the total task volume generated by users connected
to the base station esi at time t. Particularly, pi,j(t) denotes the
task volume with service sj in pi(t). User-generated tasks can
either be processed locally or offloaded to servers due to the
limited processing capacity of user devices. The task volumes
allocated to user devices, edge servers, and cloud servers at
time t are denoted by pui(t), pei(t), and pci(t), respectively.
This allocation satisfies the equation:



TABLE I: Notion table

Variable Description
n The number of edge servers
B A set of edge servers
esi The i-th edge server
ci The capacity of caching services of esi
fi The maximum power of esi
l The number of services
S A set of services

gj The average workload of service sj

dj The data volume of service sj
pi(t) The number of tasks of users connected to esi at time t
pci(t) The number of tasks offloaded to cloud in pi(t)
pei(t) The number of tasks offloaded to esi in pi(t)
pui(t) The number of tasks offloaded to client in pi(t)
Fi The task offloading decision of esi

ai,j(t)
A binary variable indicates whether service sj is
cached on esi at time t

Ai(t) The caching decision for esi at time t

bi(t)
The proportion of tasks that can be processed
on esi at time t

ei The unit energy consumption of esi for processing tasks
oi(t) The feedback of edge server esi at time t
vi(t) The baseline energy consumption of esi at time t
wi The upper limit of long-term energy of esi

qc(t)
The average delay of cloud center to process each
unit task at time t

qe(t)
The average transmission delay of tasks directed to the edge
server at time t

qu(t) The average delay of user-side device at time t
xi(t) The average energy consumption on esi at time t
yi(t) The average delay of a single task on esi at time t
zi(t) The average response time of a single task on esi at time t

pui(t) + pei(t) + pci(t) = pi(t) (1)

Tasks that exceed the processing capabilities of edge
servers are transferred to the cloud. We define Fi =
{(pui(1), pei(1), pci(1)), (pui(2), pei(2), pci(2)), ...} to rep-
resent all task offloading decisions of esi.

Service Caching Model: Edge servers equip caching capa-
bilities, allowing user-generated tasks to be executed on the
edge server. However, due to storage constraints, edge servers
can only cache a limited selection of services, thus restricting
their ability to process all task types. Consequently, each
edge server must make and update judicious caching decisions
regularly. The status of service sj being cached on esi at time
t is denoted by ai,j(t), where ai,j(t) = 1 signifies that the
service is cached, and otherwise, it is not. The service caching
decision of esi can be represented as the vector Ai(t) =

{ai,1(t), ai,2(t), ..., ai,l(t)}. We use bi(t) =
∑l

j=1 ai,j(t)pei,j(t)∑l
j=1 pei,j(t)

to represent the ratio of tasks at time t that can be processed
on the edge server, with remaining tasks offloaded to the
cloud center. We posit that the caching system operates on
containerization technologies, like Docker. Consequently, the
caching decisions comply with

∑l
j=1 ai,j(t)dj ≤ ci.

C. Adversarial Semi-bandit Problem Setting
The service caching problem can be conceptualized as an

adversarial semi-bandit problem. In the adversarial environ-
ment, the edge server acts as the learner, and each of service
corresponds to a fixed arm. We define composite actions as
combinations of different arms and establish a predetermined
set of these actions for the learner, denoted as D ⊂ {0, 1}l.
At time t, the learner esi selects an action Ai(t) ∈ D, and
the environment generates a loss vector ℓi(t) ∈ [−1, 1]l. In
a semi-bandit environment, the learner only observes the loss
associated with each arm in the chosen subset. Specifically,
at time t, the incurred loss is < Ai(t), ℓi(t) >, with the
learner receiving feedback oi(t) = Ai(t)◦ℓi(t). Given resource
limitations, edge servers are restricted to selecting an action
set of a predetermined size, dependent on a specific parameter.

In the adversarial bandits environment, we hypothesize the
presence of an adversary who monitors the player’s choices.
This adversary’s actions are unpredictable and potentially hos-
tile, capable of imposing arbitrary losses, possibly influenced
by the learner’s previous actions and their internal randomness.
In service caching, this translates to environmental and user
behavior uncertainties, such as variations in user request pat-
terns, network environment fluctuations, or malicious attacks.
In other words, the l arms lack a stable reward distribution.
This unpredictability means the learner cannot solely depend
on historical rewards to forecast future rewards.

