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Abstract
Efficient task allocation in multi-worker service environ-
ments, coupled with the necessity to adhere to strict dead-
lines, poses a multifaceted challenge in fields like service
operations, operations management, logistics, and resource
management. This study tackles the novel problem of ’deadline-
aware multi-worker task planning.’ This entails optimizing
the allocation and planning of tasks among multiple workers
to maximize task completion within specific time constraints.
We introduce ACID, a novel flexible graph optimizationmeta-
heuristic algorithm, inspired by and extending traditional ant
colony optimization. ACID uniquely incorporates heuristic
information from task features and generational or iteration
performance data. This includes task order, completion time,
and both individual and swarm-level performance metrics,
to devise an effective worker task plan. Through extensive
experiments and simulations across varied scenarios, ACID
demonstrates a significant improvement in task completion
rates under tight deadlines compared to conventional meth-
ods. This research offers a valuable tool for industries requir-
ing efficient task distribution while ensuring adherence to
deadlines, with broad applications in logistics, e-commerce,
manufacturing, and service industries.

CCS Concepts: • Scheduling; • Task Allocation; • Multi-
agent systems; • Swarm intelligence;

Keywords: Ant Colony Optimization, Task Planning, Task
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1 Introduction
Efficient allocation and planning of tasks in operational envi-
ronments are crucial for industries ranging from hospitality
to transportation, including healthcare and emergency ser-
vices, to optimize productivity and adhere to strict deadlines.
Notably, service-oriented companies like Uber, Didi, Lyft, Do-
ordash, Meituan, and Instacart rely on effective real-time task
assignment to meet consumer demands. The ride-sharing
sector alone, for instance, has amassed a global value of $1.2
trillion as of 2023
In the commercial real estate service sector, efficient co-

ordination of operations like maintenance and repair tasks
is vital. These operations range from plumbing and electri-
cal fixes to appliance repairs and inspections, essential for
timely resolutions and service continuity

The development of schedules for large, distributed work-
forces introduces significant optimization challenges. Effec-
tive algorithms are needed to map tasks to workers, con-
sidering each individual’s capabilities, locations, and time
constraints
To tackle this problem, we have developed a specialized

Ant Colony Optimization (ACO) inspired algorithm named
ACID. This algorithm employs a metaheuristic search ap-
proach to derive near-optimal solutions. Its innovations in-
clude a deadline-focused heuristic function, a turn-based con-
struction process, and an integrated local-global pheromone
learning policy
The remainder of the paper is structured as follows: We

first formulate the DA-MuW-TaP problem and discuss re-
lated works. Next, we detail ACID’s allocation methodology
and the decision-making policies of ants. Subsequently, we
present experimental results from four geographical cov-
erage scenarios, analyze the performance differences, and
conclude with suggestions for future enhancements.

2 Problem formulation
In this section, we introduce the formulation of the dead-line
aware multi-worker task planning DA-MuW-TaP problem.
To solve this problem requires finding the optimal alloca-
tion of tasks to workers and deciding the order in which
the tasks are completed by finding a plan for each of the 𝑘
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workers W = {𝑤1, ...,𝑤𝑘 } such that all requested tasks T
are completed on time.

The worker-task relation is represented by an unweighted
directed graph𝐺 = (𝑉 , 𝐸). Each worker𝑤𝑖 has a set of goal
vertices 𝑉𝑔 ∈ 𝑉 which are the tasks the worker is eligible to
undertake at any given time 𝑇 . A worker’s tasks are to be
planned such that the worker moves from one goal vertex
to the next completing a tasks one at a time as shown in
Fig 3. For instance, given a worker 𝑤1 with goal vertices
{𝑉 1

𝑔 = 𝑣1𝜏 , 𝑣
2
𝜏 , 𝑣

3
𝜏 , 𝑣

4
𝜏 , 𝑣

5
𝜏 }, we can find an optimal plan such

that the worker completes tasks {𝑣1𝜏 , 𝑣2𝜏 , 𝑣4𝜏 } in the sequential
order {𝑣2𝜏 ↦→ 𝑣4𝜏 ↦→ 𝑣1𝜏 } while the other tasks {𝑣3𝜏 , 𝑣5𝜏 } are
allocated to other worker(s). Note that the goal vertices of
two workers can overlap i.e two or more workers can be eli-
gible for completing a given task. The objective is to find the
optimal plan for all workers such that all tasks are completed
on time.

