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An effective multi-level synchronization clustering method based on a 

framework of “divide and collect” and SSynC algorithm 

Abstract: Facing big data, general clustering methods cannot process all data in main 

memory one time. In order to conquer this problem, this paper presents an effective 

Multi-Level Synchronization Clustering (MLSynC) method based on SSynC 

algorithm by using a framework of “divide and collect” and a linear weighted Vicsek 

model. MLSynC method has different process with SynC algorithm, ESynC algorithm, 

and SSynC algorithm. In this paper, we present two concrete implementations of 

MLSynC method, a two-level framework algorithm and a recursive algorithm. By the 

theoretic analysis, we find the time complexity of MLSynC method is less than 

SSynC algorithm. By some simulated experiments of some artificial data sets, eight 

UCI data sets, and three picture data sets, we observe that MLSynC method not only 

gets better local synchronization effect but also needs less iterative times and time 

cost than SynC algorithm. Moreover, we also observe that MLSynC method not only 

needs less time cost than ESynC algorithm and SSynC algorithm, but also almost gets 

the same local synchronization effect as ESynC algorithm and SSynC algorithm if the 

partition of the data set is proper. Further comparison experiments with some classical 

clustering algorithms demonstrate the clustering effect of MLSynC method. 

Keywords: Divide and collect; Kuramoto model; Shrinking synchronization 

clustering; A linear weighted Vicsek model; Near neighbor point set 

1. Introduction 

Clustering is an unsupervised learning method that tries to find some obvious 

distribution structures and patterns in unlabeled data sets by maximizing the similarity 

of the objects in a common cluster and minimizing the similarity of the objects in 

different clusters (Jain et al., 1999). Clustering has been used in many areas such as 

machine learning, pattern recognition, image processing, marketing and costumer 

analysis, agriculture, security and crime detection, information retrieval, and 

bioinformatics. Cluster is often one important step in the process of data analysis. 

Clustering algorithms have been studied for decades. There have been hundreds 

of clustering algorithms until now, but none of them is all purpose. Almost all 

clustering algorithms have flaws. Some clustering algorithms are suitable for dealing 

with data with certain types, and others are suitable for handling data with special 

distribution structures. Many real data have complex distributions, diversiform types, 
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great capacity, noises, or isolates. So there is a continuous demand for researching 

different kinds of clustering methods. In order to obtain better clustering results in 

real-world applications where the amount of data is often very large and the types of 

data are diversiform, researchers try their best to develop new efficient and effective 

clustering algorithms. 

The traditional clustering algorithms are usually classified into partitioning 

methods (Bezdek, 1981; MacQueen, 1967), hierarchical methods (Bouguettaya et al., 

2015; Guha et al., 1998; Karypis et al., 1999; Zhang et al., 1996), density-based 

methods (Ankerst et al., 1999; Ester et al., 1996; Roy et al., 2005), grid-based 

methods (Agrawal et al., 1998; Wang et al., 1997), model-based methods 

(Theodoridis et al., 2006), and graph-based methods (Tan et al., 2005; Theodoridis et 

al., 2006; Zahn, C. T., 1971). Recent clustering methods have quantum clustering 

algorithms (Horn et al., 2002), spectral clustering algorithms (Luxburg, 2007; 

Schölkopf et al., 1998), affinity propagation clustering algorithms (Frey et al., 2007), 

synchronization clustering algorithms (Böhm et al., 2010; Huang et al., 2013; Shao et 

al., 2013a, 2013b, 2014; Chen, 2014, 2017, 2018; Hang et al., 2017), and so on. 

