
EasyChair Preprint

№ 428

To Isolate, or to Share? That is a Question for

Intel SGX

Youren Shen, Yu Chen, Kang Chen, Hongliang Tian and
Shoumeng Yan

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 14, 2018

To Isolate, or to Share? That is aQuestion for Intel SGX

Youren Shen∗†
Tsinghua University

syr15@mails.tsinghua.edu.cn

Yu Chen
Tsinghua University

yuchen@tsinghua.edu.cn

Kang Chen
Tsinghua University

chenkang@tsinghua.edu.cn

Hongliang Tian∗
Intel Corporation

hongliang.tian@intel.com

Shoumeng Yan
Intel Corporation

shoumeng.yan@intel.com

ABSTRACT
One cornerstone of computer security is hardware-based isolation
mechanisms, among which an emerging technology named Intel
Software Guard Extensions (SGX) offers arguably the strongest se-
curity on x86 architecture. Intel SGX enables user-level code to
create trusted memory regions named enclaves, which are isolated
from the rest of the system, including privileged system software.
This strong isolation of SGX, however, forbids sharing any trusted
memory between enclaves, making it difficult to implement any fea-
tures or techniques that must share code or data between enclaves.
This dilemma between isolation and sharing is especially challeng-
ing to system software for SGX (e.g., library OSes), to which both
properties are highly desirable.

To resolve the tension between isolation and sharing in system
software for SGX, especially library OSes, we propose a single-
address-space approach, which runs all (user-level) processes and
the library OS in a single enclave. This single-enclave architecture
enables various memory-sharing features or techniques, thus im-
proving both performance and usability. To enforce inter-process
isolation and user-privilege isolation inside the enclave, we design a
multi-domain software fault isolation (SFI) scheme, which is unique
in its support for two types of domains: 1) data domains, which
enable process isolation, and 2) code domains, which enable shared
libraries. Our SFI is implemented efficiently by leveraging Intel
Memory Protection Extensions (MPX). Experimental results show
an average overhead of 10%, thus demonstrating the practicality of
our approach.

KEYWORDS
Intel SGX, Library OS, Software Fault Isolation, Intel MPX

ACM Reference Format:
Youren Shen, Yu Chen, Kang Chen, Hongliang Tian, and Shoumeng Yan.
2018. To Isolate, or to Share? That is a Question for Intel SGX . In 9th Asia-
Pacific Workshop on Systems (APSys ’18), August 27–28, 2018, Jeju Island,
Republic of Korea. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3265723.3265727

∗This work was done while the author was an intern at Intel
†Both authors contributed equally to the paper

APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea
2018. ACM ISBN 978-1-4503-6006-7/18/08. . . $15.00
https://doi.org/10.1145/3265723.3265727

1 INTRODUCTION
One cornerstone of computer security is hardware-based isolation
mechanisms, e.g., inter-process isolation and user-privilege isola-
tion. However, as these isolation mechanisms are most commonly
managed by privileged system software, e.g., OSes and hypervisors,
their security guarantee is considered weak. On the one hand, sys-
tem software is prone to security vulnerabilities, due to the nature
of low-level system programming (e.g., over 650 memory-safety
bugs are found in Linux kernel 4.0[20]) and the sheer size of the
trusted computing base (TCB) (e.g., Linux kernel has over 4 million
lines of code[22]). On the other hand, system software, sometimes,
cannot be trusted by users, as is the case of public cloud computing,
where a malicious administrator of a cloud provider may act against
the interest of cloud tenants[1].

To provide a stronger security than existing hardware-based
isolation mechanisms, Intel Software Guard Extensions (SGX)[15]
is introduced to x86 architecture. SGX enables user-level code to
create trusted memory regions namedenclaves, which are isolated
from the rest of the system. Enclaves protect both confidentiality
and integrity of the code and data within. This security is achieved
by the CPU using a combination of memory access control and
transparent memory encryption, defending against both software
attacks (e.g., a malicious OS kernel or hypervisor) and hardware
attacks (e.g., memory bus snooping). In other words, the TCB of
SGX only consists of the CPU and the enclave itself, excluding
any privileged software. With this strong security guarantee, SGX
is considered a promising hardware-based isolation technology,
especially for securing user workloads on public clouds.

The strong isolation enforced by enclaves, however, raises chal-
lenges for sharing between enclaves; and, there are plenty of good
reasons for sharing. Code sharing, most commonly via shared li-
braries, has long been taken for granted on modern OSes, and it
is also desirable for SGX. For example, code sharing can alleviate
memory usage pressure on Enclave Page Cache (EPC), which caches
a limited number of trusted memory pages (only 128MB on current
SGX hardware) and incurs a significant performance penalty (200X)
on cache misses[19]. Data sharing between enclaves are also useful
for various reasons, e.g., implementing shared buffers, program-
ming concurrency via shared data structures, or passing zero-copy
messages. Unfortunately, all these sharing opportunities are diffi-
cult, if not impossible, to realize since SGX forbids any access to
the trusted memory of an enclave from outside the enclave, or from
other enclaves, even those signed by the same developer.

https://doi.org/10.1145/3265723.3265727
https://doi.org/10.1145/3265723.3265727
https://doi.org/10.1145/3265723.3265727

APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea Youren Shen, Yu Chen, Kang Chen, Hongliang Tian, and Shoumeng Yan

SGX does allow sharing untrusted memory between enclaves;
yet, ironically, this only chance of memory sharing weakens the
isolation of enclaves in an unexpected way. That is, the unlimited
access to untrusted memory from code inside enclaves opens up
opportunities for a new type of SGX-specific, security vulnerability,
whichwe call out-of-enclave bugs. Consider one of themost common
types of memory-safety bugs, null-pointer dereferencing. For non-
SGX programs, this usually crashes the program immediately; yet,
for SGX programs, this may jeopardize the security of an enclave
since a privileged attacker could map at address 0 with any memory
page (assuming address 0 is outside the enclave, as is the case for
any enclaves built with Intel SGX SDK[14]). Without preventing
unintended, out-of-enclavememory access (address 0 is just a special
case), victim enclave code may bemanipulated by attackers, causing
data leakage or even control hijack (see appendix A for sample
code).

