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Abstract: Estimation of the soil organic carbon (SOC) content is of utmost importance in 

understanding the chemical, physical, and biological functions of the soil. This study proposes 

machine learning algorithms of support vector machines (SVM), artificial neural networks (ANN), 

regression tree, random forest (RF), extreme gradient boosting (XGBoost), and conventional deep 

neural network (DNN) for advancing prediction models of SOC. Models are trained with 1879 

composite surface soil samples, and 105 auxiliary data as predictors. The genetic algorithm is used 

as a feature selection approach to identify effective variables. The results indicate that precipitation 

is the most important predictor driving 14.9% of SOC spatial variability followed by the normalized 

difference vegetation index (12.5%), day temperature index of moderate resolution imaging 

spectroradiometer (10.6%), multiresolution valley bottom flatness (8.7%) and land use (8.2%), 

respectively. Based on 10-fold cross-validation, the DNN model reported as a superior algorithm 

with the lowest prediction error and uncertainty. In terms of accuracy, DNN yielded a mean 

absolute error of 0.59%, a root mean squared error of 0.75%, a coefficient of determination of 0.65, 

and Lin’s concordance correlation coefficient of 0.83. The SOC content was the highest in udic soil 

moisture regime class with mean values of 3.71%, followed by the aquic (2.45%) and xeric (2.10%) 

classes, respectively. Soils in dense forestlands had the highest SOC contents, whereas soils of 

younger geological age and alluvial fans had lower SOC. The proposed DNN (hidden layers = 7, 

and size = 50) is a promising algorithm for handling large numbers of auxiliary data at a province-

scale, and due to its flexible structure and the ability to extract more information from the auxiliary 

data surrounding the sampled observations, it had high accuracy for the prediction of the SOC base-

line map and minimal uncertainty. 
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1. Introduction 

Soil organic carbon (SOC) is central to soil health as it plays a significant role in soil aggregation, 

water holding capacity, cation/anion exchangeability, and nutrient availability, which promotes plant 

growth. SOC can potentially affect both soil ecosystems and crop productivity due to its several 

critical roles in soil functioning. Globally, the amount of carbon in the upper one meter of soil is about 

three and two times higher than the amount of carbon found in the biosphere and atmosphere, 

respectively [1–3]. Therefore, the contribution of SOC to the global C cycle by sequestering terrestrial 

C is of great importance. Changes in SOC pools induced by soil management and land cover changes 

affect global warming and, in turn, can significantly influence soil physical, chemical, and biological 

properties [4–6]. As SOC is a good indicator of environmental quality [7], high-quality maps of the 

spatial distribution of SOC can provide base-line data for SOC turnover and sequestration for C 

management strategies at the province-scale. The spatial variability of SOC at the field to the regional 

scale is highly related to the soil forming-factors including the climate (precipitation and 

temperature); organisms (vegetation and human), relief (terrain attributes), parent materials, and 

time [8]. 

Due to the global importance of SOC, digital soil mapping (DSM) approaches have become more 

focused on SOC mapping in the last decade [4,9–12]. DSM describes the spatial variation of SOC by 

taking the relations between SOC and environmental auxiliary variables into account [13–15]. The 

auxiliary variables correlated with SOC are often obtained from digital elevation models [11,16], 

remotely sensed data [16,17] and climatic data [18,19]. By using remotely sensed imagery and easy 

accessibility of climatic and digital elevation model (DEM) data, the application of machine learning 

(ML) techniques for predicting SOC is significantly increased [11,17,20]. 

Numerous ML algorithms have been applied in DSM for SOC prediction including artificial 

neural networks (ANNs) [21–24], genetic programming [25], support vector regression (SVR) 

[23,25,26], multivariate adaptive regression splines [27,28], Cubist [9,29,30], boosted regression tree 

[16,31,32], and random forest (RF) [9,16,19,23,32–34]. In most cases, these approaches were much 

more accurate than linear and geostatistical methods due to the higher ability to get a lot more 

information for unsampled points by investigating nonlinear relationships between SOC and 

environmental auxiliary variables. 

Soils, especially SOC contents, which are the result of the actions and interactions of many 

different processes and factors, vary from place to place with high complexity [35]. Thus, to predict 

the behaviors and properties of such a complex environment, classical ML may encounter problems 

[10,12,34,36]. A new approach that has received considerable attention as a sophisticated learning 

algorithm with substantial learning capability and high performance is deep learning (DL) [37]. 

Recently, deep neural networks (DNNs) based on DL approaches have been proposed for 

overcoming the shortages arising from the traditional ANNs [37,38], by adding more complexity 

(deep) into the conventional models. This provides better learning capabilities to reveal the 

complexity underlying the data, and thus results in a higher accuracy of the trained model [39]. The 

hierarchical structure and high learning capacity make DNN models quite flexible and adaptable for 

a wide variety of highly complex problems such as SOC prediction [11,39,40]. The DNNs have 

recently been used for the prediction of soil properties [40–42] and particularly for SOC prediction 

[43,44]. Xu et al. [43], for instance, indicated that the DNN method had a high performance for the 

prediction of SOC with the effective abstraction of complex covariates for learning by using visible 

and near-infrared soil spectra. DNNs are more complex and need further parametrization but 

severely depend on the size of the training dataset. 

To eliminate the multicollinearity of variables and exclude unimportant and redundant auxiliary 

variables, numerous feature selection techniques have been developed for DSM including. Particle 

swarm optimization [45], the genetic algorithm (GA) [25,32,46], hybrid GA-artificial neural network 

[47], parallel GA [48], and the artificial bee colony algorithm [36] are among the notable feature 



 

selection techniques. Such variable selection techniques can simplify modeling by lowering the 

number of input variables and potentially improving the accuracy of soil predictions. There is no 

universal feature selection method to reduce the number of covariates in the pool presented to an ML 

algorithm. For instance, Behrens et al. [49] compared the two most common approaches for the 

selection of covariates, namely supervised and unsupervised, and found that the supervised feature 

selection approach was superior because the soil classes were predicted more accurately. 

Taghizadeh-mehrjardi et al. [50] explored the effect of the reduction in dimension of feature space 

with ant colony optimization (ACO) and correlation-based feature selection (CFS) on the accuracy of 

prediction of spatial models for each particle size fraction. In this study, we decided to implement 

the GA, one of the most advanced algorithms for feature selection [46]. GA can manage the datasets 

with many features and do not need specific knowledge about the problem parallelizing easily in 

computer clusters [46,51,52]. 

Although many ML algorithms have been developed for the prediction of soil properties, the 

development of site-specific techniques is necessary for enhancing the quality of thematic soil maps 

[53]. However, there is no best worldwide predictive algorithm for SOC mapping given that the 

accuracy level of SOC predictions is highly related to the local geographic attributes of the study area 

[54], the sampling size [9,55] and the selected auxiliary variates [14,19,56]. 

Mazandaran province, northern Iran, is located on the southern coast of the Caspian Sea. There 

is a descending precipitation gradient from the west to east across the region, leading to a diversity 

of soil moisture regime (SMR) and soil temperature regime (STR) classes [57]. Due to the changes in 

SOC contents in northern Iran caused by the human activities and natural attributes (landslide, 

flooding, depression) [58,59], the existence of a high-quality SOC prediction map with known 

uncertainty in the Mazandaran province is crucial. This provides a base-line map for further temporal 

monitoring of SOC at the province-scale. Despite the known advantages of feature selection, there 

have been no insights into the important variables for SOC prediction in northern Iran given the 

different predominant climatic and soil-forming conditions. Therefore, due to the lack of an SOC 

base-line distribution map in Mazandaran province, the objectives of this research were (1) to 

determine the important auxiliary variables driving the SOC contents in the province using GA as a 

popular automatic method for feature selection, (2) to test the performance of six ML algorithms fed 

with GA-selected auxiliary variables and (3) to predict the spatial distribution of SOC for mapping 

with associated uncertainty and (4) to compare SOC contents in different geological units, soil classes 

and land uses in Mazandaran province. 