The pseudo-regret is the gap between the learner‘s selection
and the optimal solution:

Regreti(t
′) := E

 t′∑
t=1

⟨Ai(t)− a∗, ℓi(t)⟩

 (2)

where a∗ = argmina∈D E
[∑t′

t=1⟨a, ℓi(t)⟩
]

represents the
optimal combinatorial action, and the expectation is based on
the stochastic behaviors of both the learner’s actions and the
environmental responses.

D. Energy Cost and Task Response Delay
In an environment where the task load and server computing

capabilities are unchangeable, we aim to minimize energy con-
sumption and task response time by optimizing task offloading
and service caching algorithms.

Energy Cost: Energy consumption represents a significant
cost for operators. Edge servers incur a baseline energy con-
sumption, called standby energy, even without computational
tasks, denoted as vi(t) for esi. The energy required during
computational tasks depends on the task load and per-unit
energy consumption. As noted earlier, edge servers function
at maximum power while processing tasks. Consequently, the
total energy consumption for esi can be articulated as follows:

xi(t) = vi(t) + ei

l∑
j=1

gjbi(t)pei,j(t) (3)

where ei represents the unit energy consumption of
esi while operating at its maximum power fi, and



∑l
j=1 gjbi(t)pei,j(t) the cumulative number of CPU cycles

needed for esi to process the tasks.
Task Response Delay: We use qu(t) to denote the average

delay of per unit task processed on the user-side device at
time t. Since the task does not need to be transmitted, qu(t) is
primarily determined by the computation time. qc(t) represents
the average delay required by the cloud center to process each
unit task, including task transmission and computation time.
The average transmission delay for tasks directed to the edge
server, denoted by qe(t), is computable using the Shannon
formula. For service time calculation post-task arrival at the
edge server, we adopt the M/G/1 queue model. Let r denote
the random variable for service time, with its expected value
given by:

E[r] =
l∑

j=1

gjpei,j(t)/fipei(t) (4)

where pei(t) =
∑l

j=1 pei,j(t), pei,j(t)/pei(t) represents
the proportion of tasks of service sj in the total task volume,
and E[r2] =

∑l
j=1 g

2
j pei,j(t)/f

2
i pei(t). According to the

Pollaczek-Khinin formula [22], the expected residence time
of a single task is expressed as follows:

yi(t) = E[r] +
pei(t)bi(t)E[r2]

2− 2pei(t)bi(t)E[r]

= E[r] +
∑l

j=1 ai,j(t)pei,j(t)E[r2]
2− 2pei(t)bi(t)E[r]

(5)

The task response delay on the edge server comprises three
components: computation delay, transmission delay, and ydi-
tional delay due to a cache miss. The total delay is expressed
as:

zi(t) = pei(t)bi(t)yi(t) + pei(t)qe(t) + pei(t)(1− bi(t))qc(t)
(6)

E. Problem Formulation

In the MEC environment, network operators aim to mini-
mize user request latency while maintaining the energy con-
sumption of edge servers at an acceptable level. The objective
can be formulated as follows:

(P1) min lim
T→∞

1

T

T∑
t=1

n∑
i=1

[zi(t) + pui(t)qu(t)

+pci(t)qc(t)] (7)

s.t. C1. lim
T→∞

1

T

T∑
t=1

n∑
i=1

xi(t) ≤ wi

C2. xi(t) ≤ xmax
i ∀t,∀i

C3. zi(t) ≤ zmax
i ∀t, ∀i

C4.
l∑

j=1

ai,j(t)dj ≤ ci ∀t,∀i

C5. E[⟨At − a∗, ℓt⟩] < Regmax
t ∀t

C1 is the long-term energy constraint of edge servers, with
wi as the upper limit of long-term energy of esi. C2 and C3
impose constraints on the energy and task request delay for
each time slot, respectively, where xmax

i and zmax
i are the

upper limits for energy and request delay. C4 represents the
storage capacity limitation of edge servers. C5 reflects that the
regret at any moment in the adversarial environment should
not exceed Regmax

t .
The primary difficulty in deriving the optimal solution for

this problem stems from the unpredictability of future data.
To determine the optimal solution P1, it is necessary yet
challenging to forecast the task demand distribution for all
future time points. In fact, the P1 problem resembles the
Capacitated Facility Location Problem (CFLP), which is a
NP-hard problem. Therefore, we need an online method to
leverage available information for real-time decision-making
regarding task offloading and service caching.

