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Abstract 

In the present paper, an analytical study of visco - elastic fluid flow with heat and 

mass transfer characteristics over a porous stretching sheet has been examined. Heat 

balance is maintained with space dependent and temperature gradient dependent heat 

sink/source, viscous dissipation, and non-uniform heat source on the non-Newtonian 

Walter’s liquid B' model. The mass balance is maintained with Chemically reactive species 

of order I, variable mass diffusivity and concentration gradient dependent mass diffusion. 

Using similarity transformation technique on the highly non-linear differential equations, 
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several closed form analytical solutions are obtained for non-dimensional temperature and 

concentration in both PST and PHF cases in the form of confluent hypergeometric 

(Kummar’s) functions. The effect of permeability parameter, viscoelastic parameter, suction 

parameter on velocity profiles and various physical fluid situations with different degrees of 

viscoelasticity, Prandtl number, Eckert number, heat source- sink strength, temperature field 

are discussed in detail and presented through graphs. Similarly in the mass transfer field the 

effects of Schmidt number, reaction rate parameters are discussed in detail and presented 

through graphs. 

Key Words: Concentration Gradient Dependent (CGD), Flow and Heat Transfer, Non-

Newtonian Flow, Porous Medium, Stretching Sheet, Temperature Gradient Dependent 

(TGD), Visco-elastic Fluid 

1. Introduction 

Many practical applications, such as food stuff, polymer, molten plastic, blood, fluids 

are non-Newtonian in their flow characteristics. Boundary layer flow over a continuous 

moving/stretching surface is an important type of flow occurring in a number of engineering 

processes. Cooling of a metallic plate in a cooling bath, Aerodynamic extrusion of plastic and 

rubber sheets, which may be an electrolyte, crystal glowing, the boundary layer along a liquid 

film in condensation process and filament or polymer sheet extruded continuously from a dye. 

Various aspects of this problem have been investigated by Sakiadis [1-3]. Erickson et al. [4] 

studied the temperature distribution in the boundary layer flow with suction or blowing and 

relevant experimental results were studied by Tsou et al. [5] including many aspects for the 

flow and heat transfer boundary layer flow problems past a continuous moving plate. Non-

Newtonian fluid flow which are viscoelastic in nature past a stretching sheet was examined by 

Siddappa and Khapate [6]. Dutta and Gupta [7] have studied the analytical solution for the 

velocity field and temperature distribution over the stretching sheet. 

            Rajagopal et al. [8] studied the same flow as in Ref [6] and obtained a similarity solution 

of the boundary layer equations numerically for the case of small visco-elastic parameter. In 

many practical applications there exists significant temperature difference between the surface 

and the ambient fluid. In this regard Vajravelu and Nayfeh [9] have studied the effect of 

temperature dependent heat source /sink in heat transfer characteristics.  

The study of the temperature field with modified generation or absorption of heat in a 

moving fluid is important in view of many physical situations-such as (i) Problems concerned 

with dissociating fluids. (ii) Problems dealing with chemical reactions. 
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            The heat transfer in a visco -elastic fluid past a stretching sheet with viscous dissipation 

and internal heat generation have been studied by Veena et al. [10] and the flow of visco elastic 

fluid obeying Walter’s liquid B' model past a stretching sheet with and without suction have 

been analysed by Abel [11,12] and also attempted an exact solution of the boundary layer 

equation of motion. 

Similar solutions of laminar boundary layer equations describing the study of two-

dimensional flow and heat transfer in an electrically conducting and heat generating fluid 

driven by a continuous moving porous surface immersed in a fluid saturated porous medium 

has been investigated Ali Chamkha [13]. A space dependent exponentially decaying heat 

generation or absorption is considered on flow and heat transfer past a vertical plate by [14-

15]. 

             The effect of suction and blowing on the heat transfer problem in the presence of the 

porous media is reported by a smaller number of researchers. The conjugate heat transfer 

problem from an accelerating surface in presence of uniform suction and blowing in a viscous 

fluid has been solved by Dutta [16]. Chen and Char [17] made an analysis about the effects of 

PST (prescribed surface temperature) and PHF (Prescribed wall heat flux) boundary conditions 

on the heat transfer characteristics of a continuous linearly stretching sheet subjected to suction 

or blowing. 

             The heat and mass transfer in a visco- elastic fluid flow over an accelerating with heat 

source and viscous dissipation for both the PST and PHF cases has been done by Sonth et.al. 

