
EasyChair Preprint

№ 621

Research and Comparison of Efficiency between

Multicast-based and Traditional SWIM

Ming Qi, Haining Sun and Xiling Luo

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 6, 2019



 

Research and Comparison of Efficiency between 
Multicast-based and Traditional SWIM  

 

Ming Qi 
Beijing Key Laboratory for Network-

based Cooperative Air Traffic 
Management 

 School of Electronic and Information 
Engineering, Beihang University 

Beijing, China 
qiming@atmb.net.cn 

Haining Sun 
Beijing Key Laboratory for Network-

based Cooperative Air Traffic 
Management 

School of Electronic and Information 
Engineering, Beihang University 

Beijing, China 
buaashn@buaa.edu.cn 

Xiling Luo 
Beijing Key Laboratory for Network-

based Cooperative Air Traffic 
Management 

School of Electronic and Information 
Engineering, Beihang University 

Beijing, China 
luoxiling@buaa.edu.cn 

Abstract—Increasingly high requirements are posed on the 
efficiency of information systems as the air transportation 
develops rapidly. At present, existing System Wide 
Information Management (SWIM) has dramatically changed 
the information architecture of point-to-point data exchange 
ones while little attention is placed on the efficiency of 
information exchange. This paper gives a proposition on the 
efficient information exchange method compatible with SWIM 
on the basis of UDP multicast. Theoretical analysis and 
simulation prove that reasonable packet size can take a strict 
control on the packet loss rate within an acceptable range. 
Additionally, comparison with the existing SWIM system 
presents that it also can lower down latency and server load 
ratio, especially at the time of the large number of users. It is 
worth to mention that this method has obvious advantages in 
transmitting including radar data, in terms of the features and 
requirements of different data.  

Keywords—SWIM, multicast, efficiency, styling 

I. INTRODUCTION  
In 1997, the European Aviation Safety Organization first 

proposed the concept of System-wide Information 
Management (SWIM) to the Federal Aviation 
Administration. SWIM is used to improve global 
interoperability between ATM service providers and enhance 
information sharing between departments. SWIM can also 
break the bottleneck of information exchange between 
heterogeneous services. In 2005, ICAO used SWIM as an 
international aviation information dissemination system. The 
United States deployed the NextGen and Europe dispose 
SESAR in 2007, respectively, and both use SWIM as a 
framework for information communication and data sharing 
[1].  

A lot of research in recent years of Flight Information 
Exchange Model (FIXM) and System Wide Information 
Management (SWIM) core services has theoretical and 
practical significance. But few studies have focused on the 
efficiency of information exchange in SWIM system.  
Kaltenhäuser  [2] considers the need to support the standard 
air traffic control interface as an important quality for a 
flexible air traffic management simulation environment. 
Adelantado [3] solved the problem of using standard 

interfaces by implementing a distributed airport simulation 
environment for the French Aerospace Research Center 
ONERA using the Advanced Architecture (HLA). Shifeng 
and Danxia [4] developed a cost-effective approach to 
constructing a flight control tower simulation using 
commercial-of-the-shelf hardware. They also introduced the 
use of multicast to distribute simulation state encoded in 
“primitive commands” proprietary to their implementation. 
But unfortunately they did not quantify the efficiency of 
multicast transmissions. 

At present, the research on multicast has achieved a lot of 
results, and has become a more mature technology. This 
paper proposes a multicast-based efficient information 
exchange method Combined with SWIM message service. 
The second section will describe the relationship between the 
typical SWIM service and the proposed method. The third 
part details the implementation of a multicast-based effective 
information exchange met hood. The fourth section describes 
how to apply and gives a simulation example. The simulation 
results and analysis are given in Section 5. Finally,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
summarize the full text work. 