From the analysis above, there is clearly a tension between iso-
lation and sharing in SGX; and, this tension is even stronger in
system software for SGX. System software, e.g., library OSes, has
drawn the interest of many SGX researchers[5, 8, 9, 21, 23] since
they enable unmodified user applications to be ported into SGX by
providing a layer of abstraction. This abstraction layer (e.g., syscalls)
is usually implemented by a common runtime (e.g., library OS) that
supports running multiple user tasks (e.g., user-level processes).
Apparently, this offers opportunities for sharing, yet also demands
mechanisms for isolating. However, as will be shown later in this
paper, no existing system software for SGX achieves both sharing
and isolation.

In this paper, we aim at resolving the tension between isolation
and sharing in system software for SGX, especially library OSes. To
this end, we propose a single-address-space approach to constructing
library OSes for SGX, which runs all (user-level) processes and the
library OS in the same enclave. This single-enclave architecture,
which is radically different from the multi-enclave architecture
of existing systems, enables various memory-sharing features or
techniques, e.g., shared libraries, shared file systems, efficient inter-
process communication (IPC), thus improving both performance
and usability.

To overcome the lack of hardware-based isolation mechanism
inside an enclave, we design a multi-domain software fault isolation
(SFI) scheme. SFI[24] is a compiler-based technique that isolates
untrusted modules (called domains) from the rest of the system. Our
multi-domain SFI is unique in its support of two types of domains:
1) data domains, which enable software-isolated processes (SIPs),
2) code domains, which enable shared libraries. One extra bene-
fit brought by our SFI is that the aforementioned out-of-enclave
bugs can be prevented automatically. Furthermore, our SFI is imple-
mented efficiently by leveraging Intel Memory Protection Exten-
sions (MPX)[12], a relatively-new x86 feature that emerges prior to
SGX, for both improved performance and reduced complexity.

The main contributions of this paper are three-fold:
1. We make a case for the single-address-space approach to

constructing library OSes for SGX by pointing out the shortcomings
of existing library OSes and highlighting the benefits of a single-
address-space library OS (see section 2).

2. We design a multi-domain SFI scheme that can enable inter-
process isolation and user-privilege isolation in a single-address-
space library OS. It is unique in supporting both code domains and
data domains. It leverages Intel MPX for improved performance
and reduced complexity (see section 3).

3. We implement a prototype of our SFI scheme. Benchmark
results show an average performance overhead of 10%, thus demon-
strating the practicality of our approach (see section 4).

Note that while our discussion focuses on library OSes, we do so
for the sake of brevity and concreteness. Most of our arguments and
contributions apply equally well to other system software for SGX.
Here, by saying system software, we mean a common runtime that
supports running multiple user tasks; some examples are language
runtime, container runtime, and serverless runtime.

2 SHARING VIA A SINGLE-ADDRESS-SPACE
ARCHITECTURE

In this section, we analyze alternative architectures of existing
library OSes for SGX and point out how their lack of isolation or
sharing impacts usability or performance. Then, we make a case
of a single-address-space approach of constructing library OS for
SGX by highlighting its benefits.

Since the inception of SGX, building library OSes for SGX[5,
8, 9, 21, 23] has become an important research direction; and it
comes with some good reasons. On the one hand, SGX is designed
to protect against the potentially malicious host OS, thus all CPU
instructions (e.g., int, syscall, and sysenter) that may invoke
system calls are forbidden inside enclaves. On the other hand, al-
most all non-trivial applications rely on system calls. Due to the
lack of support for system calls, the C standard library shipped with
Intel SGX SDK[14] is stripped of any APIs that must use system
calls. Without system calls, existing libraries or applications require
enormous refactoring efforts to be ported to SGX. This proves to a
great obstacle to developing SGX-protected applications. To solve
this lack-of-syscalls problem once and for all, many researchers,
including us, believe that it is necessary to introduce library OSes
into SGX’s enclaves.

Despite the initial success reported by existing library OSes, we
find that these library OSes have limitations inherent to their ar-
chitecture. According to the architecture, existing systems can be
classified into three categories (see table 1). The simplest architec-
ture (a) is adopted by the first library OS for SGX, Haven[9], and
several later works[5, 8]. However, due to the single-enclave design,
these library OSes cannot support multi-process applications. To
overcome this critical limitation on usability, Graphene-SGX[23]
and PANOLY[21] are designed as architecture (b), in which each
process is run in a different enclave. This multi-enclave design re-
quires one instance of library OS running in each enclave, making
it difficult to synchronize between multiple instances of the library
OS. As a result, a library OS of architecture (b) has difficulty in
implementing an unified, encrypted file system to all processes.
To overcome this difficulty, the file system proposed in [6] adopts
architecture (c), which keeps the library OS and processes each
in its own enclave. However, as all data passed between enclaves
must be encrypted and decrypted, its system calls and IPC become
extremely expensive.

To Isolate, or to Share? That is aQuestion for Intel SGX APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea

Table 1: Comparison between alternative architectures of library OSes for SGX

Alternative achitectures

(a)

LibOS

Proc.
…

LibOS

Proc.