[18]. K.Rajagopal et.al.[19] were studied the diffusion of chemically reactive species of an 

electrically conducting visco elastic fluid immersed in a porous medium over a stretching sheet 

with PST and PHF cases. 

             Motivated by all the above analyses in the present paper, an analytical study of visco - 

elastic fluid flow with heat and mass transfer characteristics for prescribed surface temperature 

boundary conditions (PST) and prescribed wall flux (PHF) in heat transfer and Prescribed 

power law surface concentration (PST) in mass transfer over a porous stretching sheet have 

been studied. 

2. Formulation of the problem 

Study of two-dimensional boundary layer flow of an incompressible visco elastic fluid 

flow of the type Walter’s liquid B' model over a stretching surface is considered for 

investigation. The flow is generated due to the stretching of the sheet by applying two equal 

and opposite forces along the x-axis and keeping the origin fixed. The flow is assumed to be 
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confined in a region y>0. It is also studied that the fluid considered for analysis is of non-

Newtonian type. The basic boundary layer equations are 

∂u

∂x
+

∂v

∂y
= 0          (1) 

u
∂u

∂x
+ v

∂u

∂y 
= ν

∂2u

∂y2
− k0 {u

∂3u

∂x ∂y2
+ v

∂3u

∂y3
−

∂u

∂x

∂2u

∂x ∂y
+

∂2u

∂y2

∂u

∂x
} −

ν

k′
u    (2) 

  ρcp (u
∂T

∂x
+ v

∂T

∂y 
) =  k

∂2T

∂y2 + qηηη + Q(T − T∞) + μ (
∂u

∂y 
)

2
+ Q′ ∂T

∂y 
+ ρk0

∂u

∂y 
(u

∂u

∂x
+ v

∂u

∂y 
)

            (3) 

u
∂c

∂x
+ v

∂c

∂y 
= D

∂2c

∂y2
+ kr(C − C∞) + D

∂c

∂y 
      (4) 

Where u and v are the flow velocities in x and y directions respectively. k0 is the coefficient of 

elasticity, ν is the kinematic viscosity and 𝑘′ denotes permeability , qηηη is the space dependent 

internal heat generation /absorption or rate of internal heat generation, ρ is the fluid density,cp 

is the specific heat at constant pressure, μ is the dynamic viscosity, Q′ is the volumetric rate of 

heat absorption, kr denotes reaction rate coefficient, k is the thermal conductivity, Q is the 

specific internal heat generation or absorption  and D is mass diffusion coefficient. 

The term  qηηη is modelled as 

 qηηη=
kuw(x)

xν
(A∗(Tw − T∞)e−αη + B∗(T − T∞)) 

Where Tw is the temperature at the wall, T∞ is the fluid temperature far away from the 

surface, k is the thermal conductivity and A* and B* are the parameters of space dependent 

and temperature-dependent internal heat generation (i.e., A* > 0 and B* > 0)/absorption (i.e., 

A* < 0 and B* < 0), respectively. 

The appropriate boundary conditions on velocity field take the form     

u=cx,  v = vw  at  y=0 

u=0,  uy→0  as  y→∞     (5)

   

Here suffix y represents differentiation w.r.t.  y, c is the constant know as stretching rate and 

vw is the suction velocity across the stretching sheet when vw<0 and it is blowing velocity vw>0 

3. Solution of the Momentum Equation: 

To solve momentum equation (2), defining the new velocity variables as follows 
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u=cx fη (η), v = -√cν f(η) ,  η=√
c

ν
 y     (6)

  

where f is the dimension less stream function and η is the similarity variable. Substitution of 

equation (6) in equation (2) results in a fourth order non-linear differential equation in non-

dimensional form 

fη
2 − ffηη = fηηηk1{2fηfηηη − ffηηηη − fηη

2 } − k2fη       (7) 

Where, 

  k1 =
k0c

ν
  -  is the visco- elastic parameter 

             k2 =
ν

k′c
  -  is the permeability parameter  

The corresponding boundary conditions on f take the form  

  f = −
v w

√cν
 , fη(0) = 1 at η = 0 

fη(η) = 0 , fηη(η) = 0 as η→ ∞     (8) 

Now exact solution of equation (7) with B.Cs (8) is of the form  

  f(η) = a − (
1

b
) e−αη         (9)

   

Where, 

  a =
1

2(1+k2)
[R(1 + 2k2) + √R2 + 4(1 + k2)] 

           b =
1

2
(R + √R2 + 4(1 + k2))                 (10)

 α = √
(1+k2)

(1−k1)
    

 R =
v w

√cν
      - is a suction parameter. 

