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Abstract 

Based on the report provided by the World Health Organization (WHO), malaria has proved to be a life-threatening 

disease whose cases reached 241 million in 2020 globally. However, diagnosing malaria in the early stages of infection 

can be very fruitful for ameliorating this disease. The standard way of diagnosing malaria is by examining the blood 

cell images by professionals. Despite medical technology development, this is not feasible in many underdeveloped 

areas due to the lack of such experts. Thus, researchers interested in computer-aided decision-making, specifically 

deep learning, have focused on atomizing the diagnosis of malaria recently. The performance of transformer-based 

models combined with convolutional neural networks motivated us to propose an approach based on MobileViT for 

atomizing the process of diagnosing malaria. To achieve this, the model was trained on blood cell images collected 

from a publicly available dataset. Evaluated on 27,560 samples, the proposed classifier achieves an accuracy of 98.37 

on average using 10-fold cross-validation. Among 2756 test samples, the model achieves 34 false negatives at least 

and 48 ones at most. Due to the medical nature of our problem, this is significant because the model’s miss-cases of 

actual positive malaria-infected samples are low, making the precision and recall of the model 98.38 and 98.38, 

respectively. To our knowledge, this is the first study that applies a transformer-based model to a problem with 

superior performance. In addition, it is a lightweight and mobile-friendly neural network which can be utilized in 

mobile applications.  
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1. Introduction 

Malaria is a dangerous illness that is caused by a parasitic protozoan of the genus Plasmodium parasites. It can be 

transmitted through the bites of infected female mosquitos and can cause severe diseases in human beings [1,2]. The 

known five variants of malaria are P.falciparum, P.vivax, P.malariae, P.ovale, and P.knowlesi, among which 

P.falciparum is the most menacing one [2]. According to the World Health Organization (WHO), the number of 

diagnosed malaria infection cases worldwide reached 241 million in 2020 and the estimated number of death cases 

stood at 627000 in the same year [3].  

Moreover, although malaria can cause health-related severe ramifications for infected people, it is utterly curable 

given that it is diagnosed in the early stages of infection [2]. To do so, the most reliable modality is to manually 

examine the microscopic slides. This approach is often not feasible due to the necessity of specialized human 



2 

 

resources, which is a common problem in many underdeveloped regions where malaria is considerably more dominant 

compared with other areas [4]. These problematic scenarios have sparked researchers’ interest to propose automatic 

approaches for malaria diagnosis. Specifically, deep learning (DL)-based algorithms have been amongst the most 

widely-used techniques employed in the literature [5]. DL is a sub-domain in machine learning inspired by the 

biological brain and imitates its information processing functionality by amalgamating a massive number of 

computational units called neurons. These neurons reside in a set of stacked layers, which are famously called Deep 

Neural Networks (DNN) [6,7]. In recent years, different architectures have been advanced by researchers. Amidst 

these architectures, the Convolutional Neural Networks (CNN) have proved to be significantly effective in pattern 

recognition and computer vision [8,9]. CNNs belong to a specific class of DNNs whose main advantage over the 

common DNNs is their capability to reduce the computational cost by shared learnable weights and also their 

robustness to translation variance. These have made CNNs an excellent choice for processing images in various 

machine learning fields [7]. However, more recently, Vision Transformer (ViT)-based models, have claimed to be 

more powerful in a variety of visual challenges such as image classification, content-based image retrieval, instance 

segmentation, and image recognition. Unlike models based on CNNs, ViT models learn representations in shallow 

and deep layers, with more similarities between them. Another advantage of ViT models over CNN ones is the fact 

that intermediate representations learned by ViT models, in case of the existence of large amounts of data, is better in 

terms of quality. In addition, ViT-based models are more informative of the spatial structure of the input data than 

CNNs and this makes them a better choice for harnessing the global pattern of the data.  

Our study proposes a transformer-based model for classifying infected cell image samples from uninfected ones. Our 

algorithm is based on MobileViT. It is a lightweight model which utilizes the might of self-attention in its architecture. 