2.1 Tasks and Deadlines
A task 𝑣

𝑗
𝜏 ∈ T where 𝑗 is the task id is defined with fea-

tures (𝑊𝜏 , 𝑑
𝑗
𝜏 , 𝑔𝑒𝑜

𝑗
𝜏 , 𝑥

𝑗
𝜏 ) where𝑊𝜏 is the set of workers that

can undertake the task, 𝑑 𝑗
𝜏 is the task-deadline, 𝑔𝑒𝑜 𝑗𝜏 is the

geo-location and 𝑥 𝑗
𝜏 is other features related to task (can be

task constraints). We say that task 𝑣
𝑗
𝜏 is completed and on

time if any worker 𝑤𝑖 ∈ 𝑊𝜏 arrives at goal vertex 𝑣
𝑗
𝜏 and

completes the task before its deadline 𝑑 𝑗
𝜏 but not on-time if

it is completed after the deadline. A worker can only com-
plete one task at a time. In this study we assume planning
for tasks on a daily basis. Tasks for the day are provided
along with the staff or workers available. This is realistic in
most cases and in many applications. Tasks that take longer
than a day can easily be in-cooperated into the problem and
when assigned to the worker, the worker will not be made
available for other tasks until the task is completed.

2.2 Tasks Allocation and Planning
The allocation of workers to task in the problem we set
to solve is subject to the following constraints (1) no more
than one worker can be assigned the same task (2) a worker
cannot complete two tasks simultaneously. A task allocation
and plan for all workers and tasks on a given day is given
by P = {𝑝𝑖 : 𝑖 ∈ 𝑘} where 𝑝𝑖 is the task plan, the ordering
of goal vertices for worker 𝑖 (𝑤𝑖 ).

2.3 Allocation and Planning Objective
The objective of the DA-MuW-TaP problem is to allocate
and plan execution P = {𝑝𝑖 : 𝑖 ∈ 𝑘} for all available tasks
for workers on a daily bases such that the number of tasks
completed on time is maximized. Each worker has a task
execution schedule or plan 𝜋𝑖 with worker 𝑖 𝑤𝑖 to complete
a number of tasks T𝑖 ∈ T . Each task has a deadline 𝑑 𝑗

𝜏 and a
worker execution time 𝑡𝑖, 𝑗 (the time taken to complete task
𝑗 by worker 𝑖). From the plan 𝜋𝑖 we compute a score for a

worker by examining if the worker𝑤𝑖 completing a task 𝑣 𝑗𝜏
(or simply task 𝑗 ) at time 𝑇𝑖, 𝑗 ( 𝑗 ∈ T𝑖 ) before the deadline
𝑑
𝑗
𝜏 using the formula in Equation 1. Note that 𝑗 is used for
simplicity to represent task 𝑣 𝑗𝜏 .

R𝑖 =
∑︁
𝑗∈T𝑖

1[𝑇𝑖, 𝑗 < 𝑑
𝑗
𝜏 ] (1)

R𝑖 gives a score of 1 for each on-time task completion.
For the all tasks and workers, the overall score is computed
using Equation 2

R =
∑︁
𝑖∈𝑘

R𝑖 (2)

Our objective therefore is to allocate tasks and schedule a
plan so as to maximize the number of on-time task completed
by all workers.

3 Related Work
The Deadline-Aware Task Planning (DA-MuW-TaP) problem
addresses the efficient allocation of tasks to workers within
specified deadlines, with related challenges extensively ex-
plored in the literature.

The study by Huang et al.
Despite differences in terminology, the DA-MATP prob-

lem is analogous to the proposed DA-MuW-TaP problem of
allocating human workers to tasks with deadlines but hasn’t
been explored in the problem scenario which this study aims
to cover. The mobile robots/agents correspond to workers,
the pick stations correspond to tasks, and order preparation
corresponds to task completion. Both aim to maximize tasks
completed on time.
A widely related problem studied is multi-agent pickup

and delivery (MAPD) planning, which assigns agents to de-
livery tasks involving pickup and destination locations

Overall, the literature on coordinating multiple agents for
deadline-aware task completion is still nascent. DA-MATP
provides a new problem formulation formulti-agent deadline-
aware planning with applications in warehouse automation.
In this study, the same formulation is adapted to model hu-
man worker allocation problems in DA-MuW-TaP. Addi-
tionally, this study proposes a graph based ACO modelling
approach to solve the DA-MuW-TaP prooblem.