LibOS

Proc.
… Proc.Proc.

LibOS LibOS

Proc. … Proc.

(b)

LibOS

Proc.
…

LibOS

Proc.

LibOS

Proc.
… Proc.Proc.

LibOS LibOS

Proc. … Proc.

(c)

LibOS

Proc.
…

LibOS

Proc.

LibOS

Proc.
… Proc.Proc.

LibOS LibOS

Proc. … Proc.

(d)

LibOS

Proc.
…

LibOS

Proc.

LibOS

Proc.
… Proc.Proc.

LibOS LibOS

Proc. … Proc.

Related work [5, 8, 9] [21, 23] [6] This Work
of processes vs # of enclaves 1 : 1 N : N N : N + 1 N : 1
Process creation (e.g., fork) No support Expensive Expensive Cheap
IPC (e.g., pipe) No support Expensive Expensive Cheap
Shared file systems (e.g., read) No support No support Expensive Cheap
Shared memory (e.g., mmap) No support No support No support Cheap

The shortcomings of the architecture above stem from the fact
that they either have no isolation at all inside the enclave, as in
architecture (a), which leads to the lack of multi-process support, or
use enclaves as natural boundaries for isolation, as in architecture
(b) and (c), which requires a secure communication channel, thus
resulting in inefficient syscalls or IPC. To overcome the limitations
of these existing architectures, we propose a single-address-space
approach to constructing library OSes for SGX, as shown in archi-
tecture (d), which is radically different from traditional approaches
in that

(1) it runs multiple (user-level) processes and the library OS
inside a single enclave to enable memory-sharing features
or techniques (see the remaining of this section); and

(2) it leverages software fault isolation (SFI) to realize inter-
process isolation and user-privilege isolation (see the next
section).

In other words, our single-address-space approach can achieve both
sharing and isolation.

By running all processes and the library OS within the same
enclave, a single-address-space library OS can leverage memory
sharing to implement system calls more efficiently. Some examples
are listed below:

fork. Due to the high cost of creating an enclave, fork in Graphene-
SGX is measured to be nearly 10,000X slower than that that in
Linux[23]. In contrast, a single-address-space library OS can create
a new process without creating a new enclave; hence, fork in a
single-address-space library OS becomes significantly cheaper.

pipe. Pipes is a common way to transfer a stream of data from
one process to another. Traditional library OSes must encrypt the
stream and copy the encrypted data to a shared (untrusted) buffer
outside enclaves. A single-address-space library OS, however, can
allow both producer processes and consumer processes to access
the underlying (trusted) buffer of the stream directly, thus no en-
cryption and copying.

read. File operations from inside enclaves require authenticated
encryption to guard both the confidentiality and the integrity of
persistent data. To this end, it is desirable to implement a secure
file system shared by all processes because 1) a common cache of

plaintext data can be used to reduce the number of encryption or
decryption operations, 2) file metadata (e.g., keys) can be shared
for efficient concurrent access, and 3) a consistent view of the file
system can be provided to all processes. Such a secure file system is
hard to be implemented efficiently in traditional library OSes, but
not in a single-address-space library OS.

mmap. Sharedmemorymapping can reduce thememory overhead
of multiple processes that access the same file, e.g., shared libraries.
Yet, this sharing semantic of mmap is difficult, if not impossible,
to realize in traditional library OSes, as sharing trusted memory
between enclaves is forbidden by SGX. It is, however, possible
to emulate the sharing semantic of mmap (to some degree) in a
single-address-space library OS. This brings an immediate benefit
of enabling shared libraries (see more in the next section).

On the feasibility of the single-address-space approach, two facts
are worth noting. First, executables can be compiled as position-
independent executable (-fPIE for gcc) to be loaded at any address
and this practice has become increasingly common for the purpose
of address space layout randomization (ASLR). So, loading multiple
executables in the same address space won’t be a problem. Second,
the size of an enclave (i.e., ELRANGE) is a value of 36 bits, which
means a maximum of 64GB addressable memory in an enclave.
While a size of this magnitude may not seem impressive compared
to the whole address space of a process on 64-bit machines, it is
actually far bigger than the size of EPC, which is as small as 128MB
on current SGX hardware platform. So, in most cases, this 64-GB
address range is not a limiting factor for loading multiple processes.

3 ISOLATING VIA A MULTI-DOMAIN SFI
SCHEME

This section describes how single-address-space library OSes for
SGX can enjoy the benefits of isolation by introducing software
isolated processes, which are enabled via software fault isolation.

The x86 architecture provides various hardware-based isolation
mechanisms, amongwhich enclaves is arguably the one of the finest
granularity: an enclave cannot be further partitioned by hardware
means. Segmentation is a well-known hardware feature for isola-
tion inside a process; unfortunately, it is neither available on x86-64

APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea Youren Shen, Yu Chen, Kang Chen, Hongliang Tian, and Shoumeng Yan

Table 2: The two isolation levels for SIPs in a single-address-space library OS

Isolation levels for SIPs L1 (Sandboxing stores only) L2 (Sandboxing stores as well as loads)

Typical use cases SIPs in a single-tenant enclave SIPs in a multi-tenant enclave
Security objectives for SIPs

O1. Inter-process isolation A SIP cannot be tampered by other SIPs Plus, a SIP cannot be snooped by other SIPs
O2. User-privilege isolation The library OS cannot be tampered by SIPs Plus, the library OS cannot be snooped by SIPs
O3. Out-of-enclave-bug mitigation SIPs cannot store to memory outside the enclave Plus, SIPs cannot load from memory outside the enclave

How SIPs use domains
Data domains Per-SIP data domains sandbox stores only Per-SIP data domains sandbox both stores and loads
Code domains All SIPs share a single code domain SIPs of the same provenance (e.g., tenant) share a code

domain

nor inside enclaves. A less-known feature named Intel Memory
Protection Keys (MPK)[13] can divide the address space of a pro-
cess into memory domains that are isolated between one another.
However, MPK is incompatible with the security model of SGX,
since it must be configured in page tables, which are managed by
the (potentially malicious) host OS.

