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Abstract—Aiming at the high complexity of parameter opti-
mization for portfolio models, this paper designs a distributed
high-performance portfolio optimization platform(HPPO) based
on parallel computing framework and event driven architecture.
The platform consists of the data layer, the model layer, and the
excursion layer, which is built in a component, pluggable, and
loosely coupled way. The platform adopts parallelization accel-
eration for backtesting and optimizing parameters of portfolio
models in a certain historical interval. The platform is able to
docking portfolio model with real-time market. Based on the
HPPO platform, a parallel program is designed to optimize the
parameters of the value at risk(VAR) model. The performance
of the platform are summarized by analyzing the experimental
results and comparing with the open source framework Zipline
and Rqalpha.

Index Terms—high-performance computing, portfolio opti-
mization, portfolio backtesting, periodic data, parameter opti-
mization.

I. INTRODUCTION

Portfolio optimization refers to optimizing the parameters of
a certain portfolio models by simulating buying and selling of
underlying assets based on historical market data. The param-
eters of a portfolio model are optimized through a historical
interval by maximizing the Sharpe ratio or minimizing the
maximum retracement and so on. Portfolio optimization is
conducive to assisting asset managers to build portfolios with
higher profitability, risk tolerance and stability [1].

In practical application, the fund managers tend to optimize
the parameters of a portfolio model dynamically according
to the real-time market data, which can help fund managers
adjust their portfolios as the market changes [2] [3]. For
example, in dynamic risk monitoring of investment portfolios,
in order to maintain the stability of returns during investment
management, restrict and monitor extreme risks, investment
managers usually need to perform dynamic asset allocation
and portfolio management throughout the process while taking
into account dynamic risk monitoring and adjust model pa-
rameters [4] [5] [6] [7]. This process requires usually minute-
level data in practical applications, preferably second-level
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data or even tick data [8]. Existing software packages such
as Zipline [9] and Rqalpha [10] usually take minutes or even
hours to solve such problems, which takes too long to meet
the actual needs. For another example, In the mean-variance
model, the mean vector and the covariance matrix can be
easily estimated by the history data, statistically. However, the
parametric matrix D of the possibility distribution is much
more difficult to estimate [11]. Traditional software packages
require a lot of time to carry out a round of calculations, let
alone the optimization of the model parameters. Therefore, it
is necessary to accelerate the solution of the model in parallel
to reduce the time cost by backtesting [12]. Besides, we need
to develop more efficient parameter optimization methods for
different portfolio models. Based on these issues, we propose
an efficient portfolio optimization framework and develop a
portfolio optimization platform named HPPO which can meet
the following needs [13] [14]

• Requirements for solving large-scaled portfolio models
efficiency with minute-level or tick data at a given mo-
ment.

• Requirements for optimizing portfolio models with his-
tory market data during a certain interval of time.

• Requirements for parallel computation for large-scaled
portfolio optimization problems.

In building the HPPO platform, we focused on three key
issues as listed below:

• Distributed computing for portfolio optimization. We
focus on how to use Monte Carlo methods to generate
approximate solutions to portfolio optimization problems
[15], how to do solve large-scale portfolio optimization
problems in a parallel environment, and how to design
a high-performance portfolio backtesting framework. We
use a three-dimensional topological structure diagram to
describe the overall layout of the framework in detail.

• Inter-process communication and task scheduling deploy-
ment. We focus on how to transfer information and data
between different modules effectively, how to enable the
platform to call the computing cluster, and how to allocate
different computing resources to different models. We



use Mesos to take charge of the management of the
underlying infrastructure resources and implement the
scheduling and use of resources by writing a framework
to allocated resources based on Mesos.

• Simulation of transactions and docking portfolio model
to the real-time market. The platform is built by event-
driven architecture which can not only simulate the real
trading environment but also, more importantly, integrate
the optimized model directly into the real-time market
without any modification and achieve the seamless con-
nection between the historical simulation and the real-
time trading.

II. THE ARCHITECTURE OF THE HPPO PLATFORM

A. The Topography Structure of the HPPO Platform

In this section, the overall layout of the platform is intro-
duced in detail with a three-dimensional topological structure
diagram.