 Where α  is a real positive root of the fallowing cubic equation and solved by Graffe’s root 

square method. 

      α3 −
1

k1a
α2 +

1

k1
α +

k2

k1a
= 0        (11) 
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4. Heat Transfer Analysis: 

4.1 PST Case (Prescribed Surface Temperature): 

Solution of the heat transfer equation (3) depends on the nature of the prescribed boundary 

conditions. 

The appropriate boundary conditions on temperature are defined in PST case as  

Tw = T∞ + A1 (
x

l 
)

2

 at y → 0 

T → T∞  as y → ∞                (12) 

Where A1 is a constant whose value depends on the properties of the fluid and l is the 

characteristic length. 

And defining the non-dimensional temperature variable θ(η) as 

θ(η) =
T−T∞

Tw−T∞
                                 (13) 

 To obtain similarity solutions for temperature θ(η) , stretched boundary surface with 

prescribed power law temperature of second degree is considered. Using transformation (6) 

and (13), heat equation (3) becomes, 

θηη + (Prf(η)θη + Q∗)θη(η) − Pr [2fη(η) −
B∗

Pr
−

β

Pr
] θ(η) = −A∗e−αη −

                                                                      Ecfηη
2 (η) −  Ec

∗[fη
2(η)fηη

2 (η) − f(η)fηη
2 (η)]    

                         (14) 

Where, 

 Pr =
ρcpν

k
   -   is the Prandtl number  

 β =
ν

kc
Q    -  is the Source /Sink parameter 

 Ec =
μc2νl2

kA1
    -  is the Eckert number 

 Ec
∗ =

ρk0

kA1
c2√

c

ν
l2ν   -  is the modified Eckert number 

 Q∗ =
ν

kc
√

c

ν
 Q  -  Non-dimensional constant heat source  

And the corresponding boundary conditions (12) transform to dimensionless 
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θ(0) = 1, θ(∞) = 0            (15) 

Defining the change of variable  

ξ = −
Pr

α2
e−αη              (16) 

And making use of the equations (9), (10) and (16) in equation (14), the governing non 

dimensional form of energy equation is obtained in terms of ξ as follows 

ξθξξ + [1 − (p0 − Q∗∗) − ξ]θξ + [2 +
1

ξα2
(B∗ + β)] θ =

A∗

Pr
− (Ec + Ec

∗)
α6

Pr2b2
ξ   (17)            

Where, 

 p0=
Pr

α2
 

 Q∗∗ =
Q∗

α2
 - Modified Non-dimensional constant heat source 

The corresponding boundary conditions (15) convert to  

θ (−
Pr

α2
) = 1, θ(0) = 0       (18) 

         

The solution of the equation (17) subject to the boundary conditions in (18) is obtained in the 

following form of confluent hypergeometric functions of the similarity variable η as 

θ(η) = [1 − C1
Pr2

α2
] (e−αη)

p0+q0
2    

M[
p0+q0−4

2
  ,    1+q0  , − 

Pr2

α2  e−αη ]

M[
p0+q0−4

2
  ,    1+q0  , − 

Pr2

α2  ]
− C1 [−

Pr

α2
e−αη]

2

      

           (19) 

Where, 

 C1 =

−A∗

Prξ
 − 

(Ec+EC
∗ )

Pr2b2  a α6

4−2p0+
1

α2(B∗+β)
   

And  q0 = √(p0 + Q∗) − 4
(B∗+β)

α2
      (20)      

Further Dimensionless wall temperature gradient θη(0) is derived and obtained as 
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θη(0) = A0 {
Pr

2α
[

p0+q0−4

1+q0
  ] M [

p0+q0−2

2
 ,  2 + q0 , −

Pr

α2
 ] −

                                    α (
p0+q0

2
)   M  [

p0+q0−4

2
 , 1 +  q0 , −

Pr

α2
  ] − C1 (−

Pr

α2
 )

2

}   

           (21)    

  

Where, 

 A0 =
(1−C1

Pr2

α4 )

(
p0+q0−4

2
 ,1+q0 ,−

Pr

α2)
 