To overcome the lack of hardware-based isolation mechanisms
inside enclaves, we introduce software-isolated processes (SIPs) to
single-address-space library OSes. Contrary to traditional hardware-
isolated processes, SIPs are isolated by software means so that CPU
instructions are confined in data access and control flow. With SIPs,
a single-address-space library OS can achieve the following security
objectives:

O1. Inter-process isolation (protecting a SIP from other SIPs);
O2. User-privilege isolation (protecting the library OS from

SIPs);
O3. Out-of-enclave-bug mitigation (preventing SIPs from

unintended access to memory outside the enclave).
Note that the traditional architectures, as shown in table 1, cannot
achieve O2 or O3: architecture (a) and (b), no O2 or O3; architecture
(c), no O3. In this sense, by introducing SIPs, our approach improves
the security.

To construct SIPs that achieve the security objectives above, we
design a multi-domain software fault isolation (SFI) scheme. SFI[24]
is a software-instrumentation technique that isolates untrusted
modules (called domains) from the rest of the system by inserting
necessary checks before memory-access and control-flow CPU
instructions. Compared with existing SFIs[17, 24, 26–28], our multi-
domain SFI is unique in its support of multiple domains of two
complementary types: data domains, for sandboxing data access
(stores to or loads from memory), and code domains, for sandboxing
control flow. This separation between sandboxing data and code
enables multiple SIPs to execute shared code (e.g., shared libraries)
while operating on private data.

Our multi-domain SFI can be implemented efficiently by lever-
aging Intel Memory Protection Extensions (MPX)[12], a relatively-
new x86 feature that emerges before SGX, which we have repur-
posed for use in SFI. The original motivation of MPX is to accelerate
bound checks for object-level memory safety (e.g., detecting buffer
overflows); unfortunately, MPX’s current hardware implementation
and software support are shown to be immature, incurring a con-
siderable overhead yet offering only limited usability[18]. Although

MPX is inadequate to implement an efficient, fine-grained mem-
ory safety mechanism, we find it well suited for a coarse-grained
one, such as SFI. Our multi-domain SFI is implemented to take
advantages of the bound checking instructions and registers pro-
vided by MPX, thus improving the performance and reducing the
complexity.

In the remaining of this section, we first describe the security
model of SIPs and how the security of SIPs can be reduced to that
of data and code domains. Then, we elaborate on how to implement
data domains and code domains by leveraging MPX.

3.1 Security Model of SIPs
SIPs may contain arbitrary user code and data. As the code could
be faulty or even malicious, the data may be accessed or modified
arbitrarily. We assume the code cannot be made writable and the
data cannot be made executable (this assumption is to be removed
in future work, see section 6). We also assume the library OS itself
is implemented correctly and safely to prevent system calls from
being abused by SIPs, for example, using mmap() to make arbitrary
data executable. We assume the program loader of the library OS
ensures that all the executables and shared libraries loaded for
SIPs are properly instrumented according to our multi-domain SFI
scheme (as will be described later). To do this, one can add a binary
validator to the program loader, as done in [26].

As all SIPs and the library OS reside in the same enclave, our
security goal is, certainly, to isolate SIPs; but, one question remains:
to what extent? Consider running a single-address-space library OS
for SGX to protect user workloads on public clouds. If the containing
enclave is owned by a single tenant, then all SIPs inside are most
likely to serve this single tenant, and hence the data and code of a
SIP are not considered secrets to another SIP. In such a single-tenant
enclave, the primary security concern is protecting integrity so that
a faulty SIP cannot crash the rest of the enclave. On the other hand,
in a multi-tenant enclave, SIPs are probably owned by different
tenants; so, protecting the confidentiality of a SIP from other SIPs is
necessary. For the reasons above, we define two levels of isolation
for SIPs: L1 for sandboxing stores only, and L2 for sandboxing stores
as well as loads. In other words, L1 focuses on integrity, and L2 on
confidentiality. Each isolation level achieves the security objectives
(O1-O3) to a different degree, as shown in table 2.

To Isolate, or to Share? That is aQuestion for Intel SGX APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea

Code Domain A/B

···

Data Domain A

···

Data Domain B

···

Library OS

SIP A

SIP B

Guard region

Read-only
data region

(RD)

Guard region

Writable
data region

(WD)

Guard region

Guard region

User code
region

(untrusted)

Trampoline code
region (trusted)

Guard region

RD.begin

RD.end

WD.begin

WD.end

Intra-domain
jumps or calls

Syscalls

(a) An example of two SIPs

Code Domain A/B

···

Data Domain A

···

Data Domain B

···

Library OS

SIP A

SIP B

Guard region

Read-only
data region

(RD)

Guard region

Writable
data region

(WD)

Guard region

Guard region

User code
region

(untrusted)

Trampoline code
region (trusted)

Guard region

RD.begin

RD.end

WD.begin

WD.end

Intra-domain
jumps or calls

Syscalls

(b) A data domain

Code Domain A/B

···

Data Domain A

···

Data Domain B

···

Library OS

SIP A

SIP B

Guard region

Read-only
data region

(RD)

Guard region

Writable
data region

(WD)

Guard region

Guard region

User code
region

(untrusted)

Trampoline code
region (trusted)

Guard region

RD.begin

RD.end

WD.begin

WD.end

Intra-domain
jumps or calls

Syscalls

(c) A code domain

Figure 1: Software Isolated Processes (SIPs) implemented by a multi-domain Software Fault Isolation (SFI) scheme

The two isolation levels and their corresponding security objec-
tives are realized by isolating SIPs with data domains and code do-
mains, as illustrated in figure 1. SIPs and data domains are mapped
one-to-one: a data domain confines its corresponding SIP to access
only the data of its own. In contrast, SIPs and code domains are
mapped many-to-one: multiple SIPs may share the same code do-
main, which confines the control flow of these SIPs to the same
set of code, including executables and shared libraries. Sharing a
code domain between SIPs is useful: for example, a child SIP, after
forking from its parent SIP, can reuse the parent’s code if they
belong to the same code domain.