Recently, several original clustering algorithms, such as Affinity Propagation 

(AP) algorithm (Frey et al., 2007), Synchronization Clustering (SynC) algorithm 

(Böhm et al., 2010), and clustering by fast search and find of Density Peaks (DP) 

algorithm (Rodriguez et al., 2014), were published. AP algorithm is a new type of 

clustering algorithm published on Science in 2007. After AP algorithm was published, 

clustering based on probability graph models grew a new research direction. As we 

know, SynC algorithm is the first synchronization clustering algorithm. After SynC 

algorithm was presented, synchronization clustering attracts some researchers. Some 

synchronization clustering methods (Huang et al., 2013; Shao et al., 2013a, 2013b, 

2014; Chen, 2014, 2017, 2018; Hang et al., 2017) were published from different 

views. DP algorithm is a clustering algorithm based on the assumption that “cluster 

centers can be characterized by a higher density than their neighbors and by a 

relatively large distance from points with higher densities”. In DP algorithm, the 

number of clusters can be obtained automatically, outliers can be identified easily, and 

even nonspherical clusters can be explored quickly. So we think DP algorithm can 

lead a new research direction in clustering field. 

Synchronization clustering is a kind of novel clustering approach. The original 

synchronization clustering algorithm (named as SynC) says that it can find the 
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intrinsic structure of the data set without any distribution assumptions and handle 

outliers by dynamic synchronization (Böhm et al., 2010). 

In the circumstance of big data, general clustering algorithms cannot process a 

large amount of data in main memory one time. In order to conquer this problem, 

basing on SynC algorithm (Böhm et al., 2010), ESynC algorithm (Chen, 2017), and 

SSynC algorithm (Chen, 2014), this paper researches a Multi-Level Synchronization 

Clustering (MLSynC) method based on SSynC algorithm by using a framework of 

“divide and collect” and a linear weighted Vicsek model. MLSynC method has a 

different process with SynC algorithm, ESynC algorithm, and SSynC algorithm. 

SynC algorithm (Böhm et al., 2010) is based on an extensive Kuramoto model, 

ESynC algorithm (Chen, 2017) is based on a linear version of Vicsek model, SSynC 

algorithm (Chen, 2014) is based on a linear weighted Vicsek model, and MLSynC 

method uses the strategy of “divide and conquer” and a linear weighted Vicsek model 

for clustering. Because the linear weighted Vicsek model has nicer superposition 

characteristic for clustering, MLSynC method can be used to process big data 

effectively and efficiently. 

The idea of “divide and collect” in MLSynC method is similar to MapReduce 

framework (Dean et al., 2008) in some aspects, although it is developed 

independently. MapReduce is a parallel and distributed programming model that is 

used to process very large data sets on a cluster. In MapReduce framework, the Map 

and Reduce operations affect the clustering result very much, so they cannot be 

directly extended to clustering field. MLSynC method can be used for clustering on a 

cluster with a parallel programming model or on a personal computer with a serial 

programming method. If the partition of the data set is proper, MLSynC method is 

both efficient and effective. 

The remainder of this paper is organized as follows. Section 2 lists some related 

work. Section 3 gives some basic knowledge. Section 4 introduces MLSynC method. 

Section 5 validates MLSynC method by some simulated experiments. Conclusions 

and future works are presented in Section 6. 

2. Related work 

This paper is inspired by several papers (Vicsek et al., 1995; Jadbabaie et al., 

2003; Wang et al., 2009; Böhm et al., 2010; Chen, 2014, 2017) and the strategy of 

“divide and conquer”. 
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In 2010, Böhm et al. presented a novel clustering approach, SynC algorithm, 

inspired by the synchronization principle. SynC algorithm can find the intrinsic 

structure of the data set without any distribution assumptions and handle outliers by 

dynamic synchronization. In order to implement automatic clustering, those natural 

clusters can be discovered by using the Minimum Description Length (MDL) 

principle (GrÄunwald, 2005). After SynC algorithm was presented, some researchers 

published several synchronization clustering papers from different views (Shao et al., 

2010, 2011, 2013a, 2013b, 2014; Huang et al., 2013; Chen, 2014, 2017, 2018; Hang et 

al., 2017). In order to find subspace clusters of some high-dimensional sparse data 

sets, a novel effective and efficient subspace clustering algorithm, ORSC (Shao et al., 