In the process of searching optimal parameters for portfolio
models, for each group of parameters input to our platform,
backtesting is needed. Different portfolio models are based on
a different level of data, which will cause problems during data
transmission. For instance, some portfolio models are based on
daily data, some are based on hourly data or 15 minutes, 5
minutes, 1-minute data, and even tick data. The data volume
required by these models is quite different, which makes it
difficult for the master processor to broadcast all the market
data to the slave processors at one time [16]. The platform
solves the problem by slicing the history or real-time data.

For example, if we create a portfolio model based on tick
data and the parameters of the model are required to be
optimized by using all the tick data of the A-share market
in 2019. Then the total volume of the required data is about
45GB. We slice the whole data into weekly data and the master
processor broadcasts weekly data to the slave processors, with
a data volume of about 860MB per broadcast. For another
example, if a portfolio model is based on daily data, we can
broadcast the data on an annual basis. The data we broadcast
each round is called periodic data.

The parallel computing topology model of HPPO platform
is shown in Fig. 1. P (k)

j represents the model parameters stored
on the jth processor at the kth round of optimization for
j = 1, . . . , p. T (k)

ij represents a backtesting task (Di, P
(k)
j )

when the periodic data is Di for i = 1, . . . ,m and the model
parameter is P (k)

j . F (k)
j is the calculation result of the portfolio

model in the kth round of optimization with the periodic data
Dj .

In the first round of calculations, the platform completes
the initialization work F0 and the main processor assign-
s task group T

(1)
11 , T

(1)
12 , . . . , T

(1)
1p to each slave processors.

Each of the slave processors receives the task and per-
forms backtesting. After all the slave processors complete
the calculation, the master processor collects the calculation
results and updates the periodic data and then the task group
T

(1)
21 , T

(1)
22 , . . . , T

(1)
2p are broadcast to the slave processors. The

Fig. 1. The parallel computing topology model of the HPPO platform

salve processors continue the backtesting until the task group
T

(1)
m1 , T

(1)
m2 , . . . , T

(1)
mp is completed, which means a round of

parallel computing is completed. The main processor collects
the results and saves them as F

(1)
m . After that, the model

parameters are optimized according to the optimization algo-
rithm. Afterward the master processor generates task group
T

(2)
11 , T

(2)
12 , . . . , T

(2)
1p and broadcasts it to the slave processors

for a new round of parallel backtesting. The process above
is repeated until the optimization algorithm converges or all
parameters are searched.

It is worth noting that when we do parallel parameter
optimization for portfolio optimization, we can not parallel the
data on the time axis. We parallel the set of model parameters
or parallel the model itself. The HPPO platform focuses on
the parallelism of parameters rather than the parallelism of
the portfolio model itself.

B. The Architecture of the HPPO Platform

The overall architecture of the HPPO platform is mainly
divided into three parts: the data layer, the model layer and
the execution layer. The data layer is managed by the master
processor, which is responsible for data storage, data man-
agement and providing data for other layers. The model layer
and the execution layer are managed by the slave processors.
The model layer is responsible for portfolio model building,
backtesting and parallelization. And the execution layer is
responsible for executing trading orders. The three parts are
independent of each other, which minimizes the degree of
coupling between the layers.

As shown in Fig. 2, the communication protocol between
the data layer and the model layer is designed with a message
passing interface (MPI). Messaging communication involves
two basic communication models: point-to-point communica-
tion and collective communication. After the slave processors
complete the backtesting task, the results are sent to the master
processor through point-to-point communication. MPI Send,



MPI Recv, MPI Isend and MPI Irecv all provide point-to-
point communication, the first two based on the blocking
communication mode and the second two based on the non-
blocking communication mode. Because each slave processor
needs to wait for the master processor to update periodic
data after passing backtesting results to the master processor,
the blocking communication model is adopted. Collective
communication can be divided into data mobility and data
aggregation. The master processor broadcasts the periodic
data and model parameters to the slave processors by one-
to-many data scatter communication, which is realized by
calling function MPI Scatter. Each slave processor sends the
results to the master processor by using many-to-one data
protocol communication, which is realized by calling function
MPI Reduce. The master processor is responsible for task
allocation and the judgment of algorithm convergence.
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Fig. 2. The framework of the HPPO platform

In terms of the underlying architecture, Event-Driven Archi-
tecture (EDA) is adopted. EDA is a way to achieve maximum
loose coupling between components or services with events as
the medium. Traditional interface-oriented programming uses
interfaces as the medium to realize the decoupling between
the caller and the interface implementer, but this degree of
decoupling is not very high. If the interface changes, the
code on both sides needs to change. Event-driven is that
the caller and the callee do not know each other, and they
are only coupled with the intermediate message queue. The
event-driven architecture has three key components: the event
producer, the event router, and the event consumer. The
producer publishes events to the router, which filters them and
pushes them to the consumer. Producer services and consumer
services are separate, which allows them to scale, update, and
deploy independently.