To the best of our knowledge, this is the first study that applies vision transformers for malaria-infected blood cell 

image classification and achieves superior performance compared with previous works. Our main contributions are 

itemized as follows: 

● We aim to demonstrate the effectiveness of a proposed deep learning-based approach based on MobileViT for 

predicting malaria infection from the red blood cells image samples. 

● The proposed algorithm is lightweight yet performant and it can be embedded in mobile-based applications. 

● We prove the reliability of the classifier by evaluating the model on a publicly available dataset and achieving high 

accuracy of 98.37. 

● Grad-CAM method of visualization is applied so as to have a complete understanding of the proposed method’s 

attention modules’ behavior. 

The rest of the paper is outlined as the following. Section 2 reviews different approaches put forward in the literature. 

Section 3 elaborates the details of the proposed framework. Section 4 demonstrates our achieved results and explains 

the discussion. Finally, section 5 includes the conclusion and future work. 

 
2. Related work 

Hitherto, a considerable number of approaches, based on deep neural networks, have been utilized for malaria 

diagnosis from smear images. In this section, we present a summary of such works. 

To begin with, deep learning-based algorithms have shown significant performance in a variety of health-related 

domains [10]. Thus, researchers have been interested in applying CNN models to diagnose malaria. Liang et al. [11] 

adopted a transfer learning-based approach to diagnose malaria. Their proposed custom CNN model to automatically 

classify thin blood smear image cells showed better results by achieving 97.37% accuracy. In [12], they trained several 

CNN models and opted for employing ResNet and VGG16 as the best feature extractors. They used transfer learning 

and proved the efficiency of this technique as a powerful tool for malaria diagnosis. Rahman et al. investigated 3 

different approaches (custom CNN, VGG16, and a CNN backbone integrated with the SVM classifier) for diagnosing 

malaria infection. They used 5-fold cross-validation in order to assess these models and concluded that data 

augmentation has a significant impact on the final output of the models. They achieved 96.29%, 97.77%, and 94.77% 

for the custom CNN, VGG16, and CNN + SVM, respectively. A CNN-based image classification method was created 

by Shah et al. [13] and evaluated using a dataset of labeled images. The accuracy of their results is 94.77%. They list 
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pertinent computational resource limits and make the case that more powerful computers might enhance the results. 

By fusing ideas from dense and residual networks with attention processes, Quan et al. [14] developed a unique and 

compact CNN-based model. Attentive Dense Circular Net was the name of the suggested technique. The results were 

contrasted with similar research in the literature, such as DenseNet121 or DPN92. The findings demonstrate better 

performance with 97.47% as opposed to 90.94% and 87.88%, respectively, reported by DenseNet121 and DPN92. 

The suggested model also offers excellent accuracy and a quick rate of convergence. 

In [15], the authors proposed an ensemble approach, in which ResNet is used as the backbone for malaria diagnosis. 

In their approach, they, fine-tuned the ResNet18 architecture and then introduced three randomly initialized networks, 

including a random vector functional link, Schmidt neural network, and extreme learning machine, as the classifier. 

They achieved 95.73%, 94.79%, 96.68%, and 95.69% for their accuracy, sensitivity, specificity, and F1-Score, 

respectively. 

 

3. Methods 

This section comprises a description of our methodology and the dataset used in this work. Further, the detailed 

evaluation of the proposed approach, including different metrics in classification tasks and attention visualization 

using the Grad-CAM method, is included. Grad-CAM can help us understand the inner workings of the classifier 

better. 
 

3.1. Dataset 

In this study, we have used a publicly available dataset1 provided by the USA National Institutes of Health (NIH). 

This dataset includes 27,558 thin blood smear images, half of which are positive samples meaning that they are 

infected or parasitized, and the other half are negative samples which means they are uninfected. In this dataset, the 

red blood cell micrographs were collected from Giemsa-stained thin blood smear slides [12]. The total number of 

patients, whose blood cells are used for this dataset, is 150 (100 infected individuals and 50 healthy ones). These 

people were treated at Chittagong Medical College Hospital, and each obtained sample was manually labeled in the 

Mahidol Oxford Tropical Medicine Research Unit in Bangkok by trained specialists. Fig. 1 demonstrates some 

samples from the dataset.  