4 Solution methodology
To overcome the shortcomings of existing methods for the
DA-MuW-TaP problem, we proposed ACID, an Ant Colony
Inspired algorithm for DA-MuW-TaP that takes into ac-
count worker and task features and the collective perfor-
mance of all workers during allocation and planning to
evolve solutions. In this section, we briefly introduce ACO
which helps set the foundation for understanding our pro-
posed methodology in the followup section.
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4.1 Ant Colony Optimization (ACO) Primer
ACO is a powerful metahheuristic that has been used to solve
many hard problems in the field of operations research pio-
neered by it’s performance on the TSP a popular benchmark
for testing the performance of optimization algorithms

Ant Colony Optimization (ACO) comprises essential build-
ing blocks for solving optimization problems that include
Ant Agents, Pheromone Trails, Probabilistic Decision
Rule, Local Search Heuristics and Pheromone Update
Mechanism. Modeled after real ants, artificial ant agents
navigate the solution space to find optimal solutions, itera-
tively selecting components like cities in the Traveling Sales-
man Problem (TSP) through a probabilistic process. Commu-
nication among agents relies on decentralized pheromone
trails, where pheromones signify solution quality and are
adjusted based on desirability. The ants’ decision rule com-
bines pheromone levels and heuristic information, incorpo-
rating optional local search heuristics for solution refinement.
Pheromone levels are updated after each iteration, reinforcing
paths leading to better solutions. ACO’s adaptability extends
beyond TSP, making it a versatile metaheuristic algorithm
for various combinatorial optimization challenges.
In the context of the Traveling Salesman Problem: Cities

represent the problem components, and the goal is to find the
shortest possible tour that visits each city exactly once and re-
turns to the starting city. Ants construct solutions (tours) by
selecting cities probabilistically based on pheromone levels
and heuristic information.
Building new variants of ACO beyond TSP involves sev-

eral key steps. First is problem representation, which defines
how solutions are represented in the context of the specific
problem. Following this, is the definition of pheromone up-
date rules, the pheromone update mechanism is tailored to
align with the problem-specific evaluation criteria. Adjust-
ing heuristics comes next, involving the modification of the
heuristic information used by ants based on problem-specific
characteristics. Additionally, if the optimization problem in-
cludes constraints, it is crucial to incorporate them into the
construction and update mechanisms. By customizing these
components, ACO can be effectively applied to a broad spec-
trum of optimization problems, underscoring its versatility
and robustness as a metaheuristic algorithm.

4.2 Ant Colony Inspired DA-MuW-TaP Algorithm
(ACID)

The solution framework for the DA-MuW-TaP is as shown in
Figure 1. We solve the DA-MuW-TaP for a specific scenario
in which task request are sent in through text, voice, and/or
picture description and a multi-modal algorithm deciphers
the task, labeling its attributes or features (𝑑 𝑗

𝜏 , 𝑔𝑒𝑜
𝑗
𝜏 , 𝑥

𝑗
𝜏 ). The

workers scheduled for service on the given day are provided
and the worker task relation is mapped. A worker has a rela-
tion to a task if he/she can undertake the task. The workers

and tasks are then fed to an allocation and planning algo-
rithm to produce an optimal task allocation and plan for
workers. In this study we focus on the task allocation and
planning algorithm which takes as input the task-worker
relation and produces a plan for workers.
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Figure 1. Framework for the DA-MuW-TaP Problem

Our proposed algorithm is Ant colony inspired which
requires us to define an appropriate representation of the
workers and tasks as a graph. After defining a representa-
tion, we outline the steps involves in the decision making
process which include solution initialization, ant movement
through a Probabilistic Decision Rule, Local Search Heuris-
tics, Pheromone Update Mechanism, and termination crite-
rion.

4.2.1 Representation. A worker-task graph 𝐺𝑤,𝑣 is con-
structed using the worker-task relation and filled with 0’s
for worker not having the skill for a task and 1’s otherwise.
The graph is of size number of workers by number of tasks
and tells us which task each worker is eligible to undertake.
Each ant 𝐴𝑛𝑡𝑖 ∈ {𝐴𝑛𝑡1, ..., 𝐴𝑛𝑡𝑘 } in the swarm represents

a worker and it’s solution 𝑝𝑖 represents a task plan for a
worker. The number of ants in the swarm therefore is equal
to the number of workers available at any given day and the
solutions for ants in the swarm represents the plan for all
workers.