C. The Operating Mechanism

This section we introduce an example to show the operating
mechanism of the HPPO platform. The value at risk(VAR)

model [17] calculates the optimal portfolio weight by solving
the following equation with the given parameters α and µ:

min
x

V aRα(w
Tx)

s.t. E(wTx) ≥ µ
n∑
i=1

wi = 1

wi ≥ 0, i = 1, 2, ..., n

where w := (w1, · · · , wn) is the weight of n risky assets.
The investor seeks a group of parameters α and µ to

maximum the absolute return of his portfolio during a certain
history period, such as January 1, 2015 through December
31, 2015. The model of this problem can be build by HPPO
through the following step:

1) Model parameters setting: The following table shows
the parameters of the optimal problem. Those parameters
are set by the users which define the optimal problem. The
covariance matrix is estimated by the closing price data of
the past 30 trading days, which means the data period of the
covariance matrix is 20 days.

TABLE I
MODEL PARAMETERS SETTING

Parameter Setting
portfolio model VaR

optimization goals maximum Sharpe Ratio
parameters to be optimized α, µ

Optimization algorithm grid search
the range of α [0.1,0.2]
the range of µ [0.1,0.2]

investment target SSE 50
benchmark Shanghai Stock Index
date range from 2015/01/01 to 2015/12/31

position adjustment interval 20 trading days
data period of the covariance matrix 20 trading days

2) Periodic data broadcasting and parallel backtesting:
Fig. 3 shows how the platform work after defining the optimal
problem.

In this example, the volume of daily data is relatively
small, we use one year’s data as periodic data and assume
that the number of slave processors is 2. After selecting
the periodic data, the parameters (α, µ) are initialized to
(0.10, 0.10), (0.11, 0.10) and broadcasted to the two slave
processors, respectively.

The controller 1 receives the periodic data and generates a
data update event signal daily. After the event is updated, the
model layer receives the data, solves the model and calculates
the weight of the portfolio. After the model layer completes
the calculation, a position adjustment event is generated and
sent to the execution layer. The execution layer places orders
with the simulated stock exchange, which returns the trading
results. We continue to repeat the above process until all the
data in a given time interval (in this example, to December
31, 2015) is updated, the backtesting is completed and the
performance index such as Sharpe ratio is obtained.
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Fig. 3. The operational mechanism of the HPPO platform

3) Parameter optimization: After completing the parallel
backtesting for a given parameter group, the platform op-
timizes the parameters. In this example, the grid search is
used. In the next round, the two slave processes calculate
the performance index of the VaR model when the param-
eters (α, µ) are (0.12, 0.10), (0.13, 0.10), · · · , (0.2, 0.10),
(0.1, 0.11), (0.11, 0.11),· · · , (0.2, 0.2), respectively. The op-
timal parameters are obtained when all the parameters are
searched or the optimization algorithm adopted by the user
converges.

III. IMPLEMENTATION OF HPPO PLATFORM

A. The Data layer

The data layer is responsible for data management, includ-
ing data acquisition, data cleaning, data storage and provid-
ing data services to other layers. The data layer is divided
into historical data module and real-time data module. This
distinction is made because the memory management model
between real-time data and historical data is quite different.
The historical data module needs to extract data from the
database and transfer the data to other modules. The real-
time data module needs to take into account the real-time data
storage and avoid the extra performance overhead caused by
it.

1) The Historical Data Module: The historical data module
retrieves the historical data from the Tushare or Wind database
and then stores the historical data into the Mysql database
(row database), and finally compresses the data in Mysql
database into a columnar database. Columnar databases are
more efficient I/O for read-only queries because they only
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Fig. 4. The historical data module

need to read the attributes accessed by the query from disk
(or from memory). Columnar databases are mainly suitable for
batch data processing and instant query. Columnar databases
have the following advantages: a) Extremely high load speed
(up to the sum of all hard disk IO’s) b) Suitable for large
amounts of data, not small ones. c) Suitable for loading data
in real time but limited to increase (deletion and update need
to uncompress Block and then recompress storage).

