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3 Haute École Pédagogique du canton de Vaud (HEP-VD), Lausanne, Switzerland
{morgane.chevalier}@hepl.ch

Abstract. Since educational robotics has been integrated into school
curricula, the number of robots on the market has continued to grow.
Today, it is even possible to increase the degree of autonomy of some of
these ground robots by connecting them to artificial intelligence software.
However, the use of these new functionalities raises the question of their
added value for learning. In this position paper, we compare the potential
of each category of robot (traditional robot versus AI robot) to promote
learning. As a result, we present scenarios where self-learning robots
enable students to reflect on their cognitive processes and learn how to
learn.

Keywords: Educational Robotics · Artificial Intelligence Education ·
Machine Learning · Metacognition · Primary School.

1 Introduction

The use of robots in education is not new. Numerous studies have confirmed the
relevance of educational robotics learning activities (ERLA) in fostering essential
skills for academic success, such as computational thinking (CT) [5] [10] [6] [3]
and metacognition [12] [17] [8], as early as elementary school. However, with the
increasing prevalence of artificial intelligence (AI) in our daily lives, some edu-
cational robot programming platforms now incorporate machine learning (ML)
systems. Some offer training of a ML model that can later be used in a Scratch
or Scratch-like programming interface (MachineLearningForKids.co.uk; Google’s
Teachable Machine; MIT’s Cognimate; Vittascience, France). Others, such as the
AlphAI software, allow the training of learning robots and the visualization of AI
algorithms (developed at the CNRS, France [12], and commercialized by Learn-
ing Robots, France). A large number of other AI robot initiatives have been
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proposed in the science education field [21]. This development of robots linked
to AI software raises the question of the added value of using AI robots over
more traditional robots. This question follows the pedagogical concerns raised
by Tedre and colleagues [18], who compared the traditional approach to pro-
gramming (CT 1.0) with the data-driven approach to programming through ML
(CT 2.0). Indeed, the growing complexity of computer science (CS) leads us to
rethink the way in which CS is taught at school, introducing new knowledge
(version CT 2.0 according to [18]) without replacing the basic knowledge (CT
1.0). In addition to this increase in CS knowledge, the teaching of ML seems
to offer the possibility of approaching metacognition through learning activi-
ties that compare ML and human learning. Therefore, in this paper, we explore
the added value of ERLA and ERLA embedding an AI algorithm (AI-ERLA),
with a particular focus on the development of metacognition in primary school
students.

2 From automaton to event-based programming robots

As Papert [14] has written, robots are objects to ’think with’, because being able
to manipulate them accompanies thought in action, as a mediating tool. In fact,
from the very first years of school, such tools for mediating thought are essential
for overall learning (communication, problem solving, etc.).

For more than 40 years now, robots have been entering the educational sphere
in an evolutionary manner, moving from automaton that the student controls
to robots equipped with sensors that can adapt their behaviour according to
the data collected in their environment. While the former operate in an open
loop, the latter operate in a closed loop or sensory-motor loop, which only gives
the latter the status of robot [1]. In addition to the machines themselves, it is
their programming paradigm (sequential vs. event-based) and problem solving
approach (deductive according to [18]) that helps or hinders their entry into
schools. Sequential programming seems to be better suited to young students,
as sequentiality is dealt with at the start of schooling in the activities involved in
learning to read and write. [7]. In addition, human-computer interaction is also at
stake. In this respect, visual programming interfaces have the advantage of being
able to make the language accessible to young students, by enforcing the correct
coding syntax and making it visually explicit [11]. Moreover, some engineers and
researchers go so far as to make the programming interface tangible too in order
to make robot programming accessible to even younger students and reduce the
mental load [16].

Using “objects to think with” (the robot and its tangible programming inter-
face), allows to leverage children’s embodied experiences in the world in order to
better help them enter the new universe of computer code and digital artifacts
[9]. Thus, through the use of automaton and robots to be programmed, students
are encouraged to develop 21st century skills [19] such as communication, collab-
oration, creativity and critical thinking. Added to this are ’information, media
and technology skills’, particularly knowledge of machines (sensors, actuators,
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etc.) and knowledge of the languages used to program these machines. In the
context of an ERLA, debugging skills are also at stake. Consequently, the three
CT components [2] are likely to be mobilised during an ERLA: computational
perspectives, computational concepts, computational practices. Of course, cer-
tain conditions favour the emergence of CT, such as the teacher temporarily
blocking access to programming [5] or delayed feedback for the student on the
execution of the program by the robot [4]. These two interventions refer to the
metacognitive pause [15] and, besides, some researchers associate the CT skill
with metacognitive skills [20]. However, all this knowledge about ERLA from the
state of the art is only valid in the CT 1.0 version [18], i.e. under the deductive
problem-solving approach. This changes when the problem-solving approach is
inductive (CT 2.0), i.e. based on data-driven approach to programming.