2. Materials and Methods 

2.1. Study Area  

This research was conducted in Mazandaran province, northern Iran. The region is located at a 

longitude of 50°31′21′′ E to 53°56′52′′ E and latitude of 36°38′06′′ N to 36°54′59′′ N and covers an area 

of 2,388,179 ha. It borders the Caspian Sea in the north and the Alborz Mountain range in the south 

(Figure 1). Most of the province is covered by dense, moderate, and low-density forest with each 

forest type covering 39%, 4%, and 2% of the total area, respectively. There are several kinds of 

cultivated lands in the study area. Paddy fields are the most common agricultural land use with about 

210,000 ha, and orchards cover about 90,000 ha. Based on the De Martonne climate classification, the 

western, central, eastern, and mountainous parts of the province have very humid, humid, 

Mediterranean, and semihumid climates, respectively. The mean annual temperature ranges from 18 

°C on the coastal plain to below 8 °C in the highlands. There is a gradient of the decreasing 

precipitation from the west (around 1400 mm) to the east direction (around 450 mm) leading to the 

diversity of soil moisture regime (SMR) and soil temperature regime (STR) classes across the 

province. The xeric SMR class covers the largest area in the province, followed by the udic and aquic 

classes, while thermic (66%) is the most abundant STR followed by mesic (33%) and cryic (1%) [57]. 

The variation of elevation ranges from the Caspian Sea coastal areas with elevations <−5 m to more 

than 3000 m above sea level in the highlands of the Alborz Mountain range. Five USDS soil taxonomy 



 

orders including Mollisols, Entisols Inceptisols, Alfisols, and Ultisols were in Mazandaran with a 

total of 12 suborders. Mollisols are the most dominant soils forming on different landforms with 

mollic epipedons. Mollisols have four main suborders including the aquolls, rendolls, udolls, and 

xerolls mostly distinguishing based on soil moisture regime classes except for rendolls that have an 

epipedon with less than 50 cm thickness overlies on a highly calcareous horizon. Alfisols are 

characterized by a clay enriched endopedon with two main suborders, i.e., aqualfs and udalfs. 

Ultisols with a single suborder, i.e., Humults occurring in a very limited area in Mazandaran province 

with leached soils under native forest vegetation. Entisols with three main suborders, i.e., Orthents, 

Fluvents, and Aquents are mostly used for paddy cultivation in the study area. Inceptisols in 

Mazandaran province have a weakly developed B horizon with two main suborders, i.e., Aquept and 

Xerepts. 

Figure 1. (A) Geographical position of Iran on the world map, (B) geographical position of the 

study area in Iran, and (C) spatial distribution of soil samples. The background is a false-color 

composite image derived from Landsat. 

2.2. Soil Data 

The total dataset for SOC mapping is 1879 composite surface soil samples from two main sources 

(Figure 1). More than half of the data (1055 samples) were derived from five Master of Science (M.Sc.) 

research projects in the soil science department at Sari Agricultural Sciences and Natural Resources 

University (SANRU) [60–64]. These samples were collected using a simple random sampling scheme 

mostly in uncultivated areas. The rest of the dataset comes from soil surveys performed by the 

Agricultural Research Education and Extension Organization (AREEO) and the Ministry of Jahad-e-

Keshvarzi in Sari, Northern Iran. These samples were mostly collected in cultivated areas spread 

across the province using a grid sampling scheme with a 2000 m grid interval. Each composite soil 

sample is collected within a 20 m radius surrounding each of the sampling points with at least 10 

subsamples (cores). Samples were collected from a depth of 0–20 cm, and their geographical 



 

coordinates were recorded with a global positioning system (GPS) device. After air-drying and 

passing through a 2 mm sieve, the content of SOC was measured by the wet oxidation procedure 

outlined by the Walkley and Black [65]. Figure 1 shows the spatial distribution of the sampling sites 

across Mazandaran province. 

2.3. Auxiliary Variables 

The full set of 105 predictor variables initially considered is given in Table A1 in the Appendix 

A. The auxiliary data included variables derived from remotely sensed imagery (60 variables from 

Landsat 8 and MODerate-resolution Imaging Spectroradiometer, MODIS), terrain attributes (30 

variables), climatic data (10 variables), and five categorical data (e.g., soil map and land use map). 

The high contribution of SOC to soil color can be detected by the spectral signature of remotely 

sensed data. The 60 environmental auxiliary variables derived from satellite imagery were developed 

based on the median values of 8 satellite images of the Landsat 8 Operational Land Imager taken 

from 2012 to 2016 to coincide with the dates of soil sampling. Following radiometric, geometric, and 

atmospheric corrections digital numbers for the blue (B1), green (B2), red (B3), near-infrared (B4), and 

shortwave IR-2 bands (B6) were extracted. Several indices were then calculated: the normalized 

difference vegetation index (NDVI), enhanced vegetation index (EVI), combined spectral response 

index (COSRI), land surface water index (LSWI), brightness index (BI), and other indices with a 

spatial resolution of 30 m. The variables derived from MODIS imagery had a spatial resolution of 250 

m. These included median values of two spectral reflectance bands: red (645 nm) and near-infrared 

(858 nm) and the EVI, NDVI, and other indices. The daytime and nighttime land surface temperature 

with a 1 km resolution were also derived from MODIS data. Overall, 60 auxiliary variables were 

derived from Landsat 8 and MODIS data. 

Thirty terrain attributes were derived from a DEM [66]. The DEM was obtained from shuttle 

radar topography mission terrain (SRTM) data with 30 m grid cells. Terrain attributes, namely slope, 

aspect, elevation, length and steepness (LS) factor, valley depth, openness, catchments area, 

catchment slope, plane curvature, topographic wetness index (TWI), channel networks base level 

(CNBL), distance to channel networks, the multiresolution valley bottom flatness index (MrVBF) and 

other indices [67], were calculated using SAGA GIS. 

Climatic factors have high potential to explain large parts of the variation of soil properties in 

the northern part of Iran, due to the high degree of spatial variability in Mazandaran province. In this 

study, 10 climatic variables were obtained using WorldClim. WorldClim version 2 [68] contains 

reliable temperature and precipitation data at a spatial resolution of 1000 m. Categorical predictor 

variables were derived from five choropleth maps, which were compiled at different cartographic 

scales, e.g., soil map and land use map [69]. 

Figure 2 shows the spatial distribution of some auxiliary variables related to SOC including 

precipitation, NDVI, MrVBF, and land use. The precipitation decreases from the north-west to the 

north-east in the province, especially in shoreline areas (Figure 2). The southern parts of the province 

have lower precipitation compared with the northern region where the Caspian Sea shoreline is 

located. The NDVI values range from −0.5 to more than 0.8, indicating a high diversity of vegetation 

cover spread across the province that has a potentially significant effect on SOC content due to large 

differences in the number of falling leaves and plant residues. The MrVBF shows that flat valley 

bottoms where sediments and outflows accumulate leading to higher clay and SOC contents [34,67]. 

All environmental variables which did not conform with SOC grid resolution of 30 × 30 m were 

resampled to a 30 m spatial resolution using either the nearest neighbor or bilinear resampling 

methods. 



 

 

Figure 2. Four examples of auxiliary variates used for modeling soil organic carbon: (A) 

multiresolution valley bottom flatness index (MrVBF), (B) normalized difference vegetation index 

(NDVI), (C) precipitation, and (D) land use maps. The Crop.Or, Dense.Forest, Dry.Farm, Good.Range, 

Low.Forest, Mod.Range, Poor.Range, Resident.L, Seashore.L, and Semi.Forest symbols in land use 

map correspond to the land use type of croplands and orchards, dense forestlands, dry farming lands, 

good rangelands, low dense forestlands, moderate rangelands, poor rangelands, residential lands, 

seashore lands, and semidense forestlands, respectively. 