2011), was proposed. In order to detect the outliers from a real complex data set more 

naturally, a novel outlier detection algorithm was presented from a new perspective, 

“Out of Synchronization” (Shao et al., 2010). In order to find the intrinsic patterns of 

a complex graph, a novel and robust graph clustering algorithm, RSGC (Shao et al., 

2013a), was proposed by regarding the graph clustering as a dynamic process towards 

synchronization. In order to explore meaningful levels of the hierarchical cluster 

structure, a novel dynamic hierarchical clustering algorithm, hSync (Shao et al., 

2013b), was presented based on synchronization and the MDL principle. In 2013, 

Huang et al. (2013) also presented a synchronization-based hierarchical clustering 

method basing on the work of Böhm et al. (2010). Inspired by the work of Böhm et al. 

(2010) and Vicsek model, Chen (2014) presented a Shrinking Synchronization 

Clustering (SSynC) algorithm by using a linear weighted Vicsek model. Inspired by 

the work of Böhm et al. (2010), Chen (2017) proposed an Effective Synchronization 

Clustering (ESynC) algorithm based on a linear version of Vicsek model. Simulations 

validate that the linear version of Vicsek model is an effective synchronization model 

for clustering. Based on the metaphor of gravitational kinematics and central force 

optimization method, Hang et al. (2017) presented a local synchronization clustering 

algorithm, which can find clusters of those data sets with arbitrary size, shape, and 

density, and determine the number of clusters automatically. Chen (2018) present 

three Fast Synchronization Clustering (FSynC) algorithms basing on the work of 

Böhm et al. (2010) and the grid-based index method in Chen (2013). FSynC 

algorithm, which is a parametric algorithm, is an improved version of SynC algorithm 

by combining multidimensional grid partitioning method and Red-Black tree structure 

to construct the near neighbor point sets of all points (Chen, 2018). 
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Recent, Cao et al. (Cao et al., 2017) proposed a fuzzy SV-k-modes algorithm that 

can cluster categorical data with set-valued attributes by using a fuzzy k-modes 

clustering process. The fuzzy SV-k-modes algorithm can cluster categorical data with 

single-valued and set-valued attributes together. Spurek et al. (Spurek et al., 2017) 

proposed an active function Cross-Entropy Clustering (afCEC) method by using 

Gaussians in curvilinear coordinate systems. The afCEC method can adapt well to 

curved and strongly nonlinear data and automatically determine the number of 

clusters. Güngör et al. (Güngör et al., 2017) proposed a Gaussian Density Distance 

(GDD) clustering algorithm by using both Gaussian kernel and distances to form 

clusters according to the density and shape of data set. The GDD algorithm can find 

best possible clusters without any prior information and parameters. 

3. Some basic knowledge 

Suppose there is a data set S = {X1, X2, …, Xn} in a d-dimensional Euclidean 

space. Naturally, we use Euclidean metric as our dissimilarity measure, dis(·, ·). In 

order to describe our method clearly, some concepts are presented first. 

Definition 1 The δ near neighbor point set δ(P) of point P is defined as: 

δ(P) = {X | 0 < dis(X, P) ≤ δ, X ≠ P, X S},                 (1) 

where dis(X, P) is the dissimilarity measure between point X and point P in the data 

set S. Parameter δ is a predefined threshold. 

Definition 2 (Böhm et al., 2010). The extensive Kuramoto model for clustering 

is defined as: 

Point X = (x1, x2, …, xd) is a vector in d-dimensional Euclidean space. If each 

point X is regarded as a phase oscillator based on Kuramoto model, with an 

interaction in the δ near neighbor point set δ(X), then the dynamics of the k-th 

dimension xk (k = 1, 2, …, d) of point X over time is described by: 

xk (t+1) = xk (t) + 



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where X(t = 0) = (x1(0), x2(0), ···, xd(0)) represents the original phase of point X, xk(t+1) 

describes the renewal phase value in the k-th dimension of point X at the t-step 

evolution, and Y = (y1, y2, …, yd) is a δ near neighbor point of point X at the t-step 

evolution. 