Now that we have reduced the security of SIPs to that of data
domains and code domains, we then describe how data domains
and code domains are implemented by leveraging MPX.

3.2 Data Domains
A data domain, as shown in figure 1b, consists of a read-only data
region (RD) and a read-write data region (WD), both of which are
surrounded with guard regions of a fixed size (e.g., 4KB). Both of
the two data regions are mapped to read-write yet non-executable
enclave memory pages. The read-only data region RD, which is
separated from the writable data region WD, is needed, because
there are security-critical data thatmust bemodifiable by the trusted
program loader or the library OS, but not by the untrusted user
code. So the "read-only" of RD is only meant for the user code.
Guard regions, which are not mapped to any enclave memory pages,
trigger hardware exceptions if accessed by any CPU instructions.
Guard regions are introduced to facilitate optimization techniques.

A data domain is designed to sandbox data access; more specifi-
cally, it adds the following constraints to memory access:

(1) All reads are within the range [RD.begin −GSize,WD.end +
GSize), where GSize is the size of the guard region.

(2) All writes are within the range [WD.begin−GSize,WD.end+
GSize), where GSize is the size of the guard region.

To enforce the above constraints, our SFI scheme leverages Intel
MPX for bound checking memory addresses. At run-time, upon
creating a new data domain or switching to an existing data domain,
two of MPX bound registers bnd0 and bnd1 are set to the read-only
and read-write data regions, respectively, as shown by the following
pseudocode:

bnd0 ← [RD.begin,WD.end − 1]
bnd1 ← [WD.begin,WD.end − 1]

At compile time, a trusted compiler or binary rewriter inserts MPX
bound checks before CPU instructions that read or write memory.
For example, a memory write

[rcx] ← rax

is instrumented as

bndcl bnd1 , rcx

bndcu bnd1 , rcx

[rcx] ← rax

where bndcl and bndcu checks the target address with the lower
and upper bounds, respectively.

While it seems expensive to insert bound checks before every
memory access, there are several useful techniques to eliminate
unnecessary bound checks. First of all, isolation level L1 only pro-
tects integrity, thus only memory writes need to be sandboxed, not
memory reads. Second, previous works[27, 28] has proposed sev-
eral effective optimizations, e.g., range analysis and loop analysis,
all of which apply to both isolation level L1 and L2. We adopt all of
the techniques above to improve the performance.

3.3 Code Domains
A code domain, as shown in figure 1c, consists of two code regions:
one for user code and the other for trampoline code. The untrusted
user code contains indirect control flow instructions (e.g., call, jmp
with runtime-determined destinations, and ret) that may jump
to arbitrary locations outside the code domain, which must be

APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea Youren Shen, Yu Chen, Kang Chen, Hongliang Tian, and Shoumeng Yan

prevented. Yet, some control flow that tranfers to outside the code
domain should be allowed, e.g., system calls to the library OS. To do
this, every code domain has special trampoline code to enable the
code of this domain to jump to the entry points of the library OS.
The trampoline code is assembled by the trusted program loader of
the library OS, thus no need to be instrumented as user code. So,
user code is the subject of the remaining discussion.

A code domain is designed to enforce control flow integrity;
more specifically, it must make sure
• The user code cannot jump outside the code domain;
• The user code cannot jump to arbitrary locations of the
trampoline code;
• The instrumentation instructions inserted (e.g., the MPX
bound checks) cannot be bypassed.

To achieve the control flow integrity above, our SFI scheme
introduces a pseudo instruction named CFI_LABEL, which has the
following properties:

(1) CFI_LABEL has a length of 8 bytes;
(2) CFI_LABEL has no visible, architectural impact to CPU;
(3) The 4-byte prefix of CFI_LABEL does not appear anywhere

in the uninstrumented user code or the library OS;
(4) CFI_LABEL is unique to a code domain.
To make use of CFI_LABEL for control flow integrity, a trusted

compiler or binary rewriter makes two kinds of instrumentation.
First, before every valid destination of indirect control flow in a
code domain, insert a CFI_LABEL. Second, before every indirect
control flow instruction in a code domain, insert a check that ver-
ifies whether the value at the destination address equals to the
CFI_LABEL of the domain. For example, an indirect call

call [rcx]

is instrumented as

r15 ← -CFI_LABEL

add r15 , [rcx]

bndcu bnd2 , r15

call [rcx + 8]

CFI_LABEL

where bnd2 has been initialized to a memory range of [0, 0]. So, the
MPX bound checking with bnd2 ensures that r15 equals to zero,
which implies that the value at address rcx is a CFI_LABEL, thus a
valid destination. Note that a CFI_LABEL is inserted after the call
so that an instrumented ret can jump back. Other indirect control
flow instructions, e.g., jmp and ret, can be instrumented similarly.