 

2.4. Selection of Auxiliary Variables Using Genetic Algorithms (GA) 

Instead of taking all 105 environmental auxiliary variables into consideration for a predictive 

ML algorithm, the feature selection method reduces the number and collinearity of the auxiliary 

variables. The most informative auxiliary variables should be inserted into the algorithms with the 

aim of high accuracy of the ML algorithms for SOC prediction [9,16,25]. The selection of the 

significant environment auxiliary variables is a preprocessing step for ML algorithms to remove 

redundant and irrelevant variables. For this study, one of the most advanced algorithms for feature 

selection, namely the genetic algorithm (GA), was used to select the most appropriate auxiliary data 

to be fed as inputs to the ML algorithms [16]. GA is able to select those auxiliary data that are not 

only essential but improve performance as well. Moreover, GA can manage the nonlinear 

relationships between SOC and auxiliary data [70]. 

By mimicking natural biological evolution, the GA which is a heuristic search algorithm 

provides the best value for a function [51]. A GA feature selection process starts with an initial 

random population consisting of individuals. The individuals, representing subsets of auxiliary data, 

are encoded as binary in which 1 represents if the feature is selected and 0 otherwise [71]. Then three 

primary operations including selection, crossover, mutation repeat until a stopping criterion is 

reached. The selection operations were for selecting the two fittest individuals for reproduction (i.e., 

the solutions providing the lowest root mean squared error, RMSE). The crossover recombines two 

individuals to create new ones which may be better. The mutation operator introduces alteration in 

a small number of individuals. The process of selection, crossover, and mutation continues until a 

termination condition is satisfied [48,52]. Importantly, for each generation, it is necessary to assign a 

fitness value to each individual in the population so that the RMSE values are calculated by fitting 

the random forest model [46,48,52]. 

In this study, the GA procedure was performed with 10-fold cross-validation and 100 iterations 

to select the smallest number of auxiliary variables important for SOC modeling using the caret 

package in R [72]. The population size, crossover, and mutation rates used were 50, 0.6, and 0.001, 

respectively, as outlined by Welikala et al. [52]. 

2.5. Machine Learning Techniques 

In this study, six ML algorithms including support vector machines (SVM), artificial neural 

networks (ANNs), regression tree (Cubist), random forest (RF), extreme gradient boosting (XGBoost), 

and deep neural networks (DNN) were chosen. Each algorithm can discover complex relationships 

between SOC content and auxiliary covariables. Table 1 summarizes the hyperparameters of the six 

ML algorithms used in this study. A brief description of the ML techniques used in this study follows. 

Table 1. Hyperparameters of machine learning algorithms used in this study. 

ML Algorithms Hyperparameters Definition Defined Parameters 

SVM 

(support vector 

machines) 

Kernel type 

C  
𝜎  

the kernel function 

the penalty parameter 

the bandwidth parameter 

RBF 

0.01–100 

0.01–100 

Cubist 

(regression tree) 

committees 

neighbors 

the number of model trees 

the number of nearest neighbors 

1–100 

0–9 

XGBoost 

(extreme gradient 

boosting) 

booster 

max_depth  

min_child_weight  

colsample_bytree  

subsample  

eta  

the type of model 

the depth of tree 

the minimum sum of weights of all 

observations  

the number of variables supplied to a tree 

the number of samples supplied to a tree  

learning rate 

gbtree 

3–10 

0–5 

0.5–1 

0.5–1 

0.01–0.5 

RF 

(random forest) 

Mtry  

Ntree 

the number of input variables  

the number of trees 

1–30 

100–3000 

ANN 

(artificial neural 

networks) 

decay 

size 

learning rate 

the number of neurons in the hidden layer 

0.001–0.05 

1–10 

DNN hidden the number of hidden layers 2–10 



 

(deep neural networks) size 

network weight 

initialization 

learning rate 

dropout 

regularization 

the number of neurons in the hidden layer 

the initialized weight of networks 

that controls adjusting the weights of the 

network 

the amount of the neurons that are 

randomly dropped 

15–200 

uniform/he_normal 

0.001–0.05 

0.2–0.8 

ML: machine learning; SVM: support vector machine; Cubist: regression tree; XGBoost: extreme 

gradient boosting; RF: random forest; ANN: artificial neural networks; DNN: deep neural networks. 

2.5.1. Support Vector Machines (SVMs) 

Initially, SVMs were developed as a methodology for resolving problems of classification into 

two attributes using a threshold value. Connected with the earlier development of SVMs as a 

classification method, the regressive type of support vector machines was proposed. This caused the 

spread of the philosophy of support vectors machines being used to solve regression problems. The 

algorithm was formulated as a linear method and then it was generalized to (1) the presence of noise 

in the data using slack variables following the soft-margin philosophy, and (2) a nonlinear model 

through the conversion of the input space into a larger dimension, as done for classification [73]. 

Hence, SVM is used for classification and regression processes with a set of connected supervised 

learning algorithms and they have an excellent ability to be universal predictors of any multivariate 

function to any specified degree of accuracy [20]. In this study, the SVM algorithm was employed by 

improving the range of its components (C: 0.01–100; σ: 0.01–100) based on the input data (Table 1). 

2.5.2. Artificial Neural Networks 

Artificial neural networks (ANNs) stand out among the different types of models because they 

are calculative techniques with mathematical models simulated from the human’s brain neural 

function [74]. ANNs as vigorous data-modeling tools attain knowledge by way of experience. They 

are able to detect patterns and draw results, therefore they can be used for data prediction with 

correlation, such as soil properties. The ability for handling and modeling multiple outputs 

simultaneously is a primary benefit of ANN techniques [75]. The development of an ANN model 

mainly consists of three main stages: the generation of data for the training/testing of the model, the 

selection of the optimal configuration, and the validation of the model on an independent data set. 

Additionally, ANNs are interconnected by structures called perceptrons and consist of input, output, 

and hidden layers that transform the input into something that the output layer can utilize [76]. ANN 

models allow one to attribute lower weight to samples that deviate from a standard, since ANNs can 

identify patterns in data distribution, which is not observed in linear and nonlinear regression [77]. 

As a result, ANN models can lead to a higher accuracy than linear and nonlinear regression [78]. The 

present neural networks of this study were made based on a learning rate of 0.001–0.05 and the 

number of hidden layer neurons was 2–10 (Table 1). The sigmoid function is the activation function 

in the nnet package [79] for the MLP with one hidden layer which we used in this study. 

2.5.3. Regression Tree (Cubist) 

Cubist is an ML estimating tool that is similar in approach to regression trees [80]. However, 

unlike classification and regression tree models, linear models are often well structured rather than 

having end values [81]. Additionally, the Cubist and other regression tree algorithms have a clear 

difference, that is the linear regression model is fitted to the leaf nodes of the trees in the Cubist [82]. 

Overall, the Cubist approach makes multivariate models that are made of sets of rules, and the 

prediction model will be chosen based on the rules [83]. In this research, the ptoposed regression tree 

models are based on Cubist regression models [84]. Cubist models were improved by defining the 

number of model trees, and nearest neighbors using the data set shown in Table 1. 

 

 

 



 

2.5.4. Random Forest (RF) 

The random forest (RF) consists of a series of binary rule-based decisions that define 

relationships between input and its dependent variables. It comprises a large number of individual 

tree algorithms trained from bootstrap samples of the data [85]. The single prediction will be made 

by accumulating the results of all trees. One of the main benefits of random forests is that they can 

precisely explain the compound connections between the independent variables and the dependent 

variables. So when composite environmental systems and ecological supplementary variables are 

introduced, RF can be helpful [86]. Two important parameters in RF algorithms are the number of 

trees (Ntree) and the number of variables (Mtry) which are available for selection in each split [87]. 

These two main parameters (Mtry and Ntree) were adjusted for the best result. The range of values 

used is shown in Table 1. 

2.5.5. Extreme Gradient Boosting (XGBoost) 

The algorithm for extreme gradient boosting (XGBoost) was proposed by Chen and Guestrin 

[88]. It is an algorithm for improving the performance for gradient boosting machines and especially 

for regression trees and K classification methods [89]. By the supplemental training strategies, the 

“boosting” as a basic idea of this method extends a “strong” learner from a set of “weak” learners. 

The XGBoost technique is supposed to improve calculation but also reduce over-estimation events. 