Taking into account the thermal radiation and temperature gradient dependent heat sink, the 

local heat flux is defined and expressed as follows   

qw = −k (
∂T

∂y 
)

w
= k√

c

v
(Tw − T∞) (−θη(0))     (22)         

        

4.2 PHF Case (Prescribed Wall Flux): 

In PHF case, solution of the heat transfer equation (3) depend on the nature of the prescribed 

Power law heat flux boundary conditions which are defined as  

−k (
∂T

∂Y
) = qw = E (

x

l
)

2

              at         y = 0             (23) 

  T → T∞                                           as       y → ∞    (24) 

Where E is constant  

Defining a new variable as  

g(η) =
         T−T∞          

E

k
√

ν

c
(

x

l
)

2         (25) 

and using the equations (6), (9) and (13) in equation (3) it deduces to the following non 

dimensional boundary layer equation as 

gηη + (Prf(η) + Q∗∗)gη(η) − Pr [2fη(η) −
B∗

Pr
−

β

Pr
] g(η) = −A∗e−αη −

                                                                  Ecfηη
2 (η) −  Ec

∗[fη
2(η)fηη

2 (η) − f(η)fηη
2 (η)]      

           (26) 
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And the corresponding boundary conditions transform to   

 gη(0) = −1,  g(∞) = 0      (27)  

Following the same solution methodology as done in PST case for PHF case also. The 

solution of equation (26) is obtained as fallows 

g(η) = (
−pr

α2
)

p0+q0
2

[(e−αη)
p0+q0

2 [
p0+q0−4

2(1+q0)
]   M (

p0+q0−4

2
 ,1 + q0 ,

−pr

α2
 e−αη )] +

                                                                                                                           C1
∗ (

−pr

α2
 e−αη)

2

 

           (28)  

Where, 

C1
∗ =

α(1+C2)

2(−pr)2
         (29) 

C2 = (
−pr

α2
)

p0+q0

2
{

p0+q0−4

2(1+q0)
  M (

p0+q0−2

2
 ,2 + q0 ,

−pr

α2
  ) (

−pr

α
) −

                                                        α (
p0+q0

2
) M (

p0+q0−4

2
 ,1 + q0 ,

−pr

α2
  )}   

           (30)  

And the temperature at sheet is given by 

Tw = T∞ +
Ex2

k
√

ν

c
 g(0)       (31) 

Where the dimensionless wall temperature is  

g(0) = (
−pr

α2
)

p0+q0
2

[[
p0+q0−4

2(1+q0)
]   M (

p0+q0−4

2
 ,1 + q0 ,

−pr

α2
  )] +  C1

∗ (
−pr

α2
 )

2

 (32) 

5. Mass Transfer Analysis: 

5.1 Solution Methodology: 

Solution of the mass transfer equation (4) depend on the nature of the prescribed boundary 

conditions 

The appropriate boundary conditions on concentration are considered as 

C = Cw = C∞ + A2 (
x

l
)

2

        at        y = 0 
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C → C∞        as        y → ∞       (33) 

Where,  Cw denotes the concentration at the wall and C∞ denotes the concentration far away 

from the wall. A2 is constant whose values depends on the properties of the fluid and l is the 

characteristic length. 

And defining the non-dimensional concentration variable as 

φ(η) =
       C−C∞        

Cw−C∞
        (34) 

To obtain the similarity solutions for concentration 𝜑(𝜂), we considered stretched boundary 

surface with prescribed power law concentration of second degree only. Using second 

transformation (6) and (34), equation (4) becomes 

φηη(η) + (Sc f(η) + M∗)φη(η) − 2Scfη(η)φ(η) = β∗Scφ(η)  (35) 

Where, 

 Sc =
ν

D
  - Schmidt number 

M∗ =
ν

c
√

c

ν
  - Non dimensional constant mass source 

β∗ =
kr

c
  - reaction rate parameter 

Using equation (34) in equation (33), we get the boundary conditions in dimensionless form as 

φ(0) = 1, φ(∞) = 0       (36)  

and f is given in equation (9) 

Clearly the concentration field φ is coupled to the velocity field through the dimensionless 

stream function f in the non-linear concentration equation (35) 

In the special case of non-reacting species (𝛽∗ = 0) the non-linear term on the right-hand side 

of equation (35) vanishes and present concentration boundary layer equation becomes 

φηη(η) + (Sc f(η) + M∗)φη(η) − 2Scfη(η)φ(η) = 0   (37) 