II. CONCEPTUAL ARCHITECTURE 

A. Definitions of SWIM 
According to Stal [6], SWIM should be loosely coupled, 

and its communication interface can have several 
implementations. According to Wilson et al. [7] SWIM does 
not rely on a specific implementation of the communication 
layer, that is SWIM accepts any available communication 
layer configuration. The SWIM service can implement a 
partial semantic model. Special implementations can also be 
applied to SWIM services when their properties can be 
mapped to the semantic information reference model. 

The SWIM service-oriented architecture shall provide the 
infrastructure, data formats, and protocols to share 
information between all air traffic management subsystems 
in a scalable and interoperable way. SESAR defines the 
semantic layer of SWIM in the AIRM information reference 
model. In the communications layer it specifies the 
integration of air traffic management applications by 
message passing systems. 



 
Figure 1: Message broker implementation of multiple 
communication profiles implemented by the SESAR 
SWIM infrastructure. 

Airlines 
System

Weather 
Service

ATC
System

Aeronautical 
Information

profile 1: HTTP profile 2: DDS

profile 3: AMQP

 
Figure2. calculate the delay and delay dynamics by 
timestamp. 

As of now, three SWIM implementation profiles have 
been defined by SESAR as shown in Figure 1. The “profile 
1” utilizes the Hypertext Transfer Protocol (HTTP) as 
communication protocol with XML message formats defined 
in the Web Services Description Language (WSDL). The 
“profile 2” utilizes the Data Distribution System (DDS) 
protocol with a binary message format. The “profile 3” 
utilizes the Advanced Message Queuing Protocol (AMQP) 
as communication protocol with message formats defined in 
the web services description language. 

B. method for efficient information exchange 
This paper proposes a multicast-based SWIM 

information exchange method (MSIX), which is a simplified 
implementation of SWIM for research and laboratory testing. 
We designed a mini implementation with similar information 
sharing capabilities to SESAR designed SWIM, but with 
different communication configuration protocols. Our 
implementation provides SWIM semantic compatibility, so it 
can be understood as a lab-scale research-based SWIM 
model. 

The multicast-based SWIM information exchange 
method integrates air traffic information (such as radar data, 
weather data, etc.) sharing tools through a multicast 
messaging protocol. The data stored in the actual operating 
environment is injected into the multicast group for 
distribution in the simulated state. Each analog terminal can 
extract the required information from the public information 
pool after joining the multicast group. 

III. METHOD FOR THE MULTICAST-BASED SWIM 
The multicast-based SWIM information exchange 

method (MSIX) is a SWIM implementation for simulation. 
As stated in the SWIM definition, MSIX only implement a 
partial semantic model, but the method is compatible with 
the SWIM semantic layer definition. Therefore, the method 
can be understood as a SWIM practice with partial 
information transfer function, which can access operational 
data for simulation. The use of IP multicast has the following 
advantages: Multicast is a typical one-to-many message 
delivery method, which can improve the sharing efficiency 
of messages. The IP multicast protocol is supported locally, 
so no additional configuration is required. There is no need 
to re-set the network when changing networks. 

The MSIX method implementation uses a layered 
architecture based on the OSI (Open System Interconnection) 
reference model and has been implemented in the Java 
programming language. 

The application layer included in the implementation, 
implements the application interface between the simulation 
application and the MSIX. Different types of applications 
have different interface implementations. But no matter how 
the interface is implemented, the messages in the application 
layer conform to the SWIM unified information exchange 
model, which means that the application layer is compatible 
with the semantic layer. 

The presentation layer contains an XML representation 
that is platform-independent. In the definition of the SWIM 
semantic layer, the concrete implementation of the XML 
message belongs to the physical layer of the exchange model. 
The exchange model, with FIXM as an example, has a data 
layer, a logical layer, and a physical layer. The data layer is a 

detailed description of all the data needed to exchange 
models. The logical layer represents the relationship between 
the data in the data layer. The physical layer is the physical 
implementation of the logical layer, which means that the 
data to be transmitted by the application is represented by the 
physical layer implementation. 