The XGBoost simplifies the objective functions and improves the calculation speed to an optimum by 

allowing the combination of estimative and adjustment terms. In addition, in the XGBoost approach, 

during the training step, simultaneous computations will be done automatically for the functions 

[89]. More information can be obtained about the XGBoost algorithm from the work of [88]. Table 1 

shows the XGBoost algorithm parameters used to do this research including the type of algorithm, 

the depth of trees, the minimum sum of weights of all observations, the number of variables provided 

to a tree, the number of samples provided to a tree, and the learning rate. 

2.5.6. Deep Neural Networks (DNN) 

The performance of conventional DNN as an estimation algorithm for remote sensing 

applications has been extensively explored during the past few years [90]. DNN has been reported 

as a reliable and efficient approximation function for delivering insight into the relationship (whether 

a linear or a nonlinear relationship) between input and output variables [91]. DNN has shown 

promising results in a wide and diverse range of applications from digital signal processing and 

control systems to hazard susceptibility mapping [92,93]. Figure 3 illustrates the architecture of a 

conventional DNN. The networks are configured by passing several layers for learning the 

probability of the outputs. 

 

Figure 3. Illustration of the architecture of conventional deep neural network (DNN). 



 

In this study, conventional DNN is a feedforward learning network where there is no looping 

back from the output layer to input. In this case, the DNN produces a map of virtual neurons and 

random weights. The inputs and weights will be multiplied and would deliver outputs within the 

range of 0 and 1. The algorithm would adjust the weights to accurately identify a particular learning 

pattern to fully process the data. The DNN includes L hidden layers, the input layer (vector X), and 

the output layer (vector Y). As recently formulated by Wang et al., [94], the estimation of Y can be 

presented as follows. 

𝐳1 = 𝜎1(𝐖1𝐗 + b1) (1) 

𝐳2 = 𝜎2(𝐖2𝐳1 + b2),    𝐳𝐿 = 𝜎𝐿(𝐖𝐿𝐳𝐿−1 + b𝐿),    𝐘 = 𝐖𝐿+1𝐳𝐿 + b𝐿 ,   𝜃 = {𝐖𝑖 , b𝑖}𝑖=1
𝐿+1 (2) 

where b𝑖  and 𝜎𝑖 are the bias and the activation function of the ith layer. Here, 𝐖𝑖 represents the 

weights. In Equation (2), the 𝐿 + 1 represents the output layer. Therefore, Y can be presented as 

follows. 

𝐘 = 𝑁𝑁(𝐗; 𝜃) (3) 

Eventually, through calculating the mean square error (MSE) of output and input values, loss 

function L can be estimated as follows. 

𝑀𝑆𝐸𝐷𝑎𝑡𝑎 = 𝐿(𝜃) =  
1

𝑁
∑|𝑁𝑁(𝐗𝑖 ; 𝜃) − 𝐘𝑖|

2

𝑁

𝑖=1

 (4) 

where N represents the sequence of data. Here, the GA is used to minimize the 𝐿(𝜃) function for the 

training. A trained DNN is further used for the estimation of the new variables. The predictive ability 

of neural networks is possible by learning large amounts of data. Generally, input data create the 

training datasets, and similar output data will be entered into a neural network algorithm. This 

algorithm can detect the basic rules in the data entered and compose an interior model that is suitable 

to estimate the new input data using several training repetitions during the process. The model can 

be computed by the interactions and connections between neurons, whereas any physical or clear 

mathematical relationships cannot be supplied [90]. The neural network structure can affect the 

precision of the predictive models. Each latent layer of the DNN algorithm consists of some 

calculative neurons that are interconnected to the next calculative neurons in the adjoining latent 

layers. To finalize the DNN model, the neurons of each latent layer measure the calculative neuron 

outputs of the prior layer, and after the computation procedure of the activation function, the outputs 

are generated for the subsequent layer [42]. 

Table 1 shows the specifications used for DNN, which are hidden layers, size, network weight 

initialization, learning rate, dropout regularization. In this study, for the DNN method, the H2O 

package [92] with the rectifier function as a nonlinear transformation was used for DNNs in this 

study [95]. It is worth mentioning that adhering to a balanced ratio of training and testing is of utmost 

importance in modeling with machine learning [96]. Several methods in a wide range of applications 

are introduced to identify the correct balance for testing [97]. Nevertheless, the evaluation metrics 

have been shown to be reliable measures to maintain a sufficient number of elements for a training 

dataset in soil research [37–40]. It is often observed that by decreasing the amount of training data, 

the error increases, which accurately indicates the worth of data for models. The amount of training 

data, in this study, is optimally tuned to ensure the lowest errors. The total dataset is divided into 10 

datasets that are sequentially used for training and testing. The DNN is calibrated 10 times to assure 

each data point was used as validation at least once. 

2.6. Evaluation of Algorithm Performance 

Ten-fold cross-validation was implemented for testing the performances of six ML prediction 

algorithms for estimating the SOC contents in Mazandaran province. In this regard, the total dataset 

was split into 10 datasets that were sequentially used as training and testing datasets for a given 

prediction algorithm. Each prediction model is calibrated 10 times, guaranteeing each data point was 



 

used as validation at least once. Then, the 10 prediction errors can be obtained for each prediction 

algorithm. The four evaluation criteria used in this study are the coefficient of determination (R2) [98], 

Lin’s concordance correlation coefficient (CCC) [99], mean absolute error (MAE) [100] and root mean 

squared error (RMSE) [100] with following formulas: 

𝑅2 = 1 − (
∑ (𝑂𝑖 − 𝑝)𝑛

𝑖=1
2

∑ (𝑂𝑖 − 𝑂´)𝑛
𝑖=1

2) (5) 

𝐶𝐶𝐶 =
2 𝑟 𝜎𝑜𝜎𝑝

𝜎𝑜
2 + 𝜎𝑝

2 + [𝑂´ − 𝛲´]2
 (6) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑃𝑖 − 𝑂𝑖|

𝑛

𝑖=1

 (7) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑃𝑖 − 𝑂𝑖)2

𝑛
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where, n is the number of samples, Oi and Pi are observed and predicted SOC contents, respectively. 

O’ and P’ are the means for the observed and predicted SOC contents, respectively. Furthermore, σo 

and σp are the variances of observed and predicted values. Four criteria of the validation datasets in 

10-fold validation in each prediction algorithm were averaged and used for selecting the best 

performing prediction algorithms. The prediction algorithm with the lowest MAE and RMSE, and 

highest R2 and CCC values are determined as the best for SOC prediction. 

2.7. Uncertainty Assessment 

The spatially explicit quantification of the uncertainty of SOC prediction is analyzed in this 

study. The SOC maps generated by each model were used to calculate the mean and standard 

deviation (SD) of the SOC for each pixel in 10-fold realization [101]. It was assumed that six ML 

models follow the normal distribution for each raster cell. The confidence interval (CI) was calculated 

with the mean as ±1.64 SD for a given 90% CI. The upper and lower limit of the 90% CI were mapped. 

The mean of the SOC contents in each pixel and the 90% CI was calculated by retrieving the 5th and 

95th percentiles of prediction. Finally, three maps of the SOC were produced for the best performing 

model: the mean prediction, lower CI (5%), and higher CI (95%). 

3. Results and Discussions 

3.1. Summary Statistics 

Table 2 shows the summary statistics for topsoil SOC for the 1879 sampling sites. SOC contents 

ranged from 0.02% to 11.48% with a mean and standard deviation of 2.19% and 1.27%, respectively. 

The lower SOC contents correspond to highly degraded lands where the surface soil is eroded and 

the maximum SOC contents were observed in dense forestlands. The coefficient of variation of 58.23% 

demonstrates the high variability of SOC contents within the study area. The values of skewness 

(2.33) and kurtosis (8.2) indicate that the SOC data is highly skewed and in turn, violates assumptions 

of normality. SOC data were anchored at 1.00 and then, transformed by the natural logarithm to make 

the distribution less skewed. The skewness and kurtosis values of the log-transformed SOC values 

were 0.59 and 1.50, respectively, and the Kolmogorov–Smirnov test showed that the distribution of 

these log-transformed values was not significantly different from normal. Further analysis was 

performed on the log-transformed data; and the predicted SOC values were back-transformed to the 

original scale. 