Definition 3 (Chen, 2017). A linear version of Vicsek model for clustering is 

defined as: 
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Point X = (x1, x2, ···, xd) is a vector in d-dimensional Euclidean space. If each 

point X is regarded as an agent based on a linear version of Vicsek model, with an 

interaction in the δ near neighbor point set δ(X), then the dynamics of point X over 

time according to Jadbabaie et al. (2003) and Wang et al. (2009) is described by: 

X(t+1) =   





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,              (3) 

where X(t = 0) = (x1(0), x2(0), ···, xd(0)) represents the original location of point X, and 

X(t+1) describes the renewal location of point X at the t-step evolution. 

Definition 4 (Chen, 2014). A core is defined as: 

In Shrinking Synchronization Clustering (SSynC) algorithm, point X can be 

regarded as an active core C if and only if: 

(1). Point X is active in the current synchronization step. 

(2). Point X is not labeled as an attributive point of another core. 

At this time, the other points in the ε near neighbor point set ε(C) of core C 

should be labeled as attributive points of core C, where parameter ε is a small real 

number that is less than parameter δ. Usually, if the distance of two points is less than 

ε, then they are regarded in the same cluster. 

    The data structure of core C can be defined as: 

DS(C) = (Core_Id, Core_Location, Parent_CoreId, Number_ContainingPoints).  (4) 

    In Eq.(4), 

Core_Id is the identification number in the original data set. 

Core_Location is the current location of core C. It is a d-dimensional vector 

expressed by C = (c1, c2, ···, cd). 

Parent_CoreId is the identification number of the parent of core C. In the first step 

of dynamic clustering, the Parent_CoreId of core C is itself. In the middle or final step 

of dynamic clustering, the Parent_CoreId of core C is the Core_Id of the attributive 

core of core C. 

Number_ContainingPoints is the number of points that are represented or 

contained by core C. 

Definition 5 (Chen, 2014). A synchronization model for clustering a core set is 

defined as: 

Core C = (c1, c2, ···, cd) is a vector in a d-dimensional Euclidean space. If each 

core C is regarded as a phase oscillator based on an extended linear version of Vicsek 
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model (this model is also named as the linear weighted Vicsek model), with an 

interaction in the δ near neighbor point set δ(C), then the dynamics of core C over 

time is described by: 

C(t+1) =  








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where C(t = 0) = (c1(0), c2(0), ···, cd(0)) represents the original phase of core C, C(t+1) 

describes the renewal phase value of core C at the t-step evolution, and count(C) 

represents the value of the Number_ContainingPoints of core C. 

In the dynamics clustering, if the Parent_CoreId of core C is itself and the value 

of the Number_ContainingPoints of core C is equal to 1, then Eq.(5) is equivalent with 

Eq.(3). Actually, in the dynamics clustering, if core C is represented by its parent core 

(which means that the value of the Number_ContainingPoints of the parent core of 

core C is added by count(C)), then Eq.(5) can be used for saving time and space. 

Definition 6 (Chen, 2014). The data set S = {X1, X2, ···, Xn} using the linear 

weighted Vicsek model described by Eq.(5) for clustering is said to achieve local 

synchronization if the final locations of all points satisfy: 

parent(Xi(t = T)) = RCk(T), i = 1, 2, ···, n, k = 1, 2, ···, K.       (6) 

 In Eq.(6), where T is the times of the final synchronization, K is the number of the 

root cores in the final synchronization step, RCk(T) is the k-th root core in the final 

synchronization step, and parent(Xi(t = T)) is the parent of core Ci(T) after the 

path-compressed process in the final synchronization step. 