The transport layer adopts the UDP (User Datagram 
Protocol) mode and encapsulates the upper layer XML 
information. The network layer implements IP multicast. The 
data link layer and physical layer below the network layer 
are beyond the scope of this paper, and network connections 
supporting IP multicast are adopted. 

A. Blocking control 
The root cause of congestion in the network load 

provided by the user or the calling system to the network is 
greater than the network resource capacity and processing 
capability. The performance is increased by packet delay, the 
probability of packet loss, and the performance of the upper 
application system. In the traditional AFTN network, a fixed 
format message is generally used as an information 
transmission carrier. This can reduce the amount of data in a 
single packet and avoid network congestion caused by 
excessive data usage and processing resources due to 
excessive data volume. According to the planning of the 
SWIM network, a more flexible message format will be 
adopted. At the same time, there is a larger amount of data, 
so it is necessary to consider ways to deal with network 
congestion. 



If the multicast application cannot respond correctly to 
network congestion, it will bring more serious impact to the 
network than congestion caused by unicast. The main reason 
is that the receivers of the multicast data stream are 
heterogeneous, and each receiver has different processing 
capabilities. The multicast congestion control protocol is 
highly targeted, and most of the protocols are proposed for 
specific problems. For example, radar data does not require 
reliable transmission (a certain amount of packet loss can be 
accepted), but the delay is expected to be as short as possible. 
A multicast congestion control protocol cannot meet all the 
requirements. 

This paper propose an actively adjusted multicast 
congestion control algorithm. The main design idea is that 
the receiver adaptively adjusts the receiving rate according to 
the packet transmission delay, thereby improving the 
throughput of the multicast session and reducing the delay. 
As shown in Figure 2, the information sent by the server 
contains the timestamp Send_time. The receiving end 
records the time Recv_time_grtt of the collected message 
and calculates the message delay. The client also needs a 
period of processing, which is Δt in the figure. Because radar 
data and other messages need to be processed and used 
within a certain period of time. So the delay described in this 
article should include processing time. In the figure, T 
represents the dynamic change value that may be generated 
by the delay. 

Messages to be delivered may be cached at the 
application layer due to network blocking or special 
implementations of the application. The application layer 
provides a message stack to cache messages. When the 
message is received, it will be pushed onto the stack. The 
thread that the application uses to process the message reads 
the message in the first-in, first-out order. Since some 
messages (such as radar data) are particularly time-sensitive, 
they should be delivered as quickly as possible, otherwise 
they will fail. Therefore, the stack will check the timeliness 
of the message. If the time limit of the data is exceeded, the 
data will be automatically popped up. The advantage of 
doing this is to clean up the discarded data on time and avoid 
wasting resources and time. 

B. Reliable multicast 
Use UDP at the transport layer. UDP is a connectionless 

and unreliable datagram protocol. From a resource 
perspective, UDP socket overhead is small compared to TCP. 
Because UDP does not need to maintain network 
connectivity and does not take time to establish a reliable 
connection, UDP sockets are also faster. Because no reliable 
connection is established, data may be lost, which is also an 
unreliable aspect of UDP. Care needs to be done to write a 
UDP implementation to check for errors and retransmit if 
necessary. Different messages have different requirements 
for data integrity. For example, losing a few of the hundreds 
of data is acceptable for radar information, but fatal problems 
can occur with flight information. Therefore, a method needs 
to be proposed to ensure the reliability and integrity of the 
data. 

There are some potential problems in reliable multicast, 
mainly in three aspects: 

Question 1. Distinguish between packet loss or 
congestion and bottleneck rate issues. If a single node has a 

high packet loss rate due to interference, it cannot be 
distinguished whether it is random packet loss or congestion. 
At this point, due to blocking control, all nodes will be 
affected, although the network is not crowded at this time. 

Question 2. The scalability problem when the multicast 
size is too large. 