  



 

Table 2. Descriptive statistics of SOC (%) in this study (n = 1879). 

Min Max Mean SD CV Skewness Kurtosis 

0.02 11.48 2.19 1.27 58.23 2.33 8.2 

SOC: soil organic carbon; Min: minimum; Max: maximum; SD: standard deviation; CV: coefficient of 

variation; K-S p-value: significance level of Kolmogorov–Smirnov test. 

3.2. Selected Auxiliary Data 

In this study, the GA procedure with 10-fold cross-validation and 100 iterations (i.e., GA was 

executed 1000 times) was used to select the minimum number of important auxiliary variables for 

SOC modeling. The results of GA for 1000 generations are presented in Figure 4. The average of the 

internal out-of-bag RMSE estimates as well as the average of the external performance estimates 

calculated. Based on these results, the generation associated with the best external RMSE estimate 

was 0.86. The GA selected 35 predictors out of 105 environmental variables, as the most relevant 

driving factors for SOC mapping in Mazandaran province (Table 3). These variables comprised 13 

terrain attributes, 18 remotely sensed variables, two climatic variables, and two categorical data 

layers. The resolution and origins of the 35 predictors are given in Table 3. Getting more information 

about the contribution of each variable to SOC variability is of great importance. Therefore, the 

significance of each environmental auxiliary variable was analyzed using a sensitivity analysis and 

was represented as an attribute percentage. Figure 5 indicates the order of the relative importance of 

the selected predictors on SOC spatial variability using the procedure outlined by [45]. 

 

Figure 4. Internal and external validations of GA. 

Table 3. The selected auxiliary data using genetic algorithms for predicting SOC. 

Definition Res. Ref. 

Selected Terrain Attributes    

Aspect 30 m SRTM 

Slope Gradient 30 m SAGA GIS  

Elevation 30 m SAGA GIS  

Slope Length Factor 30 m SAGA GIS  

Valley Depth 30 m SAGA GIS  

Openness (PosOpen) 30 m SAGA GIS  

Openness (NegOpen) 30 m SAGA GIS  

Catchment Slope (CaSLOP) 30 m SAGA GIS  

Plane Curvature (Plan.Curv) 30 m SAGA GIS  

Topographic Wetness Index (TWI) 30 m SAGA GIS  



 

Channel networks base level (CHNL.BASE) 30 m SAGA GIS  

Multiresolution ridge top flatness index (MRRTF) 30 m Gallant and Dowling (2003) 

Multiresolution Valley Bottom Flatness Index (MrVBF) 30 m  

Selected RS data    

Blue band of Landsat-8 (B1) 30 m Wulder et al. (2016) 

Green band of Landsat-8 (B2) 30 m  

Red band of Landsat-8 (B3) 30 m  

Near-infrared band of Landsat-8 (B4) 30 m  

Shortwave IR-1 band of Landsat-8 (B5) 30 m  

Shortwave IR-2 band of Landsat-8 (B6) 30 m  

Normalized difference vegetation index (NDVI) 30 m Rouse et al. (1974) 

Enhanced vegetation index (EVI) 30 m  

Combined Spectral Response Index (COSRI) 30 m  

Transformed SAVI (TSAVI) 30 m  

Soil adjusted vegetation index (SAVI) 30 m  

Brightness Index 30 m Metternicht and Zinck (2003) 

Clay Index 30 m Boettinger et al. (2008) 

Carbonate index   

MODIS Red 250 m  

MODIS Near Infrared (MODIS Nir) 250 m  

MODIS Night Temperature(MODIS.Night.Temp) 1000 m  

MODIS Day Temperature (MODIS.Day.Temp) 1000 m  

Selected climatic data   

Annual precipitation (mm) 1000 m Fick and Hijmans (2017) 

Annual mean temperature (°C) 1000 m Fick and Hijmans (2017) 

Selected categorical data   

Land use 125 m Banaei et al. (2005) 

Soil map 500 m  

Abr.: abbreviation; Res.: resolution; Ref: references. 

As can be seen in Figure 5, precipitation is the most crucial feature (14.9%) driving the spatial 

variability of SOC contents in Mazandaran province followed by the NDVI (12.5%), MODIS day 

temperature (10.6%), MrVBF (8.7%), land use (8.2%), valley depth (7.2%), and MODIS night 

temperature, respectively. In Mazandaran province, as previously thought, the precipitation 

significantly affects SOC contents by enhancing vegetation coverage and the rate of organic matter 

inputs. Together precipitation and temperature (MAT) explain 18.9% of the variation in SOC contents 

demonstrating the high dependencies of SOC contents in the province-scale to the climatic variables. 

Lamichhane et al. [14] reviewed several studies and pointed out that climate is the most influential 

factor for the variation of SOC at large extents. The high precipitation is mostly combined with lower 

temperatures and slower SOC decomposition rates at higher altitudes [102,103]. Falahatkar et al. [104] 

reported that the most important auxiliary predictors for SOC stocks for surface soil in Guilan 

province, northern Iran are land use, NDWI, silt, clay, and elevation. Along with our findings, the 

surface temperature data derived from remotely sensed data (Landsat) was found to be influential 

for improving SOC prediction [66]. 

The NDVI is the second most important feature explaining SOC variability, indicating that the 

SOC contents were highly influenced by vegetation variation. SOC content was highly dependent on 

the natural vegetation cover intensity, and the plant residue left after plant harvesting [4,36,105]. Due 

to the dependency of SOC on vegetation cover, NDVI has frequently been used as a predictor for 

mapping SOC in several studies [16,25,33,106]. Additionally, NDVI has more importance to SOC 

contents compared to other remotely sensed vegetation indices like EVI. Although the EVI performs 

better than the NDVI in many applications, our results indicated that NDVI is more important for 

explaining SOC contents compared to EVI. It might be related to the topographic conditions as 

Matsushita et al. [107] reported that EVI is more sensitive to topographic conditions than is the NDVI. 

Meanwhile, the green band of Landsat-8 (B2) showed a higher contribution to SOC than B3 and B4. 

The high contribution of the MrVBF (8.7%) to SOC variability in this study could be attributed 

to the deposition of fine organic-enriched particles and sediment [58] from the highlands in the lower 

valleys with flat and low-lying areas. Land use data is considered as the fifth important variable for 

SOC variation. Land use effects on SOC variation is related to the land-use conversion in the last two 



 

decades in Mazandaran province that have led to the exposure of soils and the rapid decomposition 

of SOC [58]. 

The TWI only contributed 3% SOC contents showing that SOC tends to accumulate in wetter, 

low-lying areas in Mazandaran province. Taghizadeh-Mehrjardi et al. [25] demonstrated that the 

wetness index is the most important terrain variable for the prediction of SOC in subsoils (>30 cm 

depth). Plan curvature (Plan.Curv), soil map, slope, aspect, channel networks base level 

(CHNL.BASE), LS factor and other variables ranked in Figure 4 made only a small contribution to 

SOC spatial variability at the province-scale used in this study but still need to be considered as input 

variables for SOC modeling by ML techniques. 

 

Figure 5. Relative importance of auxiliary data using genetic algorithms. (Refer to Table 3 for a 

definition of auxiliary data). 

3.3. Machine Learning Performances 

The average MAE, RMSE, R2, and CCC for SOC prediction by 10-fold cross-validation are shown 

in Table 4. The proposed ML models showed different abilities to predict SOC contents at unsampled 

locations at the province-scale. This could be related to the various mathematical functions of each 

algorithm [2]. The mean R2 values indicate that the SVM, ANN, Cubist, RF, and XGB models deliver 

53%, 55%, 57%, 58%, and 57% of SOC variability, respectively. However, the DNN model 

outperforms other models by delivering 65% of the SOC variability. In all ML models, the RMSE 



 

values are reported more significant than the MAE, indicating that there is a contribution of the errors 

in SOC predictions [108]. The DNN algorithm showed the lowest mean MAE value (0.59%) of the six 

studied ML algorithms. The SVM algorithm had the highest error with mean RMSE values of 0.87% 

compared with other ML models, meanwhile, the DNN outperformed with the lowest mean RMSE 

value (0.75%). ANN, Cubist, RF, and XGB showed a similar ability to predict SOC in Mazandaran 

province. Based on the performance criteria used, SVM was always a weaker ML algorithm than the 

other algorithms, while DNN was the most consistently robust algorithm. 