The columnar databases can significantly reduce the per-
formance overhead of other modules when reading data and
avoid the entire platform spending a lot of time on data I/O at
runtime. One thing to note here is that we do not directly
compress the obtained data into a columnar database. The
reason is that columnar databases are not suitable for real-time
operations that include deletions and updates, that is, columnar
databases are not easy to horizontally expand.
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2) The Real Time Data Module: The real-time data module
needs to consider two issues: the management of data in
memory and the management of data on disk. We need not
only to store the data in memory, but to store the data on disk.
One method is to start two threads to write data to memory
and local disk respectively, but starting a thread specifically to
store data will cause unnecessary performance overhead for
the system. To avoid this problem, we use memory-mapped
file.

A memory-mapped file associates the contents of a file
with a portion of the process’s virtual address space, as if
the entire file was loaded from disk to memory. Therefore,
when using memory-mapped files to process files stored on
disk, we no longer have to perform I/O operations on the



file, which means it is no longer necessary to apply for and
allocate cache for files when processing files, all file cache
operations are directly managed by the system. Memory-
mapped file plays an important role in handling large data
volumes by eliminating steps such as loading file data into
memory, writing back data from memory to file, and freeing
blocks of memory. We use memory-mapped files to establish
a one-to-one correspondence between memory data and local
files. Since the memory block and the data on the local disk
file are created at the same time, there is no performance
overhead in storing the memory data to disk. Besides, we do
not process any data on the disk during the operation of the
platform. Instead, we write local files to the database after the
platform is finished. This avoids the performance overhead
caused by storing real-time data. The same data structure are
built between the historical data module and the real-time data
module to keep the data consistent.

B. The Model Layer

The model layer is responsible for solving the portfolio
model with different parameters. The model layer is the
core module of HPPO platform which takes up the most
computing resources. The model layer not only provides the
interface for the user to design the customized portfolio model
but also realizes the parameter parallelization and calls the
high-performance computing resources to solve the portfolio
efficiently.

1) Customized Portfolio Model: HPPO platform allows
users to write their portfolio models by providing interfaces
such as data interfaces and ordering interfaces. First, the data
interface is called to obtain the data; Then the portfolio model
is solved according to the data and the portfolio weight is
obtained. Finally, the trading interfaces are called to convert
the calculation results into order event to complete the placing
of orders.

For example, to adjust the weight of the risky asset-
s, the slave processors obtained portfolio data through the
interface history bars and calculate portfolio weight with
certain parameters. Then the latest price is called to query
the latest transaction price of the portfolio and get positions
is called to query the position. Finally, the interfaces such
as order target percent, buy stock, sell stock are called to
complete the order.

2) Parameter Parallelization: Parameter parallelization is
one of the ways for the HPPO platform to optimize parameters.
The HPPO platform uses different parallel algorithms to opti-
mize for different portfolio optimization models. For example,
for the grid search method, we perform the parallel calculation
on different model parameters to reduce the solution time and
improve the efficiency of the solution. For more complicated
models, we also use a variety of parallel optimization algo-
rithms, such as the parallel genetic algorithm (PGA).

3) High-performance Computing of the Model: The high-
performance computing of the model refers to the use of high-
performance computing resources for acceleration when solv-
ing portfolio models. This requires different high-performance

computing solutions tailored to different models. For example,
the multi-objective portfolio optimization model is solved by
parallelization and a dynamic portfolio hedging model based
on the LSTM algorithm can be accelerated by CUDA.

C. The Execution Layer

The execution layer is responsible for executing all trading
orders, including buying and selling investment targets, can-
celing orders and so on. Similar to the data layer, the execution
layer is divided into the simulated execution module and the
real-time execution module. This division is made because of
the difference between simulated trading and real-time trading.

1) The Simulated Execution module: The simulated execu-
tion module mainly includes simulated executor and simulated
exchange (see Fig. 6 below).
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Fig. 6. The simulated execution module

The simulated executor module is responsible for processing
order event and the simulated exchange module provides an in-
terface for other modules, which is responsible for simulating
order placing, cancellation, query and account operation. Take
an order event transfer as an example. The model layer com-
pletes the model calculation and generates an order event. The
simulated execution module processes the order event and the
interface of the simulated exchange module is called to deal
with the order event. The simulated exchange module performs
simulated actions such as transactions, account inquiries and
account operations according to the corresponding event and
returns the results to the simulated executor module.