 
Fig. 1. Samples of data from both classes. 

 

 

                                                
1https://lhncbc.nlm.nih.gov/LHC-publications/pubs/MalariaDatasets.html 

https://lhncbc.nlm.nih.gov/LHC-publications/pubs/MalariaDatasets.html
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3.2. Preprocessing 

For the model to be properly trained on the images, we need to normalize them. Generally, a colorful image has three 

channels named Red, Green, and Blue (RGB). Each of these channels has an integer pixel intensity value between 0 

(complete black) and 255 (complete white). Before feeding the input images to the model, we normalize the RGB 

values, in that they have a float value between 0.0 and 1.0.  

Further, we have used Data Augmentation (DA) techniques for preventing the model from overfitting. Overfitting is 

the occurrence of a situation in which the model learns from the training data so well but cannot demonstrate 

satisfactory performance in unseen data [16]. In this case, the model starts to learn some intricate patterns in each 

sample that are not necessarily generalizable to the others [17]. By applying different transformations to the images, 

we randomly alter them, and this helps the model to be more robust to new cases and generalize better. Fig. 2 depicts 

some of these techniques used in our training pipeline as a way of DA.  

 
Fig. 2. Data augmentation techniques. 

 
3.3. MobileNetV2 

MobileNetV2 [18] is a novel deep neural network whose design is parameterized to be tailored in low resource and 

constrained environments while delivering high accuracy results. In addition to following the usage of Depth-wise 

Separable Convolution, introduced in [19], Sandler et al. improve the effectiveness of MobileNets by introducing 

Inverted Residuals and Linear Bottlenecks. These are elaborated in the following. 

Depth-wise Separable Convolutional (DSC) networks are a type of convolutional network which have been ubiquitous 

in many applications [20-24]. DSC networks have two main privileges over the standard convolutional layers: 1) They 

contain less trainable parameters which should be optimized during the training phase, and consequently, this leads to 
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a low chance of overfitting in the network. 2) They are less computationally intensive and require fewer computational 

resources [25]. Figs. 3 (a) and (b) illustrates the difference between DSC and normal convolutional layers. As is 

observed in Figure 3 (a), in normal convolutional layer N kernels of size 𝐷𝑘 ∗ 𝐷𝑘 ∗ 𝑀 is applied on a tensor of size 

𝐷𝑖 ∗ 𝐷𝑖 ∗ 𝑀 and the output is 𝐷𝑜 ∗ 𝐷𝑜 ∗ 1, meaning that the convolution operation is done for all the existent channels. 

Meanwhile, in DSC (Fig. 3b) the convolution operation is applied to a single layer at each step, making the kernel 

shapes 𝐷𝑘 ∗ 𝐷𝑘 ∗ 1 for each one of the channels in input data. In addition to this, in the Point-wise convolution, 𝑎 1 ∗

1 kernel is applied to each channel so as to sustain the required depth for the output tensor.  

 

 
(a) 

 

 
(b) 

 

Fig. 3. (a) Standard CNN, (b) DSC structure. 
 

Furthermore, Inverted Residuals are in an inverted order of shapes of convolutional layers. A standard residual block 

has a wide -> narrow -> wide structure. In this type of structure, the input has a large number of channels which are 

further compacted with 1*1 convolution with the aim of being integrated or added. In inverted residuals, the structure 

is completely reversed, meaning that its order of layers is in narrow -> wide -> narrow style. In this architecture, the 

input is firstly widened by 1 ∗ 1 convolution, then a 3 ∗ 3 depthwise convolution, followed by 1 ∗ 1 convolution layer, 

is used to reduce the number of channels. This is also done to add the input and the output. 