One of the main advantages of DNN is that the step of feature extraction was performed by the 

DNN model itself [10]. Our results confirm previous research on the performance of DNN in soil 

modeling. For instance, a recent research study introduces the DNN as an effective and robust 

modeling method to capture the complex nonlinearity between auxiliary variables and soil moisture 

[40] and SOC prediction [11,42]. DNN models by using the multiple hidden layers of the neural 

network improve the SOC prediction. Padarian et al. [11] reported that using deep learning models 

for digital soil mapping offers a simple and effective framework for future soil mapping. The DNN 

algorithm needs a large number of parameters to be fitted so that it performs well with a large dataset 

like the one used in this study. Importantly, the sample size is a critical issue for training in the DNN 

[41]. 

Table 4. Comparisons of the accuracy of six machine learning models for validation dataset by 10-

fold cross-validation (means ± standard deviation). 

ML Algorithms MAE RMSE R2 CCC 

SVM 0.69 ± 0.07 0.87 ± 0.05 0.53 ± 0.05 0.76 ± 0.05 

ANN 0.67 ± 0.08 0.85 ± 0.07 0.55 ± 0.05 0.77 ± 0.06 

Cubist 0.66 ± 0.06 0.83 ± 0.04 0.57 ± 0.04 0.78 ± 0.04 

RF 0.65 ± 0.03 0.82 ± 0.03 0.58 ± 0.05 0.78 ± 0.03 

XGB 0.66 ± 0.04 0.83 ± 0.04 0.57 ± 0.03 0.78 ± 0.04 

DNN 0.59 ± 0.06 0.75 ± 0.06 0.65 ± 0.05 0.83 ± 0.06 

ML: machine learning; SVM: support vector machine; Cubist: regression tree; XGBoost: an extreme 

gradient boosting; RF: random forest; ANN: artificial neural networks; DNN: deep neural networks; 

MAE: mean absolute error; RMSE: root mean square error; R2: the coefficient of determination; CCC: 

Lin’s concordance correlation coefficient. 

underestimated. The CCC statistic quantified the level of agreement between predicted and 

measured SOC values according to the 1:1 line. It is based on CCC values (Table 4). The The lower 

performance of other ML algorithms except for the DNN could be related to taking a large number 

of auxiliary variables into account and the original data having multiple-scales of variation, as well 

as different sources and sampling times, all of which increase the uncertainty. 

The 1:1 scatterplots of actual vs. predicted SOC using the six ML algorithms are shown in Figure 

6. It is now much easier to understand the prediction efficiency of the DNN algorithm as most 

predictions follow the 1:1 line with the exception of large observed SOC contents, which were slightly 

DNN algorithms with a 0.83 value were superior and the SVM (CCC = 0.76) was inferior. 

 



 

 

Figure 6. Actual vs. predicted values of soil organic carbon using six machine learning algorithms: 

(A) SVM, (B) ANN, (C) Cubist, (D) RF, (E) XGB, and (F) DNN. (SOC: soil organic carbon; SVM: 

support vector machine; Cubist: regression tree; XGBoost: extreme gradient boosting; RF: random 

forest; ANN: artificial neural networks; DNN: deep neural networks). 

As the deep learning method is sensitive to the size of the training dataset, DNN apparently 

yielded the best result in this study due to the large data for training. Using a deep convolutional 

neural network trained with a smaller dataset was not effective for the prediction of soil properties 

by spectral data [41]. 



 

The DNN algorithm has a more flexible structure and is explicitly able to extract more 

information from the environmental auxiliary variables and the SOC content and this is consistent 

with the results of [11,42]. Therefore, we could recommend the DNN algorithm as the best ML 

algorithm for the prediction of SOC content with reliable uncertainty in Mazandaran province. The 

DNN model in this study was successfully trained with a large number of covariates due to its more 

flexible neural structure and in turn was able to effectively combine with multiscale properties. This 

algorithm uses the data imputation for taking the missing values into account thereby the better 

model performance could be achievable especially for subsurface DSM [11]. 

The observed mean value of R2 and RMSE in the DNN algorithm can be compared to the other 

studies at the regional scale [109–111]. Wang et al. [16] only achieved an R2 mean value of 48% of the 

total spatial SOC variability using the RF algorithm in semiarid pastures of eastern Australia. 

3.4. Spatial Prediction of SOC with Uncertainty Estimates 

The numbers and percentages of SOC contents that fall within the 90% CI are shown in Table 5. 

The uncertainty analysis also showed to some extent the same trend to the ability of the ML 

algorithms to predict SOC. The DNN had the maximum percentage of observations (~88%) that fell 

within the defined CI. The spatial prediction of mean SOC content with a 5% lower confidence limit 

and 95% upper confidence limit values in Mazandaran province produced by the DNN algorithm 

are shown in Figure 7. It is clear that the combined influence of selected auxiliary variables controls 

the SOC contents. It is evident that the SOC contents tend to be higher in a strip from the west (more 

than 3%) to the east (lower than 1%) in the middle of the Mazandaran province. The precipitation 

gradient and NDVI index, which were the most highly correlated variables, were greatly responsible 

for SOC variations. The SOC content coincided in a systematic way with increasing the precipitation 

gradient, NDVI, and MrVBF indices (Figure 2). It was clear from the predicted SOC map that the 

amounts were higher in the area with high NDVI values ranging from 0.71 to 0.81 (the central part of 

the study area). The higher rainfall favors higher net primary production of plant residues and 

explains the higher SOC contents in the middle portion of the province. There is some uncertainty in 

the predicted map that may be related to the high variability in SOC data, low precision of predictors, 

inherently poor relationships between SOC and auxiliary variables, and errors in modeling [112]. 

Considering the multiple scales of auxiliary variables and the good resolution of soil 

erosion/deposition data, such data can potentially [32] reduce the spatial prediction uncertainty in 

future studies. 

The SOC contents change over time, thus the predicted map can be used as a base-line to indicate 

temporal changes. Together with the estimation of uncertainty, the prepared maps are more reliable 

and could be useful for future SOC inventories and province-scale accounting and carbon balance 

studies. 

Table 5. The numbers and percentages (%) of SOC that fall within the 90% prediction intervals 

predicted by machine learning models for 10-fold cross-validation. 

ML Models All 

Number of Points  % 

Inside CI Outside CI Inside CI Outside CI 

5 to 95% <5% >95% 5 to 95% <5% >95% 

SVM 1879 1490 187 202 79.30 9.95 10.75 

ANN 1879 1524 165 190 81.11 8.78 10.11 

Cubist 1879 1580 155 144 84.09 8.25 7.66 

RF 1879 1559 150 170 82.97 7.98 9.05 

XGB 1879 1587 140 152 84.46 7.45 8.09 

DNN 1879 1650 110 119 87.81 5.85 6.33 

ML: machine learning; SVM: support vector machine; Cubist: regression tree; XGBoost: extreme 

gradient boosting; RF: random forest; ANN: artificial neural networks; DNN: deep neural networks; 

CI: confidence interval. 



 

 

Figure 7. Spatial prediction of (A) upper, (B) mean, and (C) lower confidence limits of soil organic 

carbon (SOC) using a deep neural network model. 

3.5. SOC Contents in Soil Classes and Geological Eras 

The mean comparison of the SOC contents within different soil orders and suborders is shown 

in Table 6. The Ultisols and Mollisols with mean SOC contents of 4.04% and 3.20%, respectively, had 

higher surface SOC compared with other soils. Most Ultisols and Mollisols were found in the dense 

forest in Mazandaran province showing the higher C inputs into the soils. The high precipitation 

with a relatively low MAT in the center of the Mazandaran province leads to higher SOC 

accumulation at the soil surface and in turn higher clay content in a Bt horizon [6,113] and the deeper 

Bk horizon [6,113,114]. Entisols had the highest SOC variability (CV = 40.66%) followed by the 

Inceptisols (33.94%), Alfisols (CV = 33.64%), and Mollisols (30.55%). The SOC under Mumults had 

the highest SOC with the lowest SOC variability (CV = 15.63) whereas Fluvents had significantly the 

lowest SOC due to the higher SOC decomposition caused by the exposure (tillage) and loss of SOC 

by erosion. 