2) The Real-time Execution Module: The real-time execu-
tion module is responsible for real-time trading. The real-time
execution module is composed of the executor (see Fig. 7
below). The real-time execution module is realized by docking
the executor with the exchange. The executor is responsible
for processing order events and calling trading interfaces, such
as the Shanghai Futures Exchange CTP interface and the
Zhongtai Securities XTP interface. If order events are passed
from the model layer, the executor calls the interface provided
by the exchange to deal with order operations such as placing
orders, withdrawing orders and inquiring positions.

In the process of building the HPPO platform, it is necessary
to keep the consistency between the simulated exchange
interface and the exchange interface.
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IV. EXPERIMENTS

A. Experimental Environment and Examples

In this section, experiments were conducted on Sugon’s
high-performance computer. The server is configured with 24
processors of Intel Xeon CPU E5-2620 v3, 256G memory, and
network connection is 10 Gigabit Ethernet. The deployment
environment is Ubuntu 16.04.1 LTS, Python 3.7. Based on
the HPC environment and the content above, we design the
HPPO platform and run tests to compare the performance with
Zipline and Rqalpha.

B. Experiment and Analysis

1) Performance Analysis of Serial Computing: Zipline and
Rqalpha are two open frameworks that allow users to design
portfolio models and run backtesting. However, none of them
provides a parallel computing environment. We design a
serial program for parameter optimization and compare the
running time of Zipline, Rqalpha and HPPO platform. In this
experiment, we optimize the parameters µ and α discussed
above. The search size of the parameter α is 11 and the search
size of the parameter µ is 11, too. The total search size of this
optimization problem is 11× 11 = 121.

Table II shows some basic results calculated by the HPPO
platform with different parameters (α, µ), which makes it easy
to find the maximum shape ratio. The results are the same as
those calculated by Zipline and Rqalpha.

The table III shows that the total calculation time of Zipline
is 3113.33s and the total calculation time of Rqalpha is
2516.80s. Each calculation takes 25.73s and 20.80s, respec-
tively. The calculation time of the HPPO platform is 1318.90s.
Each calculation takes 10.90s. The HPPO platform has sig-
nificantly reduced the computing time for serial programs
compared to Zipline and Rqalpha.

2) Performance Analysis of Parallel Computing: Based on
the high-performance computing platform and MPI parallel
programming environment, a parallel computing program for
multi-parameter optimization of the VaR model is designed
and implemented in the HPPO platform. Table IV lists the
calculation results of some nodes. In the calculation, we
performed 121 parameter groups in parallel and calculated the

TABLE II
BASIC RESULTS WITH DIFFERENT PARAMETERS

(µ, α) Shape Alpha Annual (µ, α) Shape Alpha Annual
Ratio Return Ratio Return

(0.1,0.1) 0.2560 0.0113 0.0558 (0.15,0.16) 0.1624 -0.0349 0.0144
(0.1,0.11) 0.2696 0.0171 0.0614 (0.15,0.17) 0.1275 -0.0454 0.0024
(0.1,0.12) 0.1357 -0.0307 0.0136 (0.15,0.18) -0.1002 -0.1290 -0.0805
(0.1,0.13) -0.0094 -0.0827 -0.0381 (0.15,0.19) 0.0377 -0.0823 -0.0340
(0.1,0.14) 0.0397 -0.0791 -0.0311 (0.15,0.2) 0.3849 0.0590 0.1051
(0.1,0.15) 0.0026 -0.0877 -0.0406 (0.16,0.1) -0.1105 -0.1356 -0.0870
(0.1,0.16) 0.0843 -0.0514 -0.0057 (0.16,0.11) 0.0494 -0.0764 -0.0285
(0.1,0.17) 0.1492 -0.0294 0.0161 (0.16,0.12) 0.1772 -0.0309 0.0189
(0.1,0.18) 0.1127 -0.0423 0.0027 (0.16,0.13) 0.0451 -0.0792 -0.0297
(0.1,0.19) 0.2402 0.0054 0.0504 (0.16,0.14) 0.0132 -0.0891 -0.0400
(0.1,0.2) -0.0253 -0.0916 -0.0455 (0.16,0.15) -0.0599 -0.1173 -0.0687