IV. THE PROPOSED METHOD

A. GFRL Algorithm

To guarantee the practicality of our algorithm, we discretize
time into intervals corresponding to the scale of task of-
floading and cache updating. At the start of each interval,
Algorithm 1 allocates tasks to the user end, edge server, or
cloud server and calculates the task response delay using
the M/G/1 model, which forms the basis for ℓ(t) (Line
3). Cache updates occur at predetermined intervals based on
the parameter tin. When a caching update is needed, the
necessity of revising omax and Amaxis assessed (Lines 5-
8), followed by the computation of the regularized leader
a(t) = argmin

a∈Conv(D)

⟨a, L̂(t− 1)⟩+ ϵ−1(t)E(a), where Conv(D)

is the convex hull of D, L̂(t− 1) =
∑t−1

s=1 ℓ̂s the cumulative
estimated loss, ϵ(t) a learning rate, E(a) a regularizer that
maps elements from Conv(D) to R∪{+∞} (Line 10). Tsallis
and Shannon entropies are employed in constructing E as
follows: [23]:

E(a) =

l∑
i=1

−
√
ai + γ(1− ai) log(1− ai) (8)

Then the algorithm samples A(t) from Y (a(t)) which is a
distribution over D satisfying EA∼Y (a)[A] = a. An efficient
sampling rule Y is always achievable in our setting(refer
to Section IV-C for an example). The algorithm employs a



modified genetic algorithm to crossbreed A(t) and Amax for
enhancing performance (Line 12). Finally, the MEC server
caches the services in A(t) and communicates the caching
strategy to neighboring servers(Line 13). Task allocating in
the subsequent time interval is based on the updated caching
strategy.

Additionally, irrespective of caching strategy changes, L̂(t)
is updated in each interval (Lines 18-20) by: 1) Calculating
the Hadamard product of A(t) and ℓ(t) to obtain o(t), 2)
constructing unbiased loss-estimators ℓ̂(t) where ℓ̂i(t) =
(oi(t)+1)I(i,t)

ai(t)
−1 for all i , with I(i, t) as an indicator function

that equals one if Ai(t) = 1 and 0 otherwise, 3) accumulating
the cumulative estimated loss L̂(t).

Algorithm 1: GFRL algorithm for an edge server
Input: time interval tin, task offloading strategy Fn,

0<γ ≤ 1, sampling scheme Y
Output: caching decision A(t)

1 Initialize L̂0 = (0, ..., 0), ϵ(t) = 1/
√
t, omax = 0,

Amax = 0
2 foreach episode do
3 task offloading according to Fn

4 if t mod tin == 0 then
5 if o > omax then
6 Amax ← A(t)
7 omax ← o
8 end
9 initialize o← 0

10 compute
a(t) = argmin

a∈Conv(D)

⟨a, L̂(t− 1)⟩+ ϵ−1(t)E(a)

11 sample A(t) ∼ Y (a(t))
12 genetic crossover()
13 cache A(t) into the server and synchronize

information from adjacent servers
14 else
15 a(t)← a(t− 1)
16 A(t)← A(t− 1)
17 end
18 observe o(t) = A(t) ◦ ℓ(t)
19 construct estimator

ℓ̂(t),∀i : ℓ̂i(t) = (oi(t)+1)I(i,t)
ai(t)

− 1

20 update L̂(t) = L̂(t− 1) + ℓ̂(t)
21 o← o+ o(t)
22 end

B. Modified Genetic Algorithm

To improve the performance of our algorithm, we incor-
porate a modified genetic algorithm. The algorithm inputs the
current caching decision A(t) and the current optimal decision
Amax, subsequently generating a revised A(t). The detailed
steps, as outlined in Algorithm 2, include: 1)Identifying ser-
vices present in A(t) but absent in Amax (Lines 2-6); 2)
Identifying services in Amax but missing in A(t) (Lines 7-11),

and 3) Allocating them into two sets, S1 and S2, respectively.
Each service in S2 is then evaluated for its potential to replace
a service in A(t), governed by the parameter a.