3 Shift towards AI robots

AI robots open up a new form of human-machine interaction and thus a new
learning relationship in the classroom between student and robot. These robots
incorporate a ML algorithm (supervised or reinforcement learning) which, on
one hand, impacts on the problem solving approach (inductive, [18]) and, on
the other hand, gives them more autonomy than traditional robots (section 2).
Indeed, traditionally, in computational problem solving (CT 1.0), the problem
is solved by the human and the solution of the problem is then executed by the
machine [5] whereas in data-driven approach to programming (CT 2.0, fostered
by generative AI [18]) both the problem solving and the solution are generated
by the machine. The role of the student has therefore changed and he·she needs
to understand how the machine learns, whether in supervised or reinforcement
mode, by expanding the scope of his·her knowledge developed in traditional
programming to that of ML[18].

Supervised learning is “applicable when we know what output is expected for
a set of inputs” [1] (p. 214) whereas, in reinforcement learning,“we do not specify
the exact output value in each situation; instead, we simply tell the network if
the output it computes is good or not” (ibid.). Through this game of rewards
(positive or negative), the robot is obliged to take account of its previous actions,
i.e. it learns from delayed feedback, which makes the learning process iterative.

In the case of reinforcement learning, we can clearly see the transition to
autonomy of the machine, which solves and executes the given problem itself.
This calls into question the role of the student in the problem-solving task.
At first sight, this seems to run counter to Papert’s constructivist approach [14]
(section 2). Nevertheless, some authors [13] posit this as an opportunity to revisit
the work of Papert and his colleagues, who have already highlighted the gain in
metacognitive knowledge and skills for student (even young ones) in AI context.
Based on the idea of “contrastive learning” [13] (p.22), these authors support
the value of highlighting the “relationship between AI and education, not only
looking at AI as an applied tool to advance education but also investigating its
value as an analogy to human intelligence” (p.1).
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In this regard, [12] recently showed that students aged 8 to 11, subjected
to an ERLA embedding an AI algorithm (AI-ERLA), significantly improved
their metacognitive knowledge, compared with those not subjected to the AI-
ERLA. The educational value of AI robots is thus well-founded, but there are
still differences in the way they are used. For instance, [12] proposes a teaching
scenario in which students i) explore and manipulate the robot in traditional
mode, but also ii) observe the AI robot in reinforcement learning mode. The
switch from the traditional robot to the AI robot involves a change of task
(from exploration/manipulation to observation), with the student being asked
to focus more on metacognitive aspects. This change leads to different learning
objectives.

4 Four learning scenarios with increasing robot autonomy

As mentioned in the introduction, we have identified 4 main types of scenarios
that can be set using different types of robots, with or without embedded AI.
Table 1 in Appendix summarizes these 4 scenarios and discusses their respec-
tive advantages. We focus our discussion in particular on how students engage
in the proposed activities. Indeed, while the ideas of Papert’s constructionism
imply that the student is the actor or actress of his·her learning and concretely
in action in his·her learning environment, the shift to the use of AI robots could
run somewhat counter to this idea. In fact, with traditional use of educational
robots (columns 2 and 3 in Table 1), the autonomy of the machine is low and
the power of the student to program and therefore to reflect and act (computa-
tional perspectives and practices) is high. But what happens when the machine
becomes increasingly autonomous?

In the first scenario, students simply control robots remotely and learn to
associate commands (e.g. buttons) with robot actions and to plan a sequence of
actions. Student engagement is high as they are involved in every moment of the
robot course, but at the same time this interaction remains trivial, so intellectual
engagement may be low as students get older.

The second scenario corresponds to the mainstream use of educational robots,
where students are engaged in programming the robot’s response to its environ-
ment. Their engagement is high as they iteratively i) plan how the robot should
behave, code, then ii) observe the robot behaving according to its code and
correct the code (debugging, etc.). Among these coding activities, we can dis-
tinguish those that are simpler for the younger ones, do not involve sensors, and
where students only program an open-loop sequence of actions.