This solution representation enables ants to independently
plan their tasks while also taking into consideration the plan
of other ants. Using the worker-task graph𝐺𝑤,𝑣 , an ant 𝐴𝑛𝑡𝑖
can only choose from it’s eligible tasks 𝑉 𝑖

𝑔 (goal vertices)
at any point in time if the tasks has not been chosen by
another worker already. This presents a challenge, with the
question of what is the most efficient way for ants to choose
a task such that it doesn’t affect other ant choices negatively.
We address with ACID using a specialized turn based ant
movement strategy.
We represent the likelihood of a worker to be assigned a

taskwith pheromone trails 𝑃𝑤,𝑣 . The intensity of the pheromone
trail represents the desirability of a worker to choose a task
and can be retrieved from the pheromone graph as shown
in Fig 2.

4.2.2 Algorithm Steps. Haven designed a representation
of the worker-task and pheromone graph, we are left to
define how the ant colony updates the pheromone graph
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Figure 2. Task-Worker relation and Pheromone graph rep-
resentation

through a collective learning procedure inorder to discover
the most suitable allocation and plan for workers. The steps
involved in the learning process include pheromone initial-
ization, ant movement, pheromone update mechanism and
termination.

Initialization: Pheromone for worker-task not connected
is initialized to 0 and 1/|T𝑖 | otherwise, where |T𝑖 | is the num-
ber of goal vertices for worker 𝑖 . This strategy gives the same
preferences to all tasks for a worker at initialization. The
swarm updates this graph through it’s learning process with
the objective to find a preferential allocation and plan for all
workers.
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Figure 3. Framework for the DA-MuW-TaP Problem

Ant Movement: This is an important step in the solution
search process and determines how ants communicate and
traverse the worker task graph and. This enaables the ant
agents to iteratively learn how to make better decision for
themselves and for the entire swarm. Ant movement requires
each ant agent to make a choice of choosing and adding a
task too it’s task plan. How the ants move, communicate and
makes these choices determines how they refine their choices
and ultimately how the final solution is reached. We design a
Round Base Turn-by-Turn allocation movement of ants
in which ant take turns choosing which tasks to add to their
plan as shown in Figure 3. The design is such that all tasks
are equally distributed across workers and the sequence is of
allocation is taken into account. This is important because

the order in which a worker completes a task affects his/her
efficiency.

Round Base Turn-by-Turn allocation is a way in which ant
agents sequentially decide which goal vertex or task to add
to their plan. Ants take turns deciding which task to add to
their plan influenced by pheromone and heuristic informa-
tion provided to them and pick a task probabilistically using
Equation 3. After each round, there are a given number of
tasks left to be allocated and a worker is eligible for a round
if it has a goal vertex in the round. The rounds continue until
all tasks have been allocated and each agent has come up
with a plan. During each round, agents are selected randomly
to decide on a task to add to their plan. More specifically,
if we have k-ants, each ant is randomly chosen to pick a
task. After the ant has picked a tasked the next ant from
the remaining k-1 ants is again randomly selected to pick a
task. This continues until all ants have picked a task. After
all the ants have completed their plan, the solution of every
individual ant is evaluated along with the global solution
and is used to update the pheromone intensity.
In each generation, ants take turns in rounds sequen-

tially adding a task to their plan based on a combination
of pheromone intensity and a heuristic factor. After each
generation, ants agents update their best allocation plan
𝑝𝑏𝑒𝑠𝑡𝑖 which is the plan in which the highest number of its
tasks are completed on time evaluated using Equation 1. The
global best solution P𝑏𝑒𝑠𝑡 for the entire swarm is also up-
dated after every generation. If there is a tie in performance
for 𝑝𝑏𝑒𝑠𝑡𝑖 or P𝑏𝑒𝑠𝑡 , both of the solutions are stored in a list.
The probability of 𝐴𝑛𝑡𝑖 adding a goal vertex 𝑣 𝑗𝜏 to it’s plan
when deciding is given by Equation 3.

𝑃𝑖, 𝑗 =
(𝜑𝑖, 𝑗 )𝛼 ∗ (𝐻𝑖, 𝑗 )𝛽∑
𝑖,𝑙 (𝜑𝑖,𝑙 )𝛼 ∗ (𝐻𝑖,𝑙 )𝛽

(3)

where 𝜑𝑖, 𝑗 and 𝐻𝑖, 𝑗 are the pheromone and heuristic values
between ant 𝑖 and task 𝑗 respectively and𝛼 , 𝛽 their respective
influence parameter on the choice. 𝑙 is every goal vertex
available for selection at the given point for ant 𝐴𝑛𝑡𝑖 i.e
𝑙 ⊆ 𝑉 𝑖

𝑔 .
Heuristic information between a worker 𝑤𝑖 and task

𝜏 𝑗 is determined using the distance needed to travel to the
task and the time taken to complete the task by the worker.
Therefore the longer it takes for a worker and the further
the worker is from the task, the less likely it will be for the
worker to finish the task in time. The heuristic information
used for deciding on a task is given by Equation 4.