(0.11,0.1) -0.0692 -0.1056 -0.0597 (0.16,0.16) 0.1322 -0.0490 0.0007
(0.11,0.11) 0.1314 -0.0316 0.0128 (0.16,0.17) 0.1562 -0.0389 0.0110
(0.11,0.12) 0.0500 -0.0644 -0.0189 (0.16,0.18) 0.1265 -0.0459 0.0015
(0.11,0.13) 0.0648 -0.0604 -0.0142 (0.16,0.19) 0.1559 -0.0399 0.0104
(0.11,0.14) 0.0947 -0.0497 -0.0038 (0.16,0.2) -0.0497 -0.1191 -0.0685
(0.11,0.15) 0.1310 -0.0354 0.0093 (0.17,0.1) 0.0433 -0.0821 -0.0325
(0.11,0.16) 0.1340 -0.0381 0.0083 (0.17,0.11) 0.0400 -0.0808 -0.0325
(0.11,0.17) 0.2399 0.0067 0.0503 (0.17,0.12) -0.0833 -0.1290 -0.0794
(0.11,0.18) -0.0489 -0.1087 -0.0605 (0.17,0.13) 0.0692 -0.0783 -0.0267
(0.11,0.19) 0.0505 -0.0704 -0.0229 (0.17,0.14) -0.1146 -0.1475 -0.0957
(0.11,0.2) 0.2586 0.0124 0.0574 (0.17,0.15) 0.2494 0.0001 0.0484
(0.12,0.1) 0.0857 -0.0527 -0.0064 (0.17,0.16) 0.0203 -0.0887 -0.0399
(0.12,0.11) 0.3622 0.0511 0.0962 (0.17,0.17) 0.1135 -0.0533 -0.0042
(0.12,0.12) 0.2024 -0.0095 0.0360 (0.17,0.18) 0.0885 -0.0690 -0.0185
(0.12,0.13) 0.2913 0.0240 0.0689 (0.17,0.19) 0.1504 -0.0409 0.0078
(0.12,0.14) 0.3126 0.0306 0.0764 (0.17,0.2) 0.1621 -0.0364 0.0130
(0.12,0.15) 0.1842 -0.0184 0.0281 (0.18,0.1) 0.0405 -0.0875 -0.0366
(0.12,0.16) 0.2262 -0.0027 0.0437 (0.18,0.11) 0.0941 -0.0643 -0.0143
(0.12,0.17) 0.0568 -0.0634 -0.0173 (0.18,0.12) 0.1281 -0.0434 0.0043
(0.12,0.18) 0.0705 -0.0561 -0.0107 (0.18,0.13) 0.2200 -0.0134 0.0361
(0.12,0.19) 0.0937 -0.0510 -0.0042 (0.18,0.14) 0.0585 -0.0677 -0.0208
(0.12,0.2) 0.2232 -0.0020 0.0435 (0.18,0.15) 0.0996 -0.0563 -0.0081
(0.13,0.1) 0.0219 -0.0840 -0.0362 (0.18,0.16) 0.1562 -0.0360 0.0129
(0.13,0.11) 0.3174 0.0345 0.0790 (0.18,0.17) 0.3035 0.0243 0.0721
(0.13,0.12) 0.0249 -0.0795 -0.0321 (0.18,0.18) 0.1869 -0.0226 0.0250
(0.13,0.13) 0.1103 -0.0476 -0.0012 (0.18,0.19) 0.1896 -0.0280 0.0224
(0.13,0.14) 0.2257 -0.0022 0.0440 (0.18,0.2) 0.0968 -0.0573 -0.0093
(0.13,0.15) 0.0409 -0.0702 -0.0247 (0.19,0.1) 0.3483 0.0428 0.0899
(0.13,0.16) 0.3279 0.0345 0.0822 (0.19,0.11) 0.2341 -0.0029 0.0443
(0.13,0.17) 0.2593 0.0099 0.0560 (0.19,0.12) 0.1830 -0.0268 0.0215
(0.13,0.18) 0.2314 0.0013 0.0462 (0.19,0.13) 0.1479 -0.0393 0.0093
(0.13,0.19) 0.1943 -0.0143 0.0319 (0.19,0.14) 0.0383 -0.0800 -0.0318
(0.13,0.2) 0.0675 -0.0635 -0.0158 (0.19,0.15) 0.2991 0.0214 0.0692
(0.14,0.1) 0.2298 -0.0004 0.0454 (0.19,0.16) 0.0106 -0.0926 -0.0442
(0.14,0.11) 0.0077 -0.0916 -0.0429 (0.19,0.17) 0.3120 0.0248 0.0743
(0.14,0.12) 0.0575 -0.0603 -0.0159 (0.19,0.18) 0.0236 -0.0799 -0.0339
(0.14,0.13) 0.1000 -0.0514 -0.0043 (0.19,0.19) -0.0513 -0.1169 -0.0677
(0.14,0.14) 0.0873 -0.0596 -0.0120 (0.19,0.2) 0.1412 -0.0382 0.0096
(0.14,0.15) -0.1153 -0.1348 -0.0868 (0.2,0.1) 0.2579 0.0044 0.0523
(0.14,0.16) 0.0077 -0.0953 -0.0452 (0.2,0.11) 0.1524 -0.0365 0.0112
(0.14,0.17) 0.2368 0.0008 0.0474 (0.2,0.12) 0.3010 0.0249 0.0710
(0.14,0.18) 0.1363 -0.0410 0.0064 (0.2,0.13) 0.0035 -0.0979 -0.0489
(0.14,0.19) 0.0832 -0.0654 -0.0171 (0.2,0.14) 0.1413 -0.0408 0.0073
(0.14,0.2) -0.0177 -0.1009 -0.0536 (0.2,0.15) 0.2794 0.0143 0.0618
(0.15,0.1) 0.0021 -0.0943 -0.0454 (0.2,0.16) 0.2241 -0.0080 0.0396
(0.15,0.11) 0.0818 -0.0590 -0.0124 (0.2,0.17) 0.2449 0.0005 0.0482
(0.15,0.12) 0.2165 -0.0101 0.0376 (0.2,0.18) 0.2248 -0.0073 0.0409
(0.15,0.13) -0.0490 -0.1104 -0.0624 (0.2,0.19) -0.0019 -0.0966 -0.0490
(0.15,0.14) -0.0281 -0.1055 -0.0571 (0.2,0.2) 0.2340 -0.0053 0.0433
(0.15,0.15) -0.1251 -0.1399 -0.0910