Usually, the final location of point Xi (i = 1, 2, ···, n) depends on the value of 

parameter δ and the original location of itself and the original locations of other points 

in the data set S. 

Definition 7. The data set S = {X1, X2, …, Xn} uses the linear weighted Vicsek 

model described by Eq.(5) for synchronization clustering. In each evolution step of 

synchronization clustering, all cores become some trees with synchronization action. 

When the number of root cores in the t-step evolution is equal to that in the (t+1)-step 

evolution, an average difference between the root cores in the t-step evolution and the 

root cores in the (t+1)-step evolution is defined as: 

differInRootCores(t, t+1) = 





tn

k
kk

t

LocationCoretRCLocationCoretRCdis
n 1

)_).1(,_).((
1

, k = 1, 2, ···, nt,   (7) 
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where nt is the number of the root cores in the t-step evolution, RCk(t).Core_Location 

is the location of the k-th root core in the t-step evolution, and 

dis(RCk(t).Core_Location, RCk(t+1).Core_Location) is the dissimilarity between the 

location of the k-th root core in the t-step evolution and that in the (t+1)-step 

evolution. 

 Apparently, if the average difference between the root cores in the t-step 

evolution and that in the (t+1)-step evolution computed by Eq.(7) is less than a 

predefined threshold, we think SSynC algorithm can exit. 

Theorem 1 (Chen, 2014). The data set S = {X1, X2, ···, Xn} using the linear 

weighted Vicsek model described by Eq.(5) for clustering will achieve local 

synchronization, if parameter δ satisfies: 

δmin ≤ δ ≤ δmax.                           (8) 

Suppose emin(MST(S)), which is equal to min{dis(Xi, Xj)| (Xi, Xj ∈ S) ∧ (Xi ≠ 

Xj)}, is the weight of the minimum edge in the Minimum Span Tree (MST) of the 

complete graph of the data set S, and emax(MST(S)) is the weight of the maximum edge 

in the MST of the complete graph of the data set S. Apparently, there is δmin = 

emin(MST(S)). If the data set S has no isolate, then usually there is emax(MST(S)) ≤ δmax 

≤ max{dis(Xi, Xj)| (Xi, Xj ∈ S) ∧ (Xi ≠ Xj)}. If the data set S has isolates, we should 

filtrate all isolates at first. 

Proof: if δ < δmin, then for any point Xi (i = 1, 2, ···, n), there is δ(Xi) = Ø. In this 

case, any point in the data set S cannot synchronize with other points, so 

synchronization will not happen. 

In another case, that is δ > δmax, then for any point Xi (i = 1, 2, ···, n), there is 

δ(Xi(t)) = S - {Xi(t)}. According to Eq.(5), there is Xi(t+1) = mean(S). Here, mean(S) is 

the mean of all points in the data set S. Any point in the data set S will synchronize 

with all other points, so global synchronization happens. After one time 

synchronization, all points in the data set S will synchronize to their mean location. 

Apparently, if δmin ≤ δ ≤ δmax, local synchronization will happen. And the final 

result of synchronization is affected by the value of parameter δ and the original 

locations of all points in the data set S. 

Property 1 (Chen, 2014). The data set S = {X1, X2, ···, Xn} using the linear 

weighted Vicsek model described by Eq.(5) for clustering will obtain an effective 
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result of local synchronization with some obvious clusters or isolates, if parameter δ 

satisfies: 

max{longestEdgeInMst(clusterk) | k = 1, 2, ···, K } < δ < min{dis(clusteri, clusterj) 

| i, j = 1, 2, ···, K}.                   (9) 

 In Eq.(9), longestEdgeInMst(clusterk) is the weight of the longest edge in the 

minimum spanning tree of the k-th cluster, dis(clusteri, clusterj) is the weight of the 

minimum edge connecting the i-th cluster and the j-th cluster, and K is the number of 

clusters in the final synchronization step. 