𝐻𝑖, 𝑗 =
1

𝑑𝑖, 𝑗 + 𝑡𝑖, 𝑗
(4)

where 𝑑𝑖, 𝑗 and 𝑡𝑖, 𝑗 are respectively the distance and time for
𝐴𝑛𝑡𝑖 to complete task 𝑗 or 𝑣 𝑗𝜏 . If the time is higher than the
max completion time when added to the plan, the heuristic
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information is set to 0. This avoids agents from choosing
tasks that lead to late task completion.
Pheromone Update: Pheromone update takes place at

the end of each generation. A generation is one complete
task allocation and planning step. Pheromone is updated
based on the order in which the task where added to the plan
and the quality of the local and global best solution. The
update of the pheromone graph 𝑃𝑤,𝑣 by 𝐴𝑛𝑡𝑖 against each
task 𝑣 𝑗𝜏 is given by Equation 5.

𝜑𝑖, 𝑗 = (1 − 𝜌)𝜑𝑖, 𝑗 +
1
𝑅 𝑗

Θ𝑖, 𝑗

( Υ𝑝𝑏𝑒𝑠𝑡
𝑖

Φ𝑝𝑏𝑒𝑠𝑡
𝑖

+
ΥP𝑏𝑒𝑠𝑡

ΦP𝑏𝑒𝑠𝑡

∗ ΛP𝑏𝑒𝑠𝑡

𝑖, 𝑗

)
(5)

where 𝜌 is the evaporation rate parameter of the pheromone
usually in the range [0,1]. 𝑅 𝑗 is the rank of task 𝑣 𝑗𝜏 in the plan
of 𝐴𝑛𝑡𝑖 . This is important because it ensures the order in
which a worker completes a task is taken into account and
therefor a worker that is to complete a task first in a good
plan is given higher priority and is likely to be chosen first
during planning. Θ𝑖, 𝑗 is binary and is 1 if task j is completed
on time by worker i and 0 otherwise. this enables that we
only update pheromone to tasks that are completed on time
and therefore reduce preference for tasks that will not be
completed on time acting as a natural learned constraint.

A worker𝑤𝑖 has it’s individual task plan 𝑝𝑖 and this plan is
a subset of a global plan P. A good local and global solution
is one in which the most or all tasks will are completed on
time. We make use of the local and global solutions 𝑝𝑏𝑒𝑠𝑡𝑖 and

P𝑏𝑒𝑠𝑡 to update the pheromone graph.
Υ
𝑝𝑏𝑒𝑠𝑡
𝑖

Φ
𝑝𝑏𝑒𝑠𝑡
𝑖

is proportion

of all task completed on time to all task in task in the current
best plan of 𝐴𝑛𝑡𝑖 . Υ𝑝𝑏𝑒𝑠𝑡

𝑖
is the number of tasks completed

on time and Φ𝑝𝑏𝑒𝑠𝑡
𝑖

is the total number of tasks in plan 𝑝𝑏𝑒𝑠𝑡𝑖 .

This gives us the quality of the local solution. ΥP𝑏𝑒𝑠𝑡
ΦP𝑏𝑒𝑠𝑡

is the
proportion of the total number of task completed on time to
all the tasks available for the global best solution. this gives
us the quality of the global solution. The global solution only
contributes to pheromone deposition when 𝐴𝑛𝑡𝑖 possesses
task 𝑗 in both the local and global best solution represented
by ΛP𝑏𝑒𝑠𝑡

𝑖, 𝑗
. ΛP𝑏𝑒𝑠𝑡

𝑖, 𝑗
is 1 if a 𝑗 of 𝐴𝑛𝑡𝑖 in 𝑝𝑏𝑒𝑠𝑡𝑖 is in P𝑏𝑒𝑠𝑡 as the

task for𝐴𝑛𝑡𝑖 otherwise the value is 0. This enables the global
best solution to contribute only when the local and global
solution align allowing us to reinforce learning in promising
solutions.
With the heuristic and pheromone information formula-

tion, ants can effectively learn an allocation and planning of
tasks iteratively over a set number of generations.
Note that during Round Base Turn-by-Turn allocation, if

all the tasks presented to an ant are all above the deadline,
we ignore adding any task to the plan of the set worker.
After all allocations have been made and there are tasks that
will be out of the deadline, do a Round Base Turn-by-Turn

allocation in which we randomly add tasks to a workers plan
without considering heuristic and pheromone information.
This allocation doesn’t affect the swarm learning ability as
they swarm iteratively refine solutions by only updating
pheromone to task completed on time.