 

Table 6. The SOC changes in different soil orders and suborders in Mazandaran province. 

Soil Orders Mean a CV (%) Soil Suborders Mean a CV (%) 

Inceptisols 2.45 B 33.94 

Aquept 2.85 C 20.11 

Xerepts 2.06 B 36.26 

Alfisols 2.55 B 33.64 
Aqualfs 1.94 C 21.17 

Udalfs 3.17 B 27.44 

Entisols 2.78 AB 40.66 

Aquents 2.51 BC 14.91 

Fluvents 1.91 C 22.81 

Orthents 3.93 A 23.52 

Mollisols 3.20 A 30.55 

Aquolls 2.43 BC 21.64 

Rendols 4.03 A 22.43 

Udolls 3.33 B 24.08 

Xerolls 2.31 BC 34.97 

Ultisols 4.04 A 12.63 Humults 4.04 A 15.63 

a: Values with different letters in each column indicate significant differences (p < 0.05); CV: coefficient 

of variations. 

The mean SOC contents spread across the Mazandaran province differed in soils under different 

soil SMR and STR classes as shown in Figure 8. The SOC mean value was the highest in the udic SMR 

class with mean values of 3.85% followed by the aquic (2.45%) and xeric (2.10%), respectively. The 

high precipitation for soils with the udic SMR class [57] led to the high aboveground biomass 

production inputs. The greater SOC contents in soils having the aquic SMR class compared to the 

xeric SMR could be related to anaerobic (reducing) conditions decreasing the rates of organic matter 

decomposition [115]. 

The soils having mesic STR classes have high SOC content with a mean value of 2.75%, which 

was significantly higher than the thermic (2.20%) and cryic (1.25%) STR classes, respectively (Figure 

8). Soils in the thermic STR class with higher MAT in low-lying areas had lower SOC contents 

compared with mesic STR classes reflecting a negative effect of MAT on SOC contents in Mazandaran 

province due to the high SOC decomposition rate. The small area of the province with a cryic STR 

class has low vegetation cover in high-altitude lands accompanied by unsuitable temperature 

conditions for plant growth leading to low inputs of plant residues and biomass. Overall, SOC has 

been increased with precipitation and decreased with temperature associated with a given altitude 

in the study area. Moreover, soils formed on younger geological formation have lower SOC contents. 

The mean SOC contents in soils under the Cenozoic geological era (2.35%) had significantly lower 

SOC contents compared with soils under Mesozoic (3.12%), Paleozoic (3.35%) and Proterozoic 

(3.29%) eras, respectively. The higher observed SOC developed on the older geological formations 

could be attributed to the increased time for SOC to develop and aboveground carbon inputs by the 

dense vegetation cover inducing the SOC accumulation. 



 

 

Figure 8. Mean comparison of soil organic carbon values within (A) soil moisture regime, soil 

moisture regime (SMR), classes, (B) the soil temperature regime, soil temperature regime (STR), 

classes, and geological eras in the Mazandaran province. Values with different letters in each column 

indicate significant differences (p < 0.05). The maps of SMR and STR classes were produced by Emadi 

et al. [57] according to the Newhall model. 



 

3.6. SOC Contents in Landform Units and Land Uses 

The soils formed on mountainous landforms had the highest SOC (3.11%) values with forest 

land use, while there was little difference in SOC contents for the other landforms except for the soils 

developed on alluvial fans that had significantly the lowest SOC contents (1.57%) with high coarse 

fractions (soil particles greater than 2 mm) (Figure 9). The alluvial fans with unstable landforms, have 

a high susceptibility to erosion and have little water holding capacity providing the lowest 

aboveground biomass production in the study area. The high degrees of stability in mountain 

landforms especially in the summit areas [6] showed more developed soils including the Ultisols, 

Mollisols, and Alfisols. These are closer to the steady-state conditions relative to the younger 

landforms (Fluvents) leading to greater humification and SOC accumulation on mountain landforms 

that are currently covered by dense forest. On more geomorphically dynamic/unstable landforms, 

organic layers can be removed from the developing surface inducing the SOC losses through erosion 

[115]. 

 

Figure 9. Mean comparison of soil organic carbon values within (A) physiographic units and (B) land 

uses in the Mazandaran province. Values with different letters in each column indicate significant 

differences (p < 0.05). I indicates the error bar (SD) in all columns. 



 

The disturbed soils in croplands and orchards had significantly lower SOC compared with 

forests and rangelands except for poor rangelands. Soils in residential, dry farming, poor rangelands, 

and seashore areas had SOC mean values of 2.08%, 1.78%, 1.71%, and 0.75%, respectively. 

Unsurprisingly, the dense forestlands have significantly the highest SOC content with mean values 

of 3.77% (Figure 9) followed by the semidense forestlands (2.90%), low dense forestlands (2.50%), 

good rangelands (2.57%), and moderate rangelands (2.03%), respectively. Emadi et al. [58] reported 

that the cultivation of virgin forest and pasturelands in Mazandaran province led to about 35 and 

30% reduction of SOC content, respectively. The conversion of forest and rangelands into the 

croplands induces SOC oxidation whereby the topsoil SOC decreases. 

4. Conclusions 

The objective of this study was to determine a reliable algorithm for predicting the SOC contents 

in Mazandaran province through consideration of six different ML algorithms and using 105 

environmental auxiliary variables derived from terrain attributes, remote sensing, and climatic data. 

Thirty-five auxiliary predictors were selected by the GA method. Precipitation, NDVI, MODIS day 

temperature, MrVBF, and land use were the most important predictors. The results show that the 

DNN algorithm outperformed other ML algorithms in terms of the power of the prediction 

uncertainty at the province scale demonstrating that DNN is suitable for use as a robust estimator for 

SOC mapping in Mazandaran province. The SOC was lower in soils under late geological age 

(Cenozoic era), while it is accumulated in more developed Ultisols and Mollisols with virgin forest 

and rangelands in udic SMR classes spread across the middle strip of Mazandaran province. The 

mesic STR class has significantly higher SOC with high vegetation cover and biomass and probably 

with a lower C decomposition rate. The predicted SOC map could be used as a base-line for further 

studies and projects related to the C sequestration development both locally in soils of the 

Mazandaran province and globally at the worldwide scale. Although the DNN algorithm was found 

to be the best algorithm to map SOC contents more accurately than other studied ML algorithms, the 

search for optimized spatial interpolation algorithms is still in its early stages in this province. 

Moreover, further investigation should be conducted to test the potential of other combination 

algorithms in this province and test the reliability of DNN reliability for other regions in Iran with 

different climate and agro-ecological structures. 
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Appendix A 

Table A1. Environmental auxiliary data initially considered for predicting the distribution of SOC. 