And the corresponding boundary conditions are 

φ(0) = 1, φ(∞) = 0       (38)  
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defining the change of variable  

ξ = −
Sc

α2
e−αη         (39) 

and making use of the equation (9), (10) and (39) in equation (37), We obtained the governing 

non dimensional form of concentration equation in terms of ξ as follows 

ξφξξ + (1 − C0 − ξ)φξ(ξ) +
2α

b
φ(ξ) = 0     (40) 

where, 

  C0 =
Sc

α2
ab −

M∗

α2
bν 

and the corresponding boundary conditions are  

φ (−
Sc

α2
) = −1, φ(0) = 0      (41) 

The solution of the equation (40) subjected to the boundary conditions (41) is obtained in     the 

following form of similarity variable η as 

φ(η) = 𝑐 (−
Sc

α2
e−αη)

𝑐0

𝑀(𝑠∗ − 𝑐0 , 1 + 𝑐0, ξ)    (42) 

where, 

 𝑐 = [𝑐 (−
Sc

α2
e−αη)

𝑐0

𝑀 (𝑠∗ − 𝑐0 , 1 + 𝑐0, −
Sc

α2
  )]

−1

   (43) 

Further dimensionless wall concentration gradient 𝜑𝜂(0) is derived and obtained as  

φη(0) = c (−
Sc

α2
)

c0

[
sc

α
(

s∗−c0

  1+c0
)  M (s∗ − c0 + 1 , 2 + c0, −

Sc

α2
 ) +

                                                                    αc0 (s∗ − c0 + 1  , 2 + c0, −
Sc

α2
   ) ]  

           (44) 

   

The mass transfer analysis would be carried out by analysing the terms of the local mass flux 

which defined as 

mw = −D (
∂c

∂y
) (Cw − C∞)[−φη(0)]      (45) 
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6. Results and Discussion: 

In this investigation the visco-elastic fluid flow over a stretching sheet in a 

saturated porous medium is considered. the basic equations of momentum and heat 

transfer are highly non-linear and converted into a set of ordinary differential equations. 

The solution of governing energy equation is obtained in terms of confluent hyper 

geometric functions (Kummar’s function). 

Thus, the solutions for the heat transfer problem with space dependent and 

temperature gradient dependent heat sink/source is presented. In order to derive the 

several closed form analytical solutions. Also, the effect of permeability parameter, 

visco-elastic parameter, suction parameter on velocity profile and various physical fluid 

situations are discussed in detail and presented through graphically. 

Figure 1a is the representation of 𝑓𝜂(η) Vs η for different values of porosity 

parameter k2 and for zero suction. From the Figure it is noticed that the increasing 

values of k2 and the suction parameter decrease the velocity distribution in the flow 

field. 

Figure 1b is the plot of velocity profile 𝑓𝜂(η) Vs η for various values of visco 

elastic parameter k1. This figure physically implies that the rise in values of visco- 

elastic parameter k1 decreases the velocity profile. 

Figure 1c is the representation of 𝑓𝜂(η) Vs η for different values of porosity 

parameter k2 and suction parameter vw. From the figure it is noticed that decrease the 

velocity distribution in the flow field while increasing value of k2 and vw. 

Figure 1d is the depict of velocity profile 𝑓𝜂(η) Vs η for different values of 

suction/blowing parameter vw and also k2. From the figure it is observed that an 

increasing values of vw and k2 is to decrease the velocity profile. 

Figure 2a is the representation of the effect of time dependent parameter B* on 

temperature profile θ(η) in PST case. The graph is physically implying that the increase 

of time-dependent parameter B* results in the increase in temperature distribution for 

increasing values of visco-elastic parameter k1. 

Figure 2b is the graph of temperature distribution θ(η) Vs η for various values 

of Eckert number Ec and suction parameter vw in PST case. From the figure it is 

depicted that the effect of increasing values of Ec is to increase the temperature 

distribution for vw>0. 
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Figure 2c is drawn to display the nature of temperature profile θ(η) Vs η. The 

effect of heat source/sink β and suction parameter vw on θ(η) is shown in this figure. 

The graph is physically noticed that the decrease the temperature distribution for vw=-

0.235 while increasing values of heat source parameter β. 

Figure 2d is drawn to display the nature of temperature distribution θ(η) Vs η 

for different values of suction/blowing parameter vw in PST case. This graph 

demonstrates that the temperature distribution decreases with increasing values of vw. 