TABLE III
THE SERIAL RESULT

Experiment Parameter Optimization T/s
Platform Scale

HPPO 121 1318.90
Rqalpha 121 2516.80
Zipline 121 3113.33

acceleration ratio and parallel efficiency when the number of n-
odes was 2, 4, 8, 12 respectively. The acceleration ratio Sp and
parallel efficiency η are calculated according to Sp = Ts/Tp
and η = Sp/p ( Ts is the serial calculation time, Tp is the
parallel calculation time and p is the number of parallel nodes
).

As shown in Table IV, under the current scale of 24
processors, such a smaller-scale portfolio optimization prob-
lem in the example achieves an acceleration ratio of more
than 8 times and a parallel efficiency of more than 69%.
According to Gustafson’s law, with the further expansion of



the optimization scale, the acceleration ratio and the increase
in parallel efficiency will become more significant.

TABLE IV
THE PARALLEL RESULT

Number of Nodes T/s Sp η/(%)
1 1318.90 1.00 100.0
2 679.85 1.94 96.96
4 387.91 3.40 84.99
8 221.29 5.96 74.52
12 158.33 8.33 69.38

V. CONCLUSION

This paper designs a distributed high-performance portfolio
optimization platform(HPPO) based on a parallel computing
framework and event-driven architecture with the aim of
parameter optimization for portfolio models. The platform is
built in a way that is high-performance, loosely coupled, and
scalable. We take parallel computing and high-performance
computing resources as the core and build the HPPO platform.
HPPO platform can realize the parameter optimization for
complex portfolio models with high efficiency, meeting the
actual needs of fund managers for adapting portfolio mod-
els to real-time market. This paper takes the VaR model
as an example to design and implement a serial program
and a parameter program for parameter optimization and
compares the performance of the HPPO platform with the
open frameworks Zipline and Rqalpha. The results show that
the HPPO platform not only has a significant improvement
in serial programs compared with traditional platforms but
also has a better performance when running in a parallel
environment. At present, the optimization algorithm for pa-
rameter optimization on our platform mainly includes grid
search, random search and parallel genetic algorithms. In the
future, more optimization algorithms will be integrated into
the HPPO platform for parameter optimization such as Particle
Swarm Optimization(PSO), Grey Wolf Optimizer (GWO) and
Bayesian optimization and so on.
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