Proof: Suppose the data set S = {X1, X2, …, Xn} has K obvious clusters. If 

parameter δ is larger than or equal to max{longestEdgeInMst(clusterk) | k = 1, 2, ···, 

K }, then data points in the same cluster will synchronize. If parameter δ is less than 

min{dis(clusteri, clusterj) | i, j = 1, 2, ···, K}, then data points in different obvious 

clusters cannot synchronize. 

4. An effective multi-level synchronization clustering method based 

on a framework of “divide and collect” and SSynC algorithm 

Facing big data, general clustering methods cannot process all data in main 

memory one time. In order to conquer this problem, we present an effective 

Multi-Level Synchronization Clustering (MLSynC) method by using a framework of 

“divide and collect” and a linear weighted Vicsek model. The framework of “divide 

and collect” is an application of the strategy of “divide and conquer” in clustering 

field. The linear weighted Vicsek model described by Eq.(5) is used in SSynC 

algorithm. 

Although we use the Euclidean metric as our dissimilarity measure in this paper, 

this method is by no means restricted to this metric and this kind of data space. If we 

can construct a proper dissimilarity measure in a hybrid-attribute space, this method 

can still be used. 

4.1 The description of SSynC algorithm 

Shrinking Synchronization Clustering (SSynC) algorithm (Chen, 2014) is 

presented in another paper by Chen, X. SSynC algorithm based on the 

synchronization model represented by Eq.(5) has a similar process with SynC 

algorithm and ESynC algorithm. In order to make a difference between SSynC 

algorithm and MLSynC method, we introduce it below. 

Algorithm name: Shrinking Synchronization Clustering algorithm (named as 
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SSynC algorithm). 

Input: Data set S = {X1, X2, ··· Xn}, dissimilarity measure dis(·, ·), parameter δ, 

and parameter ε (a very small real number, if the distance of two points is less than ε, 

then they are regarded in the same cluster). 

Output: The final core set C(T) = {C1(T), C2(T), ···, Cn(T)} and the number of 

root cores in C(T). 

The main procedure of SSynC algorithm is described by Table 1. 

Table 1 

The initialization and iterative synchronization clustering procedure of SSynC 

algorithm. 