Moreover, linear bottlenecks are introduced by the authors of [18] due to the challenge which inverted residual blocks 

mount. In linear bottlenecks, the last layer of the convolution has a linear output before being added to the initial 

activations. 
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3.4. Vision Transformer 

Transformer-based models are amongst the most prominent deep neural networks which have been adopted in a wide 

range of applications such as Natural Language Processing (NLP), Computer Vision (CV), and Speech Recognition 

[26]. At the core of this family of architectures lies the transformer module, which uses the self-attention mechanism 

for processing the input. Transformers were initially introduced in [27] in the context of NLP for language translation 

and further applied for vision tasks [28] in [29].  

The original ViT architecture is depicted in Fig. 4. As is observed in this figure, following the type of input in NLP 

which is always sequential and time-dependent, in ViT, we patchify an image so as to make it sequential data. Then, 

these smaller chunks of the input image, which play the role of tokens in NLP, are flattened in order to provide a 

sequence of linear embeddings which will be fed to the transformer. Later, the network learns to model global 

dependencies among these visual tokens with stacked transformer blocks shown in Fig. 4.   

 

 
Fig. 4. Structure of ViT base model. 
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Although ViT-based models have become pervasive due to their state-of-the-art performance in a large number of 

challenges, they have some drawbacks. In stark contrast to CNN-based architectures, they are not equipped with 

inductive bias, which is intrinsic in CNNs [30]. Compared with CNNs, when the training data is small or mid-level 

size, ViTs deliver unsatisfactory results and overfitting. However, they show significant success in vision challenges 

when pre-trained on large datasets and fine-tuned for the different downstream tasks [29]. 
 

3.5. MobileViT Block 

MobileViT Block is a component used in MobileViT’s architecture that utilizes a transformer in a specific way. Mehta 

et al. have introduced this block and refer to them as Transformers as Convolutions. Given an input tensor with the 

shape 𝐻 ∗ 𝑊 ∗ 𝐶, an 𝑛 ∗ 𝑛 standard convolution is applied by MobileViT and followed by a point-wise convolution. 

This results in a tensor of shape 𝐻 ∗ 𝑊 ∗ 𝑑. Then, the tensor is split into non-overlapping patches [29] of size ℎ ∗ 𝑤 ∗

𝑑. As a result, each of the patches becomes unfolded, forming intermediate-level embeddings of shape P*N*d where 

𝑃 = 𝑤 ∗ ℎ and 𝑁 = 𝐻 ∗ 𝑊/𝑃. Lastly, the transformer is applied to these embeddings. Fig. 5 demonstrates this 

procedure.  

 
 

Fig. 5. Structure MobileViT block. 
 

3.6. Proposed Network  

Our proposed algorithm is based on MobileViT which is a lightweight, general-purpose, and mobile-friendly 

transformer-based network. MobileViT belongs to a class of deep neural networks that follows the philosophy of 

lightweight CNNs. It combines the power of CNN-based networks in learning spatially local representations and 

Vision Transformers (ViT) in learning global features. The architecture of MobileViT is demonstrated in Fig. 6. As is 

seen in this figure, it comprises different components, which are elaborated in previous parts of this section.  
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Fig. 6. Architecture of MobileViT. 

 

3.7. Training 

This section provides our training and evaluation procedure. Fig. 7 presents all the steps in our approach.  

 

 
 

Fig. 7. Pipeline of the proposed method. 

 
As is seen in Fig. 7, in order to have a more reliable training and validation process for our proposed solution, we have 

used the cross-validation method. It is a statistical method for validating and comparing learning algorithms. In this 

method, we build two segments of the data, one for training the model and the other for validation of the model [31]. 

This method is employed such that each sample in the data has a chance of being validated. The most basic form of 

CV is K-fold Cross Validation (KCV), in which the data is split into K folds with approximately the same number of 

samples. Then, the model is trained on K-1 folds and evaluated on the remaining single fold. Fig. 8 depicts this 

procedure with 10 folds.  
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Fig. 9. KCV process of splitting training and testing data. 
 