Algorithm 2: Modified Genetic Algorithm
Input: services list A(t), pre-optimal strategy Amax,

probability parameter a
Output: caching decision A(t)

1 Initialize S1 ← ∅, S2 ← ∅
2 foreach q ∈ A(t) do
3 if q ̸∈ Amax then
4 Put q into S1

5 end
6 end
7 foreach q ∈ Amax do
8 if q ̸∈ A(t) then
9 Put q into S2

10 end
11 end
12 foreach s ∈ S2 do
13 r ← Random()
14 if r < a then
15 Remove S1[0] form A(t)
16 Remove S1[0] form S1

17 A(t)← A(t) ∪ {s}
18 end
19 end
20 return A(t)

C. Example of Rule Y and Regret

In our environment, the learners are constrained to select a
fixed-size action set. Let m ∈ {1, ..., l} be the fixed parameter,
and the action set is defined as:

D = {a ∈ [0, 1]l |
l∑

i=1

ai = m} (9)

Prior to given the sampling rule Y , we define auxiliary
vectors αi,j and a uniform sampling rule Yi,j for i ∈ [0,m]
and j ∈ [0, l −m]:

αi,j =

1, . . . , 1︸ ︷︷ ︸
i

,
m− i

l − i− j
, . . . ,

m− i

l − i− j
,

0, . . . , 0︸ ︷︷ ︸
j

 ∈ Conv(D) (10)

Yi,j = Uniform ({a ∈ D | a1,...i = 1 ∧ al−j+1,...l} = 0})
(11)

The convex hull of D can always be described by a
polynomially bounded set of constraints. Therefore, for a
combinatorial action a′ ∈ Conv(D), the sampling rule Y that



satisfies EA∼Y(a′) [A] = a′ can be obtained in the following
steps:

1) Sorting: We start by sorting the components of a′ in
descending order to get a new vector a, where a1 ≥
a2 ≥ . . . ≥ al.The ordering is conducted along the coor-
dinate dimension of the vector (uni-dimensional sorting),
thereby allowing completion within O(l log(l)) time.

2) Decomposition: Next, we decompose a into∑l
s=0 ya,sαis,js , where ya,s ∈ [0, 1] ∀s ∈

{0, . . . , l} and
∑l

s=0 ya,s = 1. For αis,js , with
indexing starting from (0, 0), as s transitions to
s + 1, either i or j increments by one. From a
mathematical perspective, (i0, j0) = (0, 0) and
(is+1, ss+1) − (is, js) ∈ {(1, 0), (0, 1)}. This
decomposition can be greedily computed in O(l)
time.

3) Sampling Rule: The complete sampling rule is a combina-
tion of above steps, formally written as

∑l
s=0 ya,sYis,js ,

where ya,s and (is, js) originate from step IV-C.
Step 1) dominates the runtime, resulting in an overall time

complexity of O(l log(l)). Moreover, in the context of Eq.(9)
, the pseudo-regret of GFRL with

γ =

1 if m ≤ l
2

min

{
1, 1√

log(l/(l−m))

}
otherwise,

(12)

meets

Regret(t′) ≤


O
(√

mlt′
)

if m ≤ l
2

O

(
(l −m)

√
log

(
l

l−m

)
t′
)

otherwise

(13)
Zimmert et al. [23] have made efforts on the pseudo-regret

and the optimality.

V. PERFORMANCE EVALUATION

A. Experiment Setting

To simulate a real-world environment, we integrate the
Shanghai Telecom base station dataset with a comprehensive
dataset [24]. The merged dataset contains 7.2 million request
records from 3233 edge nodes and 9481 users. It enables us
to track user network access, including request timings and
designated base stations.To challenge the algorithm’s decision-
making, we introduced random attackers with a 1% appearance
probability, although they do not interfere with the loss in
every round. The round-trip time to the cloud server is set at
74 milliseconds. The cache updating parameter tin is fixed at
5, indicating service caching updates every five epochs. We
use an iterative method to determine the value of a(t) and
apply the Hessian matrix to accelerate this iterative process.

The GFRL algorithm was implemented in Python 3.10 and
tested on a computer equipped with AMD Ryzen 7 6800H
3.20 GHz processor and 16.0 GB RAM.

B. Comparison Algorithms

To evaluate the performance of the GFRL algorithm, we
selected the following four benchmarks:

1) Oracle Algorithm: This algorithm hypothetically has ac-
cess to all future information, enabling the caching strat-
egy to align with future requests perfectly. It represents
an ideal best-case scenario.