Termination: The termination criteria determine the end
of the task learning and allocation process. We end the solu-
tion search process when the best global solution does not
change in 20 continuous generations or when the final gener-
ation is reached. The number of generations depends on the
complexity of the problem. Empirically, we saw that setting
the generations to 10000 works well across all problem sizes
and sets given that early termination can be initiated when
the solution converges.

Algorithm 1 Round Based Turn-By-Turn Allocation Algo-
rithm
Require: Workers W, Tasks T
1: Task Plan P = {}
2: while T not empty do
3: Workers W with goal vertex in T
4: Shuffle W
5: for𝑤𝑖 inW do
6: 𝐴𝑛𝑡𝑖 adds a task 𝑣 𝑗𝜏 to plan 𝑝𝑖 using Equation 3
7: Add 𝑝𝑖 to plan P
8: Remove task 𝑣 𝑗𝜏 from T
9: end for
10: end while
11: return P

Algorithm 2 ACID
Require: Workers W, Tasks T , Generations 𝐺𝑒𝑛, Termi-

nation 𝑇𝑒𝑚, Worker-Task Graph 𝐺𝑤,𝑣 Parameters 𝛼 , 𝛽
1: Initialize Pheromone Graph 𝑃𝑤,𝑣 , set𝑇𝑒𝑚 = 0, set𝐺𝑒𝑛 =

0
2: while not terminal 𝐺𝑒𝑛 or 𝑇𝑒𝑚 do
3: Generate Plan using Algorithm 1
4: Update P𝑏𝑒𝑠𝑡 evaluated using Equation 2
5: for𝑤𝑖 inW do
6: Update 𝑝𝑏𝑒𝑠𝑡𝑖 evaluated using Equation 1
7: end for
8: Update pheromone graph 𝑃𝑤,𝑣 using Equation 5
9: if P𝑏𝑒𝑠𝑡 Updated in 𝐺𝑒𝑛 then
10: Reset 𝑇𝑒𝑚 to 𝑇𝑒𝑚 = 0
11: else
12: Update 𝑇𝑒𝑚 to 𝑇𝑒𝑚 = 𝑇𝑒𝑚 + 1
13: end if
14: Update 𝐺𝑒𝑛 to 𝐺𝑒𝑛 = 𝐺𝑒𝑛 + 1
15: end while
16: return P𝑏𝑒𝑠𝑡
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5 Empirical Evaluation
In this section, we illustrate the efficacy of ACID in daily
task allocation and planning scenario through comprehen-
sive experimentation and comparison with other methods.
Our implementation of is in Python, and we carry out these
experiments using a 2.2 GHz CPU equipped with 32 GB
RAM. The comparison involves evaluating ACID against
ROSETTA, ST-SAP and LT-SAP on simulated daily task allo-
cation on a synthetic dataset whose distribution is derived
from a real world scenario used daily in production. We vary
the number of tasks and workers to evaluate the scalability
of the algorithm.
The parameters 𝛼 and 𝛽 for ACID are determined from

empirical evaluation. One of the key advantages of ACID is
the fact that it has very few parameters to be tuned, with only
the heuristic and pheromone 𝛼 and 𝛽 influencing the choice
of a task at anay point in time. From the empirical results, we
determine 𝛼 = 0.79 and 𝛽 = 0.21 performed better showing
that pheromone information is most influential in choosing
a task. The nummber of generations 𝐺𝑒𝑛 = 1, 000, 000 and
Termination 𝑇𝑒𝑚 = 100.

To generate a DA-MuW-TaP instance, we meticulously
considered the distribution of jobs and workers for each day
of the week. While direct access to the complete dataset
was not available, we were granted permission to execute
specific operations, enabling us to extract statistics related
to the variety of tasks performed each day, as well as the
average number of workers possessing relevant skills. For
each task type, we also acquired the average time required
for completion.