The only remaining question is what exactly is CFI_LABEL bit-
wise. We define CFI_LABEL as a special form of multi-byte NOP
on x86: the four-byte prefix is 0x0F1F40FF, and the remaining four
byte is the ID of a code domain. The trusted compiler or binary
rewriter can ensure that the four-byte prefix is not used by any
instructions except CFI_LABEL. The library OS assigns a unique
ID for each code domain. And when loading code from binaries to
text segments in a code domain, the program loader replaces the
last four bytes of every CFI_LABEL with the actual ID of the target
code domain. Thus, CFI_LABELs that appear in the text segments
of different code domains have different values.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

L1	(integrity	only) L2	(integrity	+	confidentiality)

bzip2
gcc
mcf
gobmk
hmmer
sjeng
libquantum
h264ref
AVERAGE

Figure 2: Performance overhead of the multi-domain SFI
scheme on SPECint2006

3.4 Interaction with the Library OS
When spawning a new SIP to run an executable (fork + exec), the
library OS needs to do extra work to support the SFI scheme. First,
the library OS creates a new data domain so that the SIP owns
a private copy of its data. Second, depending upon some config-
urable security policy, the library OS either assigns an existing code
domain to the SIP so that it shares code with other existing SIPs
or creates a new code domain for the SIP so that it can own an
exclusive copy of code. Now that the data and code domains for the
new SIP are prepared, MPX registers can be initialized accordingly.

Context switching between SIPs is essentially context switch-
ing between SGX threads since SIPs are executed as SGX threads.
As SGX automatically saves and restores the CPU states (includ-
ing MPX registers) upon context switches between SGX threads,
the library OS does not need to explicitly take care of saving and
restoring MPX registers upon context switches between SIPs.

SIPs make system calls via the special trampoline code assembled
by the trusted program loader. As CFI_LABELs do not appear any-
where inside the library OS, SIPs cannot execute any code inside the
library OS directly. The only way to enter the library OS is through
the trampoline code, which jumps to a predefined entry point inside
the library OS for system calls. The mechanism of our trampoline
code is in a sense similar to that of Procedure Linkage Table (PLT)
in Executable and Linkable Format (ELF), albeit simpler.

4 IMPLEMENTATION AND EVALUATION
The core of our single-address-space approach to constructing li-
brary OSes for SGX is the multi-domain SFI scheme, for which we
have implemented a prototype. Our prototype follows the imple-
mentation framework for SFI proposed in [27], which instruments
at the intermediate-representation (IR) level of LLVM[3]. Further-
more, we incorporate several optimizations proposed in [27] to
improve its performance. Our implementation is built with LLVM
7.0, and the resulting LLVM passes for instrumentation and opti-
mizations can then be used by Clang[2] to build C/C++ programs.

To evaluate the performance, we build and run SPECint2006[10]
benchmarkwith andwithout the instrumention of themulti-domain
SFI. We choose to build the benchmark as non-SGX programs, be-
cause 1) the multi-domain SFI works equally well both inside or
outside enclaves, and 2) we want to highlight the overhead of the

To Isolate, or to Share? That is aQuestion for Intel SGX APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea

SFI, not a library OS or SGX. The benchmark programs are com-
piled with Clang 7.0 and tested on a Ubuntu 16.04 machine with an
Intel i7 CPU at 3.5GHz and 32GB of RAM.

Figure 2 presents our preliminary results on the performance
overhead for SPECint2006 programs. The average overhead is 10.7%
and 22.4%, for isolation level L1 and L2, respectively. We believe
L1’s small overhead is pratical for most use cases and L2’s moderate
overhead is acceptable for use cases where enhanced isolation is
needed.

5 RELATEDWORK
Software Fault Isolation (SFI). Our multi-domain SFI scheme
differs with existing SFIs[17, 24, 26–28] in several ways. First, our
SFI is flexible, no constraints on the number, the size or the position
of domains. In contrast, the mostly studied SFI, NaCl[26], supports
only one domain, limits the domain to a 4GB address space, and
requires it to be guarded by unmapped memory regions of 40GB,
both below and above—all these constraints are unacceptable for
our purpose. Second, our SFI provides two types of domains to
sandbox memory access and control flow, respectively; previous
SFIs have no such separation, making it impossible to share code
across multiple domains. Third, our SFI leverages Intel MPX for
improved performance and reduced complexity, which is partially
inspired by [16].

Software IsolatedProcesses (SIPs). SIPs is a concept pioneered
in Singularity[11] operating system. Unlike traditional OSes that
isolates processes by hardware mechanism, Singularity enforces
isolation between SIPs by language safety. While offering a low-cost
isolation, Singularity’s SIPs require the code to be written in a safe
programming language Sing#. We believe this lock-in to a specific,
safe programming language (plus its usage of a costly garbage col-
lector) attributes largely to why Singularity-style SIPs have never
made into mainstream operating systems. Our SIPs are different:
they are isolated via SFI, thus offering the freedom of developing
in any programming language, especially unsafe languages like
C/C++.

6 CONCLUSION AND FUTUREWORK
In this paper, we aim at resolving the tension between isolation
and sharing in system software for SGX, especially library OSes. To
this end, we propose a single-address-space approach that supports
software isolated processes (SIPs) via a multi-domain software fault
isolation (SFI) scheme. This approach can achieve both isolation
and sharing. Preliminary results on our SFI scheme suggest that
our single-address-space approach is practical.

To fully realize our vision in this paper, we are working on a fully-
fledged, single-address-space library OS that supports SFI-enabled
SIPs. Comparedwith existing library OSes, themost unconventional
part of our implementation is the program loader, which adds most
of the run-time support for the SFI scheme. For memory safety, we
choose to write the library OS in Rust programming language[4].