No. Covariates Definition 

1 Aspect The compass direction of the maximum rate of change 

2 Catchment Slope Average gradient above flow path 

3 Channel networks base level The interpolated channel network base level elevations 

4 Convergence Index 
It calculates an index of convergence/divergence regarding to 

overland flow 

5 Cross-Sectional Curvature 
The surface normal and a tangent to the contour—perpendicular to 

maximum gradient direction 

6 Diffuse Insolation Calculate the diffuse incoming solar radiation 

7 Direct Insolation Calculate the direct incoming solar radiation 

8 Downslope Curvature 
Calculates the local curvature of a cell as sum of the gradients to its 

neighbor cells 

9 Elevation Height above sea level (m) 

10 Flow Accumulation Calculates accumulated flow  

11 Flow Path Length 
The distance from any point in the watershed to the watershed 

outlet 

12 Local Curvature The degree to which a curve deviates from a straight line 

13 Mass Balance Index Balance between soil mass deposited and eroded 

14 
Multiresolution Ridge-top 

Flatness Index 
Measure of flatness and lowness 

15 
Multiresolution Valley Bottom 

Flatness Index 
Measure of flatness and lowness 

16 Normalized Height Normalized height is defined by slope height and valley depth 

17 Openness (NegOpen) How wide a landscape can be viewed from any position 

18 Openness (PosOpen) How wide a landscape can be viewed from any position 

19 Plan curvature 
The curvature of a contour line formed by intersecting a horizontal 

plane with the surface 

20 Relative Slope Position The position of one point relative to the ridge and valley of a slope 

21 Slope Gradient Average gradient above flow path 

22 Slope Length Calculate the length of slope 

23 Slope Length factor  Slope Length and Steepness factor 

24 Topographic Wetness index Ln (FA/SG) 

25 Total Insolation Calculate the total incoming solar radiation 

26 Upslope Curvature 
The distance weighted average local curvature in a cell’s upslope 

contributing area  

27 Valley Depth The vertical distance to a channel network base level 

28 Vector Terrain Ruggedness Measures terrain ruggedness 

29 
Vertical distance to channel 

networks 
The altitude above the channel network 

30 Wind Effect The Wind Effect is a dimensionless index 

31 Blue  Wavelength of 0.450–0.515 μm of Landsat 8 spectral band 

32 Green  Wavelength of 0.525–0.600 μm of Landsat 8 spectral band 

33 Red  Wavelength of 0.630–0.680 μm of Landsat 8 spectral band 

34 Near infrared  Wavelength of 0.845–0.885 μm of Landsat 8 spectral band 

35 Shortwave infrared-1  Wavelength of 1.560–1.660 μm of Landsat 8 spectral band 

36 Shortwave infrared-2  Wavelength of 2.100–2.300 μm of Landsat 8 spectral band 

37 Principal Component 1 The first principal component of Landsat 8 spectral band 

38 Principal Component 2 The second principal component of Landsat 8 spectral band 

39 Principal Component 3 The third principal component of Landsat 8 spectral band 

40 TASSELED CAP 1 The overall brightness of the image 

41 TASSELED CAP 2 The overall greenness of the image 

42 TASSELED CAP 3 The overall wetness of the image 

43 
Wetness brightness difference 

index 
TASSELED CAP 3/TASSELED CAP 1 



 

44 
Atmospherically Resistant 

Vegetation Index  
(−0.18 + 1.17 (NIR − RED/NIR + RED)) 

45 
Blue-Wide Dynamic Range 

Vegetation Index  
(0.1 × NIR − BLUE)/(0.1 × NIR + BLUE) 

46 Brightness Index ((RED)2 + (NIR)2)0.5 

47 Canopy Index (SWIR-1-GREEN) 

48 Carbonate Index (RED/GREEN) 

49 Chlorophyll vegetation index (NIR × RED/(GREEN)0.5 

50 Clay Index (SWIR-1/SWIR-2) 

51 Coloration Index (RED − GREEN/RED + GREEN) 

52 Differenced Vegetation Index (NIR − RED) 

53 Enhanced Vegetation Index (NIR − RED)/(NIR + C1 × RED − C2 × BLUE + L) 

54 Ferrous Minerals  (SWIR-1/NIR) 

55 
Green Atmospherically 

Resistant Vegetation Index 
(NIR − (GREEN − (BLUE − RED))/(NIR − (GREEN + (BLUE − RED)) 

56 Green Leaf Index (2 × GREEN − RED − BLUE)/(2 × GREEN + RED + BLUE) 

57 
Green Normalized Difference 

Vegetation Index 
(NIR − GREEN/NIR+ GREEN) 

58 Green Vegetation Index (0.29 × GREEN − 0.56 × RED + 0.6 × SWIR-1 + 0.49 × GREEN) 

59 Green-Blue NDVI (NIR − (GREEN + BLUE)/NIR + (GREEN + BLUE)) 

60 Green-Red Vegetation Index (GREEN − RED) 

61 Gypsum index  (SWIR-1 − NIR)/(SWIR-1 + NIR) 

62 Hue Index (2 × (RED − GREEN − BLUE))/(GREEN − BLUE) 

63 
Infrared Percentage Vegetation 

Index 
(NIR/(NIR+RED)) 

64 Iron Oxide (RED/BLUE) 

65 Leaf Water Content  (SWIR-1/SWIR-2) 

66 
Modified Soil Adjusted 

Vegetation Index 
(0.5 × ((2 × (NIR + 1)) − (((2 × NIR) + 1)2 − 8 × (NIR − RED))0.5)) 

67 Near Infrared Ratio (NIR/RED) 

68 Norm GREEN (GREEN/(NIR + RED + GREEN)) 

69 Norm NIR (NIR/(NIR + RED + GREEN)) 

70 Norm RED (RED/(NIR + RED + GREEN)) 

71 Normalized Based ((NIR − (BLUE + GREEN)/(NIR + (BLUE + GREEN))) 

72 Normalized Canopy Index (SWIR-1 − GREEN/SWIR-1 + GREEN) 

73 
Normalized Difference 

Moisture Index 
(NIR − SWIR-1)/(NIR + SWIR-1) 

74 
Normalized Difference Salinity 

Index 
(RED − NIR)/(RED + NIR) 

75 
Normalized Difference 

Vegetation Index  
(NIR − RED)/(NIR + RED)  

76 
Perpendicular Vegetation 

Index 
(NIR − r) cos µ − RED × sin µ 

77 Ratio Vegetation Index  (NIR/RED)/(GREEN + RED) 

78 Redness Index (RED^2/BLUE × GREEN) 

79 Reflectance Absorption Index  (NIR/(RED + SWIR-1)) 

80 
Renormalized difference 

Vegetation Index 
(NIR − RED)/((NIR + RED) ^ 1/2) 

81 MODIS Red Wavelength of 0.620–0.670 μm of MODIS spectral band 

82 MODIS Near Infrared  Wavelength of 0.841–0.876 μm of MODIS spectral band 

83 MODIS Night Temperature Land Surface Temperature/Emissivity Daily L3 Global 1 km 

84 MODIS Day Temperature Land Surface Temperature/Emissivity Daily L3 Global 1 km 

85 
MODIS Normalized Difference 

Vegetation Index  
(MODIS NIR − MODIS RED)/(MODIS NIR + MODIS RED)  

86 MODIS Brightness Index ((MODIS RED)2 + (MODIS NIR)2)0.5 

87 Soil Adjusted Vegetation Index (1+ L) × (NIR − RED)/(NIR + RED + L) 

88 
Specific Leaf Area Vegetation 

Index 
(NIR/RED + SWIR-1) 



 

89 Stress Related ((BLUE× GREEN)/RED) 

90 Vegetation Index (SWIR-2 − SWIR-1/SWIR-2 + SWIR-1) 

91 Annual Precipitation It is derived from the monthly rainfall values 

92 
Precipitation Seasonality 

(Coefficient of Variation) 
It is derived from the monthly rainfall values 

93 Precipitation of Wettest Month It is derived from the monthly rainfall values 

94 Precipitation of Driest Month It is derived from the monthly rainfall values 

95 Mean Annual Temperature It is derived from the monthly temperature values 

96 Mean Annual Wind Speed It is derived from the monthly wind speed values 

97 
Mean Annual Water Vapor 

Pressure 
It is derived from the monthly water vapor pressure values 

98 
Mean Annual Actual Evapo-

Transpiration 
It is derived from the monthly actual evapo-transpiration values 

99 
Mean Annual Potential Evapo-

Transpiration 
It is derived from the monthly potential evapo-transpiration values 

100 Global Aridity Index It shows the rainfall deficit for potential vegetative growth 

101 Soil Map Soil and Water Research Institute of Iran 

102 Geology Map Soil and Water Research Institute of Iran 

103 Land Use Map Soil and Water Research Institute of Iran 

104 Physiography Map Soil and Water Research Institute of Iran 

105 Erosion Classes Map Soil and Water Research Institute of Iran 
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