The third scenario is an extension of the second, but involving AI, or more
precisely “supervised learning”. Here, students no longer program their robots
with code, but train them with data thanks to an ML model for a classifica-
tion task: in the case of image recognition, for example, they need to provide
relevant example images associated with given categories in order to train an
image recognition model. In the case of an AlphAI robot, students collect data
by remotely controlling their robot, and each image from the robot’s camera is
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directly associated with an action that the robot should perform, so that the
robot can be switched to autonomous driving as soon as this training is com-
plete: using such an AI robot can be simpler than traditional robot programming
and therefore more accessible to young students. In fact, the underlying task is
different because the approach to solving the problem changes from deductive
to inductive. In this context, data collection leads to an understanding of what
is relevant data. For instance, in the case of platforms such as machinelearning-
forkids.com, students integrate their trained model to a Scratch code, therefore
they manage to program their robot using both code (scenario #2) and data
(scenario #3). Altogether, despite the high degree of autonomy available to the
AI robot in scenario #3 and the AI model’s ability to learn and memorize, the
student’s power to act remains high (similar to scenario #2, i.e. action of iter-
ative debugging). It is noteworthy also that such activities are more accessible
to young students, and that they allow the programming more ”exciting” robot
behaviours, such as circuit racing.

In the fourth scenario, the robot learns ‘on its own’ by trial and error. Its
goal during learning is to maximise a score or ‘reward’ that it receives after
each action it performs. The activities become more subtle because they include
waiting periods during which the robot learns by accumulating experience. The
power of the student to act seems to be reduced, since it is the AI robot that
solves the problem on its own. Nevertheless, it is possible for the student to
manipulate: he·she can help the robot to learn faster by forcing it to make certain
explorations [12]; he·she can also manipulate the reward given to the robot to
adjust the learning goals, as is the case in the study by Zhang and colleagues
[21]. The task proposed in this study is designed according to constructionist
principles, and the results of the study show a high level of student engagement
and learning, similar to what was described in scenarios #2, #3 and #4 in Table
1 (understanding AI and CT concepts). Moreover, the students’ engagement
may also lie in the transition from manipulation to critical observation, as the
analysis of how the robot learns is useful for learning about one’s own learning:
in scenario #4, the students observe that the robot, like humans, needs time,
curiosity, acceptance of mistakes and thus perseverance to learn successfully. This
use follows the recommendation of Ojeda and colleagues [13] to use reinforcement
learning as a tool for metacognitive reflection, allowing children to “reflect on
their own thinking and learning”.

5 Conclusion, Limitations, and Perspectives

The purpose of the present paper was to explore the added value of educational
robotics and AI in the learning process, with a particular focus on the develop-
ment of metacognition in primary school students.

Based on the state of the art and on practitioners’feedback, we built and
proposed a synoptic table regarding 4 different scenarios with robots and AI. It
shows the added value of AI robots compared with traditional robots in primary
schools. It emerges that the 4 scenarios identified with robots do not all offer the
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same level of i) robot autonomy in solving the problem, ii) type of student’s en-
gagement in learning, iii) targeted educational objective, iv) teacher intervention
during learning.

In this paper, continuing Tedre and colleagues’s pedagogical concerns about
CT versioning [18], we argue that all different types of robots represent an op-
portunity for learning. The challenge, therefore, is to train teachers in this area.
In the previous sections, we recalled the recognized benefits of the tangible as-
pect of robots for learning and showed how data visualization, a neural network,
and the in situ behavior of an AI robot also contribute to student learning.
Consistent with the work of Ojeda and colleagues [13], this analysis highlights
the need to use AI robots not as a replacement for traditional robots, but as a
complement to them. Constructed learning is simply not the same and depends
more on the scenarios, the nature of the task, and how the tool is mediated by
the teacher than on the level of autonomy of the robot. This shift in students’
agency needs to be understood by teachers so that they can make good use of
each of these tools according to their pedagogical objectives.
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Appendix

Table 1: Comparison of the 4 robotics scenarios (with and without AI). 
 