Utilizing these obtained statistics, we meticulously crafted
a synthetic dataset for each day of the week, aiming to closely
mirror the characteristics of the real-world dataset. Follow-
ing the generation of synthetic data, a thorough comparison
was conducted to ensure its alignment with the actual dataset.
The number of tasks and workers were initially constrained
to a specific geographical location, and subsequent scaling
applied to achieve 4 varried sets name Area1, Area2, Area3
and Area4.

For clarity, the synthetic data generation process involved
the following key steps:

• Task and Worker Distribution:We replicated the
distribution of tasks and workers for every day of the
week based on statistical insights derived from our
partial dataset.

• Task Completion Time: The average time required
to complete each task type was obtained from empiri-
cal data and used to determine task durations in the
synthetic dataset.

• Geographical Constraints: The number of tasks and
workers was initially confined to a specific geographi-
cal location, ensuring that the synthetic dataset’s char-
acteristics align with the intended real-world scenario.

• Scaling Up: Geographical scalability was achieved by
directly increasing the number of tasks and workers,
simulating an expanded operational scope. The scale
of the tasks and agents or workers used for simulation
are as shown in 1 to 4 on four different geographic
areas named Area1 to Area4

Post-synthesis, a comparison was conducted to validate
the synthetic data against the actual dataset. This verifica-
tion process involved assessing key statistical parameters,
ensuring that the synthetic data accurately represented the
distribution of tasks, workers, and task completion times.
The dataset was then employed in our experiments to assess
the scalability and performance of the ACID algorithm in
various geographical scenarios.

These synthetic datasets formed the basis for our compre-
hensive experimentation, allowing us to evaluate the efficacy
of ACID in daily task allocation and planning scenarios. The
subsequent sections provide detailed insights into our exper-
imental methodology, including the specific parameters and
evaluation criteria employed.

For simulation and evaluation, we built a simulation envi-
ronment specifically designed for sequential decision-making
and evaluation using OpenAI gym

5.1 Results and Discussion
In the empirical evaluation of daily task allocation and plan-
ning scenarios, we compare the performance of four algo-
rithms: ST-SAP, LT-SAP, ROSETTA, and ACID on ontime
completion, throughput and performance gains relatiive to
the baseline ST-SAP. The results demonstrate that the pro-
posed ACID algorithm outperforms the other approaches of
ST-SAP, LT-SAP, and ROSETTA across different evaluation
criteria and geographical coverage areas. Specifically, ACID
achieved substantially higher on-time task completion rates
and throughput compared to the other methods.

In Area1 (Table I), ACID attained the highest number of on-
time completed tasks across all agent scenarios, surpassing
the next best method ROSETTA by 31-45%. This superior per-
formance underscores ACID’s ability to effectively allocate
tasks to meet deadlines even with relatively small number of
workers. The percentage improvements over LT-SAP (Table
V) further highlight ACID’s strengths, with gains ranging
from 49-100% in on-time completions.
The trends persist in larger geographic areas as well. In

Area 2 (Table II), ACID accomplished up to 99% more on-
time tasks than LT-SAP, exemplifying its scalability. Similar
observations are made in Area 3 and Area 4, with ACID
accomplishing up to 127% and 161% more on-time tasks than
LT-SAP respectively.
A key factor driving ACID’s effectiveness is the heuris-

tics and pheromone update mechanisms which enable the
ant colony to learn efficient allocations tailored to deadline
requirements over generations. By balancing pheromone
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Table 1. PERFORMANCE COMPARISON OF ALGORITHMS IN AREA 1

Algorithms 500 agents 750 agents 1000 agents
#on-time throughput #on-time throughput #on-time throughput

ST-SAP 1970 2743 2118 3312 2198 3701
LT-SAP 2143 3202 2587 3532 2484 3663

ROSETTA 2736 3238 2967 3801 3984 4109
ACID 3956 4109 4011 4109 4179 4109

Table 2. PERFORMANCE COMPARISON OF ALGORITHMS IN AREA 2

Algorithms 750 agents 1000 agents 1250 agents
#on-time throughput #on-time throughput #on-time throughput

ST-SAP 3508 6113 3930 7299 4229 8168
LT-SAP 4695 6986 5600 6811 5224 7058

ROSETTA 5967 7052 6325 7561 8282 8706
ACID 7744 8214 7828 7798 8061 8854

Table 3. PERFORMANCE COMPARISON OF ALGORITHMS IN AREA 3

Algorithms 1000 agents 1250 agents 1500 agents
#on-time throughput #on-time throughput #on-time throughput