Question 3. The dynamic nature of the network. Because 
the bottleneck receiving end may change constantly. In a 
dynamic network, the inability to quickly adjust the rate at 
the network bottleneck will result in more packet loss. 

The biggest difference between congestion timeout and 
loss is that after congestion, the original information can 
finally be received by the receiver. If a transmission 
timestamp is added to each data information, and the 
uniqueness is marked with the sequence information, it is 
possible for the receiving end to judge whether the packet is 
congested or lost. By correcting the packet loss estimate p 
and feeding it back to the source, this can largely distinguish 
between packet loss and congestion. This solves the problem 
1. 

In questions 2 and 3, the congestion control scheme is 
mainly involved. While the blocking control algorithm is 
enabled, a representative node for the dynamic network 
needs to be selected for determining the network status. 
When the number of nodes selected is small, it may not 
represent the characteristics of the entire large network, 
resulting in false positives. 

IV. APPLICATION AND SIMULATION 
This chapter describes the implementation method and 

simulation test results of the SWIM information exchange 
method based on multicast. 

A. Demonstration Setup 
This paper uses Java language to write a multicast-based 

SWIM information exchange method. The implementation is 
divided into a server and a client. Different from the 
traditional civil aviation business system and the SWIM 
platform in Europe and America, the simulation platform 
written in this paper provides a multicast interface for data. 

The simulation platform server can realize the access and 
standardization of different flight data, and convert the data 
format and transmission protocol. As shown in Figure X, 
based on the public flight data model, the flight data 
multicast service uses the adapter bidirectional mapping 
XML Schema model and heterogeneous data to convert the 
flight data into an XML standard format for encapsulation. 
The encapsulated standardized data is passed to the data 
exchange engine to select the corresponding multicast tree. 
Finally, multicast transmission of standard data is 
implemented through the message transmission module. 

The emulation platform client can join the relevant 
multicast tree to receive the required flight data as needed. 
After receiving the standardized data sent by the server, the 
client will decapsulate the data through the two-way 
mapping XML Schema model. Finally, the data is presented 
in the form of a chart. It should be noted here that a series of 
operations such as receiving a multicast tree message and 
processing data are performed on different threads. This can 
avoid packet loss caused by processing data occupying 
system resources. 



 
Figure 3: SIWM client. The client selects the page function via the popup button in the upper left corner. Currently selected to enter the radar data 
display function. 

B. Demonstration Scenarios 
The server will be deployed on a computer with the 

configuration shown in TABLE I. . In order to test the cross-
platform features of the client, we selected four computers 
with different systems for testing. 

TABLE I.  SIMULATION SETUP  

Name 
Configuration 

CPU Memory System 

Server 
Intel i5-3470, dual-core four-
thread, 3.2GHz main frequency  16GB Windows 10 

Professional 
Client 
No. 1 

Intel i5-3470, dual-core four-
thread, 3.2GHz main frequency 16GB Windows 10 

Professional 
Client 
No. 2 

Intel i5-3470, dual-core four-
thread, 3.2GHz main frequency 4GB Windows 7 

Professional 
Client 
No. 3 

Intel i5-3470, dual-core four-
thread, 3.2GHz main frequency 4GB Ubuntu 

16.04 

Client 
No. 4 

Intel i5-5257U, dual-core four-
thread, 2.7GHz main frequency 8GB 

macOS High 
Sierra 

10.13.6 
 

In order to test the cross-platform features of the client, 
we selected three computers with different systems for 
testing. 

In order to test the performance of the system during its 
actual operation, we wrote the test program in Java language. 
The test program will make a TCP connection with the 
server and three clients. After the server sends the flight data 
to the multicast tree, it will send it to the test program over 
the TCP connection. After the three clients receive the flight 
data through the multicast tree, they are also sent to the test 
program through the TCP connection. The test program 
compares the flight data to obtain parameters such as packet 

loss rate, network delay, and throughput. 