In addition to the library OS itself, we are also improving the SFI
implementation. One top priority is to write a verifier (similar to
[28]) to remove the compiler from the TCB. Another interesting
improvement to our SFI is to support Just-In-Time (JIT) compilation
and self-modifying code, which can be done in a way similar to

[7]. This is important to support language runtimes for high-level
programming languages, e.g., Java and JavaScript.

A SAMPLE CODE OF OUT-OF-ENCLAVE BUGS
The minimal sample code of out-of-enclave bugs, as shown in
listing 1, is essentially an enclave version of null-dereferencing
bugs. Low memory addresses (e.g., those below 64KB) are usually
not usable in processes on Linux, thereby outside enclaves. But a
privileged attacker (whom SGX promises to defend against) can
map the low memory range with any malicious data after setting
/proc/sys/vm/mmap_min_addr to 0. Thus, unintended access to
memory page 0, as demonstrated in the sample code, may lead to
data leakage or control hijack.

More generally, a sophisticated, privileged attacker can exploit
any unintended, out-of-enclave memory access that triggers a page
fault. This can be done by capturing the page fault in a fault handler,
which then maps malicious data on the faulting page. The faulting
page can be easily determined since SGX only hides the low-twelve
bits of the faulting address, thus revealing the page number. This
property of SGX is also exploited by controlled-channel attacks[25].

The use of SFI inside enclaves, as proposed in this paper, can
prevent out-of-enclave memory writes/reads, thus mitigating the
security risks of out-of-enclave bugs.

1 // file: enclave_with_out_of_enclave_bugs.c
2 #include <string.h>
3 #include <sgx_trts.h> // Import APIs from Intel SGX SDK
4 #include "enclave_t.h" // Import ECall/OCall declaration
5
6 // A struct for storing and processing secrets
7 struct secret_struct
8 {
9 void (*func)(const char* str);
10 char data[64];
11 };
12
13 // This pointer should have been initialized somewhere but is not
14 struct secret_struct* secret; // = NULL, as it is not initialized
15 // Note: most commonly, address 0 is not inside an enclave
16
17 // A buggy ECall that consists of two out-of-enclave bugs
18 void ecall_process_secret_sloppily(void) {
19 // Bug 1: unintented, out-of-enclave memory writes
20 char secret_bytes[64];
21 sgx_read_rand((unsigned char*)secret_bytes, 64);
22 memcpy(&secret->data[0], secret_bytes, 64); // => data leakage!!!
23
24 // Bug 2: unintented, out-of-enclave memory reads
25 const char* secret_str = "Top Secret!!!\n";
26 secret->func(secret_str); // => control hijhack!!!
27 }

Listing 1: Sample code of out-of-enclave bugs

ACKNOWLEDGMENTS
Wewant to thank Junjie Mao and Bo Zhang at Intel Corporation for
their valuable help and early feedback. We would also like to thank
the anonymous reviewers for their useful comments. In addition,
we are grateful to our shepherd Sang Kil Cha, who is very kind to
give constructive feedback and offer concrete suggestions.

This work was supported by National Natural Science Founda-
tion of China (Grant No. 61772303).

APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea Youren Shen, Yu Chen, Kang Chen, Hongliang Tian, and Shoumeng Yan

REFERENCES
[1] 2010. GCreep: Google Engineer Stalked Teens, Spied on Chats (Updated). http:

//gawker.com/5637234/creep-google-engineer-stalked-teens-spied-on-chats
[2] 2018. clang: a C language family frontend for LLVM. http://clang.llvm.org/
[3] 2018. The LLVM Compiler Infrastructure. http://llvm.org/
[4] 2018. The Rust Programming Language. https://www.rust-lang.org/
[5] 2018. SGX-LKL Library OS for Running Java Applications in Intel SGX Enclaves.

https://github.com/lsds/sgx-lkl
[6] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and Byoungyoung

Lee. 2018. OBLIVIATE: A Data Oblivious File System for Intel SGX. In 25th
Annual Network and Distributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February, 2018.

[7] Jason Ansel, Petr Marchenko, Úlfar Erlingsson, Elijah Taylor, Brad Chen, Derek L.
Schuff, David Sehr, Cliff L. Biffle, and Bennet Yee. 2011. Language-independent
Sandboxing of Just-in-time Compilation and Self-modifying Code. SIGPLAN Not.
46, 6 (June 2011), 355–366. https://doi.org/10.1145/1993316.1993540

[8] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, André Mar-
tin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark
Stillwell, David Goltzsche, David M. Eyers, Rüdiger Kapitza, Peter R. Piet-
zuch, and Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel
SGX. In 12th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016. 689–703. https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov

[9] Andrew Baumann, Marcus Peinado, and Galen C. Hunt. 2015. Shielding Appli-
cations from an Untrusted Cloud with Haven. ACM Trans. Comput. Syst. 33, 3
(2015), 8:1–8:26. https://doi.org/10.1145/2799647

[10] Standard Performance Evaluation Corporation. 2006. CINT2006 (Integer Compo-
nent of SPEC CPU2006). https://www.spec.org/cpu2006/CINT2006/

[11] Galen C. Hunt and James R. Larus. 2007. Singularity: rethinking the software
stack. Operating Systems Review 41, 2 (2007), 37–49. https://doi.org/10.1145/
1243418.1243424

[12] Intel. 2013. Introduction to Intel(R) Memory Protection
Extensions. https://software.intel.com/en-us/articles/
introduction-to-intel-memory-protection-extensions

[13] Intel. 2016. Intel(R) Memory Protection Extensions En-
abling Guide. https://software.intel.com/en-us/articles/
intel-memory-protection-extensions-enabling-guide