Key elements of 
the scenario 

Scenario #1:  
Remote Control 

Scenario #2: Programming Scenario #3: 
Supervised Learning 

Scenario #4: 
Reinforcement Learning 

Example of 
robots that can 
be used 

Automaton robots 
(i.e. no sensor 
needed): Blue Bot, 
Thymio in Pink mode 

Ground robot (i.e. with 
sensors): Thymio, mBot, 
Dash, … 

Ground robot, connected to an AI 
software 

Ground robot, connected to an AI 
software 

Type of task 
and related 
approach 
according to 
[18] 

Remote control  the 
robot to move from 
point A to point B. 
Deductive approach 

Program robot to: move from 
A to B, avoid obstacles, solve 
a maze, line tracking, etc. 
Deductive approach  

Train AI with data to the same tasks 
(avoid obstacles, etc.) but also tasks 
involving complex sensors (camera). 
Inductive approach 
 

Set a goal and a reward system, then the 
AI learns “all by itself”. 
Inductive approach 
 

What does the 
student do? 

He·She gives orders 
to the robot, he·she 
controls it (remotely). 

He·She programs the robot 
according to the situations 
he·she anticipates. He·She 
analyzes bugs and adjusts the 
program, based on the CCPS 
model [5] for instance. 

He·She identifies all possible cases and 
gives relevant examples to the robot. 
He·She analyzes bias and regulates 
with new examples. 

He·She observes, analyzes and explains 
how the robot achieves its goals. He·She 
engages in reflexive practices, comparing 
his/her learning process with that of the 
robot and drawing conclusions. 

Type of 
teacher’s 
intervention 
(Teacher’s 
mediation) 

Help students 
manipulate the 
remote control. 

Help students with the 
programming language and 
identification of all cases. 
 

Help students identify all the cases and 
relevant examples needed. 

Help the student 1) identify the strategies 
the robot uses to solve the problem, 2) 
draw parallels and differences between 
the way the robot learns and the way the 
student learns. 

level of 
complexity of 
the task for the 
student 

Very low 
Interaction is step by 
step (low 
anticipation).  

High 
The difficulty lies in the 
programming task, which 
requires anticipation and 
knowledge of the 
programming language  
(computational concepts)1. 

Medium 
No need to know the programming 
language. However debugging is made 
more difficult because it is impossible to 
discern why a neural network has 
generated an output [18]. 

High 
The difficulty lies in knowing how the 
robot learns and having enough distance 
(maturity) from one's own way of learning 
as a student. 
Putting things into words can be an 
obstacle for students. 

What does the 
robot do? 

It executes orders 
regardless of its 
environment (open 
loop). 

It executes the program 
according to the situations 
encountered in its environment 
(closed loop). These situations 
have been defined. 

It learns from labeled examples 
provided by the student. It analyzes 
these examples to understand the 
relationships between inputs and 
outputs, and then uses this knowledge 
to make decisions autonomously, 
including generalizing decisions to new, 
unlabeled data. 

It learns by trial and error. It learns 
continuously "on its own" from its 
experiences, thanks to the reward system 
provided by humans. 

Can we talk 
about AI? Why 
? 

No 
...because the robot 
executes orders 
when asked to do so. 
It is not autonomous. 

No 
...because the robot executes 
a program according to the 
precise situations 
programmed. It may be 
autonomous, but it is not off 
the beaten track. 

Yes 
...because what is called AI today 
involves “machine learning”: here, the 
robot learns from the examples it 
memorized. 

Yes 
...because the machine explores and 
fumbles around in order to implement a 
strategy to achieve the set goal. This also 
involves “machine learning”. 

Links with 
everyday 
objects used by 
students 

Remote-controlled 
car. 

Coffee machine, automatic car 
wash, domestic machines. 

Industrial robots using computer vision. 
Self-driving cars. 
 

A robot like Dreamer2 that adapts the way 
it walks according to the state of the 
ground. 

AIs such as ChatGPT and other chatbots and audio assistants that have been 
trained using both supervised and reinforcement learning. 

Knowledge at 
stakes 

Technical aspects of 
the machine 

Technical aspects of the 
machine + CT 1.0 (including 
CS) 

AI concepts, especially the importance 
of data in modern life + CT 2.0  

 AI concepts + MK + CT 2.0 

Level of robot 
autonomy 

No autonomy Autonomy 
No learning 

Autonomy 
Memory 
Learning 

Autonomy 
Memory 
Learning (a more difficult one!) 
Exploration 

Student’s 
engagement 

High  
Direct handling 

High  
Direct handling + CT 1.0 

High 
Direct handling + regulation + CT 2.0 

High 
Active observation during the time robot 
learns, reflection, and metacognition + CT 
2.0 

 
1  An intermediate level of difficulty consists in programming only sequences of actions, without using any sensor. 
2 See at <https://danijar.com/project/daydreamer/>. 
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