ST-SAP 6760 10716 8185 15780 8448 15041
LT-SAP 9585 13771 9904 14995 10356 14596

ROSETTA 11238 13211 13538 14738 15147 15805
ACID 15361 16650 14498 15730 14894 18649

Table 4. PERFORMANCE COMPARISON OF ALGORITHMS IN AREA 4

Algorithms 1250 agents 1500 agents 1750 agents
#on-time throughput #on-time throughput #on-time throughput

ST-SAP 12939 22440 14400 34502 16740 31161
LT-SAP 17733 24565 21256 30323 19195 31785

ROSETTA 21019 27163 25992 31477 31578 33062
ACID 33790 34288 27951 31609 27368 41524

Table 5. Percentage Improvement from baseline LT-SAP IN AREA 1

Algorithms 500 agents 750 agents 1000 agents
#on-time throughput #on-time throughput #on-time throughput

LT-SAP 8% 16% 22% 6% 13% -1%
ROSETTA 38% 18% 40% 14% 81% 11%
ACID 100% 49% 89% 24% 90% 11%

Table 6. Percentage Improvement from baseline LT-SAP IN AREA 2

Algorithms 750 agents 1000 agents 1250 agents
#on-time throughput #on-time throughput #on-time throughput

LT-SAP 33% 14% 42% -6% 23% -13%
ROSETTA 70% 15% 60% 3% 95% 6%
ACID 120% 34% 99% 6% 90% 8%
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Table 7. Percentage Improvement from baseline LT-SAP IN AREA 3

Algorithms 1000 agents 1250 agents 1500 agents
#on-time throughput #on-time throughput #on-time throughput

LT-SAP 41% 28% 21% -4% 22% -2%
ROSETTA 66% 23% 65% -6% 79% 5%
ACID 127% 55% 77% 0% 76% 23%

Table 8. Percentage Improvement from baseline LT-SAP IN AREA 4

Algorithms 1250 agents 1500 agents 1750 agents
#on-time throughput #on-time throughput #on-time throughput

LT-SAP 37% 9% 47% -12% 14% 2%
ROSETTA 62% 21% 80% -8% 88% 6%
ACID 161% 52% 94% -8% 63% 33%

trails and heuristics, ants probabilistically build solutions
that maximize on-time completions. Local and global search
components further guide this learning process towards high-
quality solutions.

In contrast, methods like ST-SAP perform static allocations
without considering iterative feedback or self-correction. LT-
SAP incorporates some learning but with less specialized
heuristics for deadline-aware optimization. While compet-
itive, these limitations constrain performance. ROSETTA
is more adaptive but remains inferior to the metaheuristic
search capabilities of ant colony approaches in ACID.

Furthermore, ACID also optimizes throughput across cov-
erage areas, meeting or exceeding the rates attained by other
techniques. This demonstrates efficient utilization of worker
capacity while adhering to deadlines.
ACID’s two-fold strengths of leveraging ant colony prin-

ciples and incorporating deadline-focused design yield sig-
nificant performance improvements on key metrics over a
spectrum of evaluation scenarios. The consistent substantial
gains affirm ACID’s advantage as an allocation methodology
where on-time task completion is vital.

While ACID demonstrates clear performance gains, fur-
ther research can explore dynamic environments to incorpo-
rate unpredictability like new tasks or workers could reveal
how to improve ACID’s adaptability to volatility.

5.2 Conclusion
This study introduced a modeling approach for the dead-line
aware multi-worker task planning (DA-MuW-TaP) problem
and presents the ACID algorithm, inspired byAnt ColonyOp-
timization principles, as a solution to this complex problem.
The contribution of this study extends beyond the introduc-
tion of the DA-MuW-TaP problem and the ACID algorithm. It
provides valuable insights into the comparative performance
of cutting-edge algorithms, emphasizing ACID’s consistent
outperformance in meeting task deadlines. The robustness

of ACID positions it as a promising solution for applica-
tions where precise and timely task allocation is critical.
This research introduces a modelling and use of ant colony
optimization using ACID in the landscape of task allocation
and planning. The success of ACID underscores its potential
for practical implementation in real-world scenarios. Future
research directions may delve deeper into the scalability and
adaptability of ACID, exploring its performance in dynamic
environments and uncovering opportunities for further en-
hancements. The introduction of ACID marks a substantial
advancement in addressing the DA-MuW-TaP problem, pre-
senting a valuable contribution to the field of optimization
algorithms.
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