Figure 2e represents the graph of θ(η) Vs η for various values of vw in PST 

case. From This graph noticed that temperature profile decreases with increasing the 

values of vw. It is also noticed that due to the effect of vw slight characteristics of 

dissipation and blowing exhibited on the graph in temperature distribution for vw=0 and 

vw=0.235 

Figures (3a-3d), the plots of temperature profile 𝑔(η) Vs η for different sets of 

parameters are drawn in PHF case. From the figures it is noticed that the wall 

temperature is changed while changing the physical parameters like the visco- elastic 

parameter (k1), Prandtl number (Pr), space dependent term (A*) and temperature 

dependent term (B*). Also, it is noticed that the wall temperature is not unity. From the 

figs (3b and 3c) it is clearly found that temperature of the sheet is highly increased for 

greater value of A* and B* (i.e., A*=1 and B*=0.1). 

Figures (4a) and (4b) represents the graphs of the non-dimensional concertation 

profile Φ(η) Vs η for various values of Schmidt number Sc. The concertation profile in 

the flow filed decreases while increasing the value of Schmidt numbers Sc i.e. a 

decrease of molecular diffusivity D, it results in a decrease of the concertation boundary 

layer. Hence the concertation of the species is lower for larger values of Sc and larger 

for small values of Sc. And also, we notice that the effect of Suction parameter vw is to 

decrease the concentration profile. 

The both Schmidt number (Sc) and suction parameter vw (vw >0) effects that to reduce 

the concertation profile. 

Comparing both the figs 4a and 4b it results that the concertation profile g(n) 

increases in the presence of visco-elastic parameter k1. 

Figures (4c) and (4d) represents the graphs of the dimensionless concentration 

profile Φ(η) Vs η for various values of β is to reduces the concentration boundary 

thickness and increases the mass transfer even though in the presence of porous 
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medium. This is in agreement with the equivalent heat transfer problem for which 

numerical data of Veena and Abel [20] have been plotted in the figures 

7. Graphs 
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FIGURE (1a): THE GRAPH OF VELOCITY PROFILE f η(η) Vs η FOR DIFFERENT VALUES OF k2 = 0, 1, 2 WITH Vw = 0, k1 = 0.2 
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FIGURE (1b): THE GRAPH OF VELOCITY PROFILE f η(η) Vs η FOR DIFFERENT VALUES OF k1 = 0.4, 0.6, 0.8 WITH k1 = 1, Vw = 0 
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FIGURE (2b): THE GRAPH OF TEMPERATURE PROFILE ϴ (η) Vs η FOR VARIOUS VALUES OF Ec, Ec* 

AND vw WITH 𝛽 = - 0.1, Pr = 0.71, k2 = 1.0 AND k1= 0.1 
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FIGURE (2d): THE GRAPH OF TEMPERATURE PROFILE ϴ (η) Vs η FOR DIFFERENT VALUES OF vw WITH Pr 

= 0.71,β = -0.1WITH Ec* =0.24 AND Ec = 0.2 
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FIGURE (3a): THE GRAPH OF TEMPERATURE PROFILE g(η) Vs  η FOR DIFFERENT VALUES OF k1 = 0.3, 0.2, 0.1 WITH k2=1.0 ,  
A* = B* = 0.1, Pr=1.0 IN PHF CASE 
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FIGURE (3c): THE GRAPH OF G(η) Vs  η FOR DIFFERENT VALUES OF SPACE DEPENDENT HEAT SOURCE/SINK PARAMETER 

A* = 1, 3, 0, -0.3, -0.6 WITH  k1=0.1, Pr=1.0,   k2 =1.0 IN PHF CASE 
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FIGURE (4a): THE GRAPH OF THE DIMENSIONLESS CONCENTRATION PROFILES Φ (η) Vs η FOR DIFFERENT VALUES OF Sc WITH  

k1=0.1 , k2 =1.0 β=0  IN PST CASE 
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=1.0 AND PRESCRIBED WALL MASS FLUX FOR DESTRUCTIVE FIRST ORDER reactions η = 1  IN PHF CASE 
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 FIGURE (4c): THE GRAPH OF THE DIMENSIONLESS CONCENTRATION PROFILES Φ(η) Vs η FOR DESTRUCTIVE FIRST ORDER 
REACTIONS (n = 1) FOR Sc = 1 WITH THE REACTION RATE β AS PARAMETER k1=0.1 , k2 =2.0 IN PST CASE 
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