The test data is derived from real data from the actual 
operating environment. Operational data for three days from 
January 4th to January 6th, 2018 was used. The total number 
of data is 23,957,494. 

C. Results 
The simulation results include an intuitive presentation 

and some data. On the one hand, it can be proved that the 
method of this paper is feasible and can realize the exchange 
of data. In addition, compared with the traditional system, 
the method of this paper proves that it has great advantages 
in exchanging data such as radar and meteorology. 

a)  The interface that the client runs is shown in Figure 
3. 

The client can display flight data such as radar data, flight 
information, airport information, etc. through charts. The 
data shown in the figure is radar data from the actual 
operating environment. Store data in the database in a 
running business system. During simulation, real-time 
playback is performed according to the timestamp of the data, 
and the ability of the client to receive and display data is 
tested. 

It should be noted that the client uses the proposed UDP 
multicast-based information efficient exchange method 
proposed in this paper to receive radar data. The radar data is 
processed and the processed results are displayed on the left 
data table and the map on the right. It has been proved by 
practice that the efficient exchange method of information 
based on UDP multicast proposed in this paper is feasible. 
On the basis of this client, quantitative simulation tests are 
performed on the efficiency of the method and the client. 



 
Figure 5: The multicast-based SWIM messaging method can significantly 
improve the load rate of the source. 

 
Figure 7: A more stable data delay can be obtained by using the 
multicast-based SWIM message exchange method. 

 
Figure 4: Packet loss rate when sending packets of different sizes. An 
8KB packet is an ideal situation. 

 
Figure 6: The use of a multicast-based SWIM information exchange 
method can save computer resources at the source of the message. 

b) Experiment with the most appropriate packet size. 
As shown in Figure 4, the test packet sizes are 500B, 

1KB, 8KB, and 10KB, respectively. Test the packet loss rate 
when sending data with different size packets. As the 
throughput increases, the packet loss rate basically increases. 
Second, the throughput limit is lower when using smaller 
packets, such as 500B or 1KB. Due to frequent packaging 
and unpacking operations, choosing too small a package can 
cause a bottleneck in throughput. When the throughput is not 
large, the packet loss rate has reached a relatively high level. 
When a large packet size of 10 KB is selected, the packet 
loss rate has reached a high level in the case of a small 
throughput. This is mainly because the data packet is too 
large, and the big packet needs to be split and sent before the 
underlying network transmission. If a 10KB packet is split 
into two parts and any part is lost, it is considered that the 
entire packet is lost. 

Data such as radar data and flight information are 
generally much smaller than 8KB. Radar data is generally 
around 100B. In the application layer, multiple radar data can 
be combined into a packet of nearly 8 KB for optimal 
transmission. 

c) Contrast with traditional methods. 
The object of comparison in this paper chooses the 

traditional SWIM information sharing method using Web 
Services Description Language (WSDL). 

As shown in Figure 5, you can see the amount of 
transmission of the sink node in the case of different methods. 
The change in the amount of transmission is small in the case 
of the multicast-based SWIM information transfer method. 
However, if the conventional method is used, the 
transmission amount is in a straight rising state. This can also 
be easily understood. Because every time a node is added in 
the traditional method, a new data is sent from the source to 
send. 

As shown in Figure 6, the CPU usage of the source of the 
message is shown. When using the multicast-based SWIM 
information transfer method, the CPU usage fluctuates 
within a small range. However, with traditional methods, 
CPU usage will rise rapidly and remain at a high level. This 
is because traditional methods require computers to maintain 
existing connections. Maintaining a connection will consume 
a lot of CPU and memory resources when the number of 
message receiving nodes is very large. 