Based on Fig. 9, the main advantage of KCV is that our estimation of the model’s performance can be more accurate 

and viable since the model’s performance in classifying all the samples can be monitored and there is no. This means 

that the biasedness of the model can be revealed in the evaluation process.  

 
3.8. Evaluation 

In this study, we have opted for different metrics for evaluating our proposed model. These metrics are itemized as 

follows: 

● Confusion Matrix: It is a matrix that shows the summary of prediction results on a classification problem 

[32]. Fig. 10 depicts one such matrix for a binary classification problem. 

 
Fig. 10. A confusion matrix. 

 

As is seen in Fig. 10, this matrix contains four indicators, namely True Positive (TP), True Negative (TN), 

False Positive (FP), and False Negative (FN). These are explicated as follows: 

● TP is the number of samples that belong to the infected class and are correctly classified by the 

classifier as infected or positive.  

● TN shows the number of samples without any infection and they are correctly classified as 

uninfected or negative by the classifier.  
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● FP is the number of samples that belong to the uninfected class but are wrongly classified as infected 

or positive by the classifier.  

● FN is the number of samples from the infected class which are classified as uninfected or negative 

by the classifier. 

 

 Accuracy: Accuracy is calculated by dividing TP plus TN by the total number of FPs, FNs, TPs, and TNs, 

as shown in (1). 

 

(1)      𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝐹𝑃+𝐹𝑁+𝑇𝑃+𝑇𝑁
 

 
 

● Precision: As is shown in (2), precision is calculated by dividing TP by the total number of TPs and FPs [33].  

 

(2)        𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 
● Sensitivity or Recall: It is also called True Positive Rate (TPR) [34] and is calculated using formula (3). 

 

(3)      𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 
 F1-Score: It is the harmonic mean of precision and recall, as is shown in (4). 

 

(4)      𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 

 
● AUC-ROC: Area Under Curve - Receiver Operator Characteristics (AUC-ROC) is one of the most important 

metrics used for evaluating any classification model. ROC is a curve depicting the probability of prediction 

by the classifier [35]. AUC is the area that is under this curve and signifies the separability power of the 

classifier. Its range is from 0 to 1, and the higher the AUC-ROC for a classifier, the better the classifier is at 

distinguishing the different classes.  

 
 Specificity: It is also called True Negative Rate (TNR) and is calculated using formula (5). 

 

(5)     𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

 

 False Positive Rate: It is calculated using formula (6). 

 

(6)      𝐹𝑃𝑅 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

 

 False Negative Rate: It is calculated using formula (7). 

 

(7)      𝐹𝑁𝑅 = 1 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

 

4. Results and Discussion 

4.1. Experimental setup 

The following tools, shown in Table 1, have been used for the implementation of our proposed algorithm.  
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Table 1. Experimental setup. 

Programming language Python 3.7 

Deep learning library   Pytorch 1.9 

CPU  Intel® Core™ i7-10700 CPU @ 2.90GHz × 16  

GPU GeForce GTX 1060 

 
Further, we have trained the model for 128 epochs in each fold. The model uses a reduction algorithm for the learning 

rate of the optimizer named ReducedLROnPlateau for the epoch, after which there exists no improvement. This 

technique is required for pushing the learning boundaries of the model to a higher level, in that after a certain patience 

level (set to 10 in this study), when the model has stopped learning, the callback function provided in the 

implementation reduces the learning rate. The initial learning rate, the minimum learning rate, and all the other 

hyperparameters have been detailed in Table 2. 

Table 2. Hyperparameters setting. 

Image size 256 

Batch size 32 

Optimizer Adam 

Initial learning rate for optimizer 0.0001 

Minimum learning rate for the optimizer 0.000001 

Drop-out rate for transformer module  0.4 

Number of attention heads  12 

Head dimension 64 

Patch size (width, height)  (4, 4) 

Last layer  Sigmoid 

Loss function  Binary Cross Entropy 

 
We aim to demonstrate the efficiency of our proposed approach by performing extensive experiments and illustrating 

our results based on the previously introduced metrics. Additionally, we compare the performance of the proposed 

method with other recent works in the literature. 
 