2) DQN-DSP Algorithm [12]: In this algorithm, the service
caching optimization challenge is bifurcated into two
components: resource allocation and service placement.
The former utilizes convex optimization to derive the op-
timal solution, while the latter employs Deep Q-network
(DQN) to understand and address service requests.

3) AUSP Algorithm [13]: This approach conceptualizes ser-
vice caching as a contextual multi-armed bandit problem.
Caching decisions are made using a lightweight online
learning algorithm, considering multi-server collaboration
scenarios.

4) DCC-MAB Algorithm [16]: In this algorithm, each MEC
independently operates a MAB and makes autonomous
service caching decisions. The algorithm leverages neigh-
boring information as context and utilizes the Upper
Confidence Bound (UCB) algorithm for real-time service
caching updates.

C. Performance Evaluation

To mitigate the influence of experimental errors on the
results, we averaged the data from a minimum of 10 trials
to assess the algorithm’s performance. Specifically for the
AUSP and DCC-MAB algorithms, which exhibited higher
result variability, we amplified the number of runs to 100.

Regret Analysis: We initially examined the average pseudo-
regret across various environments. As shown in Figure 2, the
GFRL’s upper bounds align with Equation (13). Here, GFRL-
1 corresponds to parameters l = 100,m = 50; GFRL-2 to
l = 200,m = 100; GFRL-3 to l = 300,m = 150; and GFRL-
4 to l = 400,m = 200.

Fig. 2: Total regret under different edge scenarios.



(a) (b)

Fig. 3: Number of Services and Average Response Time:
(a)T=20k; (b)T=40k.

(a) (b)

Fig. 4: Number of Services and Backhaul Traffic: (a)T=20k;
(b)T=40k.

(a) (b)

Fig. 5: Number of Tasks and Average Response Time:
(a)l=200; (b)l=400.

(a) (b)

Fig. 6: Number of Tasks and Backhaul Traffic: (a)l=200;
(b)l=400.

(a) (b)

Fig. 7: Impact of Computing Capacity:(a)Computing Capacity
and Average Response Time; (b)Computing Capacity and
Backhaul Traffic.

Number of Services: Figure 3 shows that with T = 20K
(representing 20,000 tasks), an increase in the number of
services generally leads to a rise in the average response time
of the algorithms. However, when task volume grows from 20k
to 40k, the response time of each algorithm increases only
marginally, suggesting stable algorithm performance under
adequate resources. In scenarios with 100 services, the Oracle
method is 7% faster than GFRL, while GFRL outpaces DSP
and AUSP by 8% and 10%, respectively. DCC-MAB lags due
to its limited adaptability in adversarial environments.

Figure 4 illustrates the average backhaul traffic in different
environments. With 400 services, Oracle’s traffic is 6% lower

than GFRL’s, which in turn is 7% and 17% lower than
DSP’s and AUSP’s, respectively. DCC-MAB’s performance
is notably the least efficient.

Number of Tasks: Figure 5 reveals that the algorithms’
average response times remain relatively constant as task
numbers increase, given a stable service scale. This stability
indicates efficient edge resource utilization by the algorithms,
mitigating congestion risks in densely populated environments.
Notably, with T=10K, GFRL surpasses all other algorithms,
except Oracle, by 10-20%.

Figure 6 shows the backhaul traffic trends as task num-
bers rise. An almost linear increase in backhaul traffic with
task scale expansion reflects the algorithms’ strategic shifts:
prioritizing average response time reduction in low-activity
environments and balancing increased backhaul costs in high-
activity environments.

Capacity of Edge Servers: Figure 7 shows that as computing
capacity increases, both the average response time and back-
haul traffic of the algorithms decrease. GFRL’s performance
is 12% lower than the baseline Oracle but remains the most
efficient among the compared algorithms.

VI. CONCLUSION

In this work, we propose an adversarial method for delay-
aware service caching in edge cloud. This method synthesizes
FTRL and genetic strategies for developing the GFRL algo-
rithm, which is proved to closely converge to the optimal
upper bound. Numerical results demonstrate that the proposed



method outperforms traditional algorithms on multiple metrics
and is capable of adapting itself to increases of task load with
high level of availability. In further research, we intend to: 1)
Investigate the joint algorithm of task offloading and service
caching. 2) Employ more complex bandits mechanisms to
enhance algorithm accuracy. 3) Explore the potential of the
muti-layer edge cloud computing architecture.
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