[14] Intel. 2018. Intel SGX for Linux. https://github.com/intel/linux-sgx
[15] Intel. 2018. Intel(R) Software Guard Extensions SDK. Retrieved May 27, 2018

from https://software.intel.com/en-us/sgx-sdk/documentation
[16] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athanasopou-

los. 2017. No Need to Hide: Protecting Safe Regions on Commodity Hardware.
In Proceedings of the Twelfth European Conference on Computer Systems, EuroSys
2017, Belgrade, Serbia, April 23-26, 2017. 437–452. https://doi.org/10.1145/3064176.
3064217

[17] Stephen McCamant and Greg Morrisett. 2005. Efficient, Verifiable Binary Sand-
boxing for a CISC Architecture. MIT CSAIL Technical Report TR-2005-030. Mas-
sachusetts Institute of Technology, Cambridge, MA.

[18] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof
Fetzer. 2017. Intel MPX Explained: An Empirical Study of Intel MPX and
Software-based Bounds Checking Approaches. CoRR abs/1702.00719 (2017).
arXiv:1702.00719 http://arxiv.org/abs/1702.00719

[19] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein. 2017. Eleos:
ExitLess OS Services for SGX Enclaves. In Proceedings of the Twelfth European
Conference on Computer Systems, EuroSys 2017, Belgrade, Serbia, April 23-26, 2017.
238–253. https://doi.org/10.1145/3064176.3064219

[20] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad Tsyrklevich,
and Dmitry Vyukov. 2018. Memory Tagging and how it improves C/C++ memory
safety. CoRR abs/1802.09517 (2018). arXiv:1802.09517 http://arxiv.org/abs/1802.
09517

[21] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. 2017. Panoply:
Low-TCB Linux Applications With SGX Enclaves. In 24th Annual Network and
Distributed System Security Symposium, NDSS 2017, San Diego, California, USA,
February 26 - March 1, 2017.

[22] Linus Torvalds. 2018. Linux 4.17-rc1. http://lkml.iu.edu/hypermail/linux/kernel/
1804.1/06654.html

[23] Chia-che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. In 2017 USENIXAnnual Technical
Conference, USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017. 645–658.
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai

[24] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.
Efficient Software-Based Fault Isolation. In Proceedings of the Fourteenth ACM
Symposium on Operating System Principles, SOSP 1993, The Grove Park Inn and
Country Club, Asheville, North Carolina, USA, December 5-8, 1993. 203–216. https:
//doi.org/10.1145/168619.168635

[25] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems. In 2015

IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21,
2015. 640–656. https://doi.org/10.1109/SP.2015.45

[26] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. 2010. Native Client:
a sandbox for portable, untrusted x86 native code. Commun. ACM 53, 1 (2010),
91–99. https://doi.org/10.1145/1629175.1629203

[27] Bin Zeng, Gang Tan, and Úlfar Erlingsson. 2013. Strato: A Retargetable Frame-
work for Low-Level Inlined-Reference Monitors. In Proceedings of the 22th
USENIX Security Symposium, Washington, DC, USA, August 14-16, 2013. 369–
382. https://www.usenix.org/conference/usenixsecurity13/technical-sessions/
presentation/zeng

[28] Bin Zeng, Gang Tan, and Greg Morrisett. 2011. Combining control-flow integrity
and static analysis for efficient and validated data sandboxing. In Proceedings of
the 18th ACM Conference on Computer and Communications Security, CCS 2011,
Chicago, Illinois, USA, October 17-21, 2011. 29–40. https://doi.org/10.1145/2046707.
2046713

http://gawker.com/5637234/creep-google-engineer-stalked-teens-spied-on-chats
http://gawker.com/5637234/creep-google-engineer-stalked-teens-spied-on-chats
http://clang.llvm.org/
http://llvm.org/
https://www.rust-lang.org/
https://github.com/lsds/sgx-lkl
https://doi.org/10.1145/1993316.1993540
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://doi.org/10.1145/2799647
https://www.spec.org/cpu2006/CINT2006/
https://doi.org/10.1145/1243418.1243424
https://doi.org/10.1145/1243418.1243424
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/articles/intel-memory-protection-extensions-enabling-guide
https://software.intel.com/en-us/articles/intel-memory-protection-extensions-enabling-guide
https://github.com/intel/linux-sgx
https://software.intel.com/en-us/sgx-sdk/documentation
https://doi.org/10.1145/3064176.3064217
https://doi.org/10.1145/3064176.3064217
http://arxiv.org/abs/1702.00719
http://arxiv.org/abs/1702.00719
https://doi.org/10.1145/3064176.3064219
http://arxiv.org/abs/1802.09517
http://arxiv.org/abs/1802.09517
http://arxiv.org/abs/1802.09517
http://lkml.iu.edu/hypermail/linux/kernel/1804.1/06654.html
http://lkml.iu.edu/hypermail/linux/kernel/1804.1/06654.html
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://doi.org/10.1145/168619.168635
https://doi.org/10.1145/168619.168635
https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1145/1629175.1629203
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/zeng
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/zeng
https://doi.org/10.1145/2046707.2046713
https://doi.org/10.1145/2046707.2046713

	Abstract
	1 Introduction
	2 Sharing via a Single-Address-Space Architecture
	3 Isolating via a Multi-Domain SFI Scheme
	3.1 Security Model of SIPs
	3.2 Data Domains
	3.3 Code Domains
	3.4 Interaction with the Library OS

	4 Implementation and Evaluation
	5 Related Work
	6 Conclusion and Future Work
	A Sample Code of Out-of-Enclave Bugs
	Acknowledgments
	References