4.2. Classification performance 

As stated before, we used the 10-fold cross-validation method to train and evaluate our proposed algorithm. In respect 

of training history, we have provided Fig. 11 and Fig. 12 to illustrate accuracy vs. epochs and loss vs. epoch’s curves, 

respectively.   
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Fig. 11. Training and validation accuracy vs. epoch. 

 

 
Fig. 12. Training and validation loss vs. epoch. 

 

Based on Fig. 11, the value of training accuracy starts from 87% in epoch #1 and climbs to 99% in epoch #128. 

Meanwhile, the value of validation accuracy in epoch #1 begins at 89% and after some oscillation ends at 99%.  

Furthermore, as is depicted in Fig. 12, the value of training loss and validation loss is 0.28 and 0.15 in epoch #1, 

respectively. In the last epoch, training loss decreases to 0.009, and the validation loss becomes 0.016. It is worth 

mentioning that, due to the adaptation of 10-fold cross-validation we have to obtain the average of the mentioned 

values for all 10 rounds of training. 

Moreover, the confusion matrix for each 1 to 10-fold is demonstrated in Fig. 13 (a)-(j). 
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(a)                                                        (b)                                                       (c)  

 

 
(d)                                                       (e)                                                          (f) 

 

 
(g)                                                       (h)                                                        (i) 

 
(j) 

Fig. 13 (a)-(j). Confusion Matrices for folds 1 to 10. 
 

As is observed from Fig. 13 (a)-(j), the highest number of TPs happened in folds 5 to 10, correctly classifying 1354 

samples. Meanwhile, the highest number of TNs happened in fold 10, where it achieved 1366 samples correctly 

classified as uninfected. The lowest number of FNs, 34, occurs in fold 10 and the highest in fold 8, reaching up to 48.  

Moreover, Table 3 details our results in each fold and also on average. 
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Table 3. Classification results based on different metrics for each 10-fold. 

Fold Accuracy Precision Recall F1-Score TNR FPR FNR AUC-ROC 

1 98.15 98.15 98.16 98.15 97.50 2.5 1.18 99.91 

2 98.44 98.44 98.46 98.44 97.46 2.54 0.59 99.90 

3 98.04 98.04 98.05 98.04 97.29 2.71 1.18 99.85 

4 98.00 98.00 98.02 98.00 97.21 2.79 1.18 99.83 

5 98.62 98.63 98.64 98.62 97.43 2.57 0.15 99.91 

6 98.66 98.67 98.68 98.66 97.50 2.50 0.15 99.81 

7 98.37 98.39 98.39 98.37 96.93 3.07 0.15 99.85 

8 98.19 98.21 98.21 98.19 96.57 3.43 0.15 99.89 

9 98.55 98.56 98.57 98.55 97.29 2.71 0.15 99.84 

10 98.69 98.70 98.71 98.69 97.57 2.43 0.15 99.82 

Average 98.37 98.38 98.39 98.38 97.28 2.73 0.50 99.86 

 
Table 3 shows that fold #10 is the best iteration that the model has done. Based on the metrics reported in this table, 

we can see that the model has delivered 98.69% for accuracy, 98.70% for precision, 98.39% for recall, and 98.69% 

for f1-score. The highest value for AUC-ROC happens in fold 9, where our classifier achieves 0.9984 for this metric. 

In addition, fold 4 is the worst fold, in which the model scores the lowest in terms of the target metrics. 

Table 4 shows the prediction time of our proposed method for 32 (the chosen batch size) samples of cell images and 

its total number of trainable parameters.  

 

Table 4. Inference time and the number of trainable parameters. 

Number of Samples 

Prediction Time (seconds) 

Number of learnable parameters in the model 

32 

0.089 

5,224,688 

 

In Table 4, it can be observed that the time taken by the model for classifying 100 samples is 0.089 seconds. 