As shown in Figure 7, the message delay variation of the 
message receiving node in the network is shown. It can be 
seen from the figure that with the traditional method, as the 
number of nodes in the access system increases, the network 
delay will also increase sharply. There are two problems with 
excessive network latency. First, it may cause a large number 



of messages to be retransmitted, resulting in network 
congestion. Second, it may cause the message to be read and 
processed by the message consumption node before the end 
of the life cycle. 

V. CONCLUSION 
According to the simulation result b), it can be 

determined that the performance of a single data packet is 
about 8 KB or so. In fact, the theoretical analysis is also like 
this. Due to limited resources, the larger the amount of data 
sent, the higher the packet loss rate. Therefore, the data can 
be compressed into as large a packet as possible and 
transmitted. The maximum packet size in the UDP protocol 
is 64 KB, and the maximum Transmission Unit (MTU) is 
1460B. In fact, in order to improve efficiency (especially in 
high-speed networks), jumbo frames are defined. When the 
transmitted data packet is too large, it will directly drop 
packets due to buffer overflow. When the package is a jumbo 
frame, it is the best size for both efficiency and packet loss. 

According to the simulation result c), comparison 
between the multicast-based SWIM messaging method and 
the traditional information exchange method can be obtained. 
The multicast-based SWIM messaging method is more 
efficient. And it greatly reduces the pressure on the server. It 
can realize that the server can serve more clients without 
increasing the cost. It has a very low latency when there are 
many connected users. Data that guarantees high timeliness 
can be delivered to consumers as soon as possible. 

This paper is the first paper to propose SWIM data 
sharing using the improved UDP multicast protocol. This 
paper first theoretically analyzes and simulates the method. 
Then based on the method, the SWIM client is written. Use 
the app to demonstrate an understanding of SWIM thinking. 
The results of the thesis laid the practical foundation for the 

comprehensive construction of the SWIM system in the 
future. 

REFERENCES 
 

[1] Wang Zhongbo, Luo Xiling, Zhao Milong, Qi Ming. The research of 
system wide information management based on SOA[C]//Software 
Engineering and Service Science (ICSESS), 2015 6th IEEE 
International Conference on. IEEE, 2015: 837-840. 

[2] Zhao  Milong，Luo  Xiling，Qi  Ming，Zeng  Feng. The Research 
Synopsis about SWIM in China [C]. In Proc. IEEE ISADS, March. 
2015, pp. 171 – 174 

[3] FAA/Eurocontrol. AIXM - Aeronautical Information Exchange 
Model [EB/OL]. 
http://www.aixm.aero/public/subsite_homepage/homepage.html, 
2016 

[4] Di Crescenzo D, Strano A, Trausmuth G. SWIM: A next generation 
atm information bus-The swim-suit prototype[C]//Enterprise 
Distributed Object Computing Conference Workshops (EDOCW), 
2010 14th IEEE International. IEEE, 2010: 41-46. 

[5] Kaltenhäuser S. Tower and airport simulation: flexibility as a premise 
for successful research[J]. Simulation Modelling Practice and Theory, 
2003, 11(3-4): 187-196.. 

[6] Adelantado M. Rapid prototyping of airport advanced operational 
systems and procedures through distributed simulation[J]. Simulation, 
2004, 80(1): 5-20. 

[7] Shifeng M, Danxia W. Implementation of a flight control tower 
simulator using commercial off-the-shelf hardware[J]. Simulation, 
2010, 86(2): 127-135. 

[8] R. Nicole, “Title of paper with only first word capitalized,” J. Name 
Stand. Abbrev., in press. 

[9] Stal M. Using architectural patterns and blueprints for service-
oriented architecture[J]. IEEE software, 2006, 23(2): 54-61. 

[10] S. Wilson, R. Suzic, and S. van der Stricht, “The SESAR ATM 
information reference model within the new ATM system,” in 
Proceedings of the Integrated Communications, Navigation and 
Surveillance Conference (ICNS '14), pp. L3-1–L3-13, IEEE, Herndon, 
VA, USA, April 2014. 

 


