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Abstract

Graphic Processing Units (GPUs) are the second heart of modern computers. Mainly used in displaying

graphics, it became an additional tool for fast processing in the early 2000’s. Thanks to the extension to

General Purpose for Graphic Processing Units (GPGPU), many applications such as deep learning use

this hardware to process tasks in parallel [1]. The present paper continues our investigations [2] on the

usability of GPUs in the field of multibody dynamics, in this case for forward dynamics of planar serial

chains using a single-step explicit Euler integration scheme, which is ubiquitous in real-time simulations.

The GPU is a Single Instruction, Multiple Thread (SIMT) or also known as Multiple Data (SIMD) ar-

chitecture. Thus, parallelizing on SIMT architecture requires to find independent and repetitive schemes,

such as atomic operations +,×,/ or − . However, kinematics of chains of bodies typically are computed

sequentially resp. recursively, which create a data bottleneck difficult to parallelize [3, 4]. This work

analyzes the possibility of forcing parallelization of kinematics of serial chains by using values of posi-

tion and velocity from previous time steps of an explicit Euler integrator to break recursiveness and thus

provide a means of fully parallelizing dynamical equations of minimal order:

MMM(q) · q̈+b(q̇,q) = Q(q̇,q) (1)

The basic idea is that the system matrices MMM(q) and b(q̇,q) do not vary significantly from step to step

and thus can be computed from intermediate expressions from previous time steps. In this abstract both

the influence of using past time steps on accuracy and comparison of computation time for CPU vs. GPU

is analyzed. The code is developed using NVIDIA CUDA as it is a well maintained and documented

library [5]. The set of equations can be obtained in the minimal form using kinematical differentials

resp. pseudo velocities and accelerations [6] corresponding to the Jacobian approach. Calculations can

be divided into GPU blocks containing parallel calculations (depth) that are executed sequentially due to

inter-dependency constraints (breadth) (see Fig. 1 for a 2R mechanism with five blocks).

By allowing the blocks to use previous values for position and velocity, the blocks can be computed in

parallel, and thus the system becomes fully parallelizable. However, then, the equations will not be exact

anymore, and thus errors might accumulate. An analysis of errors (Tab. 1) for a sample simulation of a

2R serial chain (Fig. 2a) using MATLAB shows however that the difference between the ”exact” Euler

step and the reference solution using Runge-Kutta scheme of ode45() is orders of magnitude larger than

Figure 1: Execution timeline of parallel blocks.



Table 1: Errors caused by delayed values on Euler compared to ode45.

Timestep Angle Euler t-1 t-3 t-5

µs deg diff. ode45 diff. ode45 diff. Euler - - - -

1000 ϕ1 55.2858 55.2947 0.0089 55.2645 -0.0213 55.6067 0.3209

ϕ2 128.3012 128.2902 -0.0110 128.3398 0.0386 128.2627 -0.0385

100 - 7.2605 7.2612 0.0007 7.2583 -0.0022 7.2509 -0.0096

- 16.7775 16.7789 0.0014 16.7734 -0.0041 16.7598 -0.0177

50 - 2.6862 2.6863 0.0001 2.6856 -0.0006 2.6834 -0.0028

- 6.2337 6.2340 0.0003 6.2325 -0.0012 6.2284 -0.0053
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(a) Values for ϕ1 with different solvers and delays for an

integration timestep of 1ms.
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(b) GPU execution time using delayed values.

Figure 2: Effect of delayed values on the calculation of dynamics.

the difference between the Euler scheme with increasing delay (t-1, t-3, t-5) and the one without, with no

visible difference between the Euler schemes with different delays.

The result of parallelization on the GPU is shown on Fig. 2b where the performance of a GTX 1060 GPU

is compared to an Intel i7-7700 CPU for the execution of a planar serial chain with a growing number

of joints. The GPU timing remains closely to constant while the CPU shows a quadratic complexity.

However, the GPU is slowed-down by constant hundred microseconds due to kernel launching and syn-

chronizing overhead (upper curve). An estimation of GPU time in which the launching is executed only

once using persistent kernels (lower curve) is planned to be implemented and running at the conference.

In conclusion, this work shows that there is a significant potential for computation-time optimization for

forward-dynamic simulations of multibody dynamics using GPUs which has not yet been analyzed in

the literature. Further research is currently in progress to analyse the errors due to time shifts, introduce

divide-and-conquer method for chain slicing, remove the launching overhead, include closed loops and

spatial systems and regard multi-step integrators.
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