Unfortunately, we did not have access to the other research works’ implementation so as to obtain their prediction 

time and this eliminates the opportunity for a detailed comparison between our proposed method and others concerning 

the models’ complexity. 

Furthermore, Fig. 14 illustrates the ROC curve for our proposed method. 
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Fig. 14. The ROC curve for the proposed model. 

 
4.3. Gradient-weighted Class Activation Mapping (Grad-CAM) 

In order to further validate our proposed approach, we are interested in presenting Gradient-weighted Class Activation 

Mapping (Grad-CAM) [36] visualization for the model. Grad-CAM is a technique for making a large class of CNN-

based models more explainable and transparent by using the gradients of different classes on which the model is 

trained to produce localization maps highlighting the salient regions of the input image. That is, by applying this 

technique, we can easily acquaint ourselves with the regions on which the model focuses when predicting a particular 

class. Fig. 15 (a)-(d) shows some TP, TN, FP, and FN samples and their Grad-CAM output in two modes, namely 

heatmap and superimposed. 
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 (a) 

 
 (b) 
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(c) 

 
(d) 

Fig 15 (a)-(d). (a) TP Samples, (b) TN Samples, (c) FP Samples, (d) FN Samples. 

Based on Fig. 15 (a)-(d), we can see the attention of the model in different samples. Fig. 15 (a) shows that the model 

mainly focuses on the stained parts of the sample image. This behavior is expected since the samples should be 

predicted as positive (infected). In Fig. 15 (b), it can be observed that the model has a holistic focus on the sample; 

thus, it predicts the negative samples correctly. In Fig. 15 (c) and Fig. 15 (d), the model finds some other regions in 

the images, leading to the wrong classification.  
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The world’s most important parasitic infection is known to be malaria [37]. Malaria’s eradication from temperate 

areas was due to the development of highly efficient, residual insecticide Dichlorodiphenyltrichloroethane, also known 

as DDT. Nevertheless, this success became halted on account of the costly operations and resistance of the societies 

to take hygienic measurements such as iteratively spraying their environments [38].  

Malaria’s symptoms are manifold, ranging from irregular fever, chills, headache, and malaise. However, these signs 

of infection might be hidden due to nearly two weeks of the incubation period, which is common in malaria-infected 

cases. An accurate diagnosis is made by examining the microscopic films of thin and thick blood cells, some of which 

may be stained in the case of an infected patient. These samples provide the scientific communities with the 

opportunity of adopting machine learning-based approaches to atomize the process of malaria diagnosis. For instance, 

in [39], Das et al. took the effort of collecting thin peripheral blood smear samples, and after some preprocessing steps, 

tried to extract and use image-based features with the object of feeding to Naive Bayes and SVM to classify the 

acquired samples. In another research work, Rosado et al. [40] presented an approach based on SVM to classify the 

parasitized and uninfected samples with the help of mixing geometric, color, and texture features. Although these 

works are effective to some extent, the obligation of obtaining attuned extracted features can be detrimental to the 

performance of algorithms. As a result, DL-based methods have paved the way to enhance the efficiency of such 

methodologies further. 

In the era of DL, a variety of research works employed various deep architectures to atomize the procedure of 

diagnosing malaria. In Table 5, we have presented a review of these works in comparison to our own proposed 

approach. The central point of this comparison is that the power of transformer-based architectures has not been 

investigated yet. Consequently, we are motivated to apply a ViT-based model to the problem at hand. The family of 

ViT architectures has proved to be more efficacious in most computer vision tasks, albeit with some requirements and 

necessities. The most vital factor in training such architectures is a large amount of data. This is a problem, especially 

in terms of malaria, since publicly available datasets with a sufficient number of samples are scarce. In order to address 

the issue, we opted for a customized version of MobileViT, which has the optimal need for data and uses both 

transformer and CNN for learning the patterns.  

Our findings prove the effectiveness of our approach. First of all, the metrics, provided in the evaluation section, 

demonstrate that the model has consistency with regard to the recall and precision of the proposed classifier. Moreover, 

the comparison detailed in Table 5 shows that the approach has superior performance. Obtaining an F1-Score of 98.38 

and an AUC value of 99.86 signifies the powerful separability made by the decision boundaries within the proposed 

deep classification model. Regarding the other metrics, FPR and FNR are deemed cardinal types of error in medical 

contexts [41]. As is depicted in Table 5, the FPR value for our proposed approach is 2.73 on average. Compared with 

other works, the proposed method has a better performance in terms of FNR. However, the FPR is slightly worse than 

[42] and [3]. 

In addition to this, the usage of the Grad-CAM visualization method depicts that the proposed model primarily attends 

to the stained areas in infected samples, proving its estimated behavior in that the model has a proper understanding 

of the infected cell samples. On the other hand, when the target sample is healthy and normal, the model behaves in a 

way to pay attention to the whole sample structure. Furthermore, the computational cost of the proposed method is 

thoroughly suitable for low-resource environments. This makes the approach more preferable since it can be embedded 

in mobile applications. As is shown in Table 5, this can be verified by the inference time of the model for 100 samples 

which are included in Table 5.  
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Table 5. Comparison of our proposed method with other research work. 

Reference Architecture Train-Test Accuracy  F1-Score AUC-ROC 

Liang et al. [11] Custom CNN 10 CV 97.37 97.36 Not Reported 

Rajaraman et 

al. [12] 

ResNet50 5 CV 95.70 95.70 99.00 

Rahman et al. 

[43] 

VGG16 5 CV 97.77 97.09 99.38 

Shah et al. [13] Custom CNN 80-20 94.77 94.81 Not Reported 

Quan et al. [14] ADCN 5 CV 97.47 94.34 Not Reported 

Yang et al.  

[42] 

Custom CNN 5 CV 97.26 80.81 98.39 

Marques et al.   

[3] 

EfficientNetB0 5 CV 98.29 98.28 0.9976 

Zhu et al.    [15] ResNet-Based 

Output Ensemble 

5 CV 95.73 95.69 Not Reported 

Proposed MobileViT 10 CV 98.38 98.38 0.9986 

 
Furthermore, the advantages of our proposed method can be summarized as follows: 

 Our proposed method has achieved superior performance over the other research works. 

 The algorithm is evaluated using KCV, proving the stability of our results and preventing biasedness. 

 DA techniques have been employed, and this helped the proposed method be more generalizable to other related 

datasets. 

 Our method is based on MobileViT, meaning that it is completely tailored for low-resource mobile applications. 

 The proposed method proves the usefulness of the ViT-based model on relatively small datasets of malaria cell 

images. 

 Grad-CAM is used to verify further and validate the robust behavior of the model. 
 

Our work has some limitations. Firstly, the approach is not evaluated in more datasets since, as mentioned before, 

such a vast dataset is not accessible to us. Secondly, the training process can be done better. The frequent oscillation 

of accuracy and loss curves during training and validation supposedly originates from the small batch size, and this is 

because we do not have access or essential funding for better hardware such as GPU.  

The limitations of our proposed algorithm can be summarized as follows: 

 Due to the scarcity of publicly available datasets, our approach has not been yet evaluated on more realistic 

datasets. 

 The lack of access to more powerful hardware, especially GPU, spoils the quality of the training process.  

 

5. Conclusion and future work 

This work presented a deep learning-based method for automatically classifying blood cell images that are either 

infected by malaria or uninfected. This study aims to alleviate the labor-intensive and time-consuming conundrum of 

manually diagnosing malaria which is frequently done by trained practitioners. Our proposed algorithm can facilitate 

such procedures, especially because it can be embedded in mobile-friendly environments which are not rich in terms 

of computational resources. An extensive evaluation of our proposed network proves its outstanding performance 

regarding the accuracy of 98.38%. In future studies, we aim to evaluate our method on larger and more realistic 

datasets with closer distribution to real-world scenarios which happen in the laboratory.  
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