1: IterateStep t is set as zero firstly, that is: t ← 0; 
 /* Create initial core set C(t = 0) = {C1(t = 0), C2(t = 0), …, Cn(t = 0)}. */ 
2: for (i = 1; i ≤ n; i++) 
3: { 
4:  Ci(t = 0).Core_Id ← i; 
5:  Ci(t = 0).Core_Location ← Xi; 
6:  Ci(t = 0).Parent_CoreId ← i; 
7:  Ci(t = 0).Number_ContainingPoints ← 1; 
8: } 
 /* Create initial active point set AP(t = 0). */ 
9: AP(t = 0) ← {X1, X2, ···, Xn}; 
10: NumberOfAP(t = 0) ← n; 
11: while ((the dynamical synchronization clustering does not satisfy its convergent condition) and (t 
< 50)) 
12: { 
13:  for (each point Y(t) in the active point set AP(t)) 
14:  { 
15:   According to Definition 1, construct the δ near neighbor point set δ(Y(t)) for point Y(t) 
in the active point set AP(t); 
16:   Compute the renewal value, Y(t+1), of Y(t) using Eq.(5); 
17:  } /* After the above for repetition, we get an update point set AP(t+1) that is composed of 
the renewal value Y(t+1) of each point Y(t) in the active point set AP(t). */ 
18:  for (each unlabeled point Y(t+1) in the point set AP(t+1)) 
19:  { 
20:   The member “Core_Location” of the corresponding core of point Y(t+1) is updated by 
the value of Y(t+1); 
21:   According to Definition 1, construct the ε near neighbor point set ε(Y(t+1)) for point 
Y(t+1) in the point set AP(t+1); 
22:   for (each unlabeled point Z(t+1) in the ε near neighbor point set ε(Y(t+1)) of point 
Y(t+1)) 
23:   { 
24:    Point Z(t+1) is labeled as inactive point; 
25:    The member “Parent_CoreId” of the corresponding core of point Z(t+1) is 
assigned by the member “Core_Id” of the corresponding core of point Y(t+1); 
26:    The member “Number_ContainingPoints” of the corresponding core of point 
Z(t+1) is added into the member “Number_ContainingPoints” of the corresponding core of point 
Y(t+1); 
27:   } 
28:  } 
29:  Delete all labeled inactive points from AP(t+1); /* After this deleting process, AP(t+1) 
only contains those active points, which are also the root nodes in its disjoint-set forest. */ 
30:  NumberOfAP(t+1) is assigned by the current number of unlabeled points of the renewal 
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active point set AP(t+1); 
31:  IterateStep t is increased by 1, that is: t++; 
32:  if (NumberOfAP(t+1) == NumberOfAP(t) and (the difference between AP(t+1) and AP(t) is 
very small)) /* Here, NumberOfAP(t+1) == NumberOfAP(t) means the number of points in the 
renewal active point set AP(t+1) is equal to the number of points in the active point set AP(t), and the 
difference between AP(t+1) and AP(t) can be computed by Eq.(7). */ 
33:   We think the dynamical clustering reaches its convergent result, and then exit from the 
while repetition; 
34: } 
35: Compress the paths of some inactive core points in C(t) just like the joint-set method such that the 
largest height of leaf core points is less than or equal to two (Note: the height of root core points is 
one). 
36: Finally we get a core set C(T) = {C1(T), C2(T), ···, Cn(T)} and the number of root cores in C(T), 
where T is the times of the above while repetition. The final convergent set C(T) reflects the natural 
clusters or isolates of the data set S. 
 

4.2 The application condition of MLSynC method 

Online Resource 1 of Supplementary Material of this paper presents a figure 

(named as Fig. 1 of Supplementary Material) that compares the synchronization 

clustering results of MLSynC method using two different partitioning methods, a 

random partitioning method and a direct partitioning method. From Fig. 1 of 

Supplementary Material, we observe that if the spatial distributions of two 

partitioned data subsets vary very large and the clustering structure of the original 

data set is dissevered by the partitioning, MLSynC method will get a different 

clustering result with SSynC algorithm. If the spatial distributions of two partitioned 

data subsets vary very small, or the partitioning is uniform, MLSynC method will get 

a similar clustering result with SSynC algorithm. 

4.3 The description of a two-level framework algorithm of MLSynC method 

MLSynC method has a different clustering process with SynC algorithm (Böhm 

et al., 2010), ESynC algorithm (Chen, 2017), and SSynC algorithm (Chen, 2014). 

Figure 1 presents a two-level framework algorithm of MLSynC method. In the 

two-level framework algorithm of MLSynC method, original data set that is usually 

large and cannot be processed in main memory one time is partitioned into m subsets. 

Each subset is processed by a clustering model (or a clustering machine) based on 

SSynC algorithm. After collected all root cores from the m clustering models, a 

clustering model based on SSynC algorithm is used.  

In Figure 1, if m is too large, then the two-level framework algorithm of 

MLSynC method should be replaced by a three-level (or four-level above) framework 

algorithm. A three-level framework algorithm of MLSynC method is presented in 

Online Resource 2 of Supplementary Material of this paper. 

From Figure 1, we observe that MLSynC method has a natural framework based 
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on SSynC algorithm by integrating the clustering results of all subsets. MLSynC 

method also has nicer incremental clustering ability. For example, in Figure 1, if 

every subset in {S2, S3, ···, Sm} only has one point, then the two-level framework 

algorithm becomes an incremental clustering algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 A two-level framework algorithm of MLSynC method 

Here, we present a description of the two-level framework algorithm of MLSynC 

method. 

Algorithm name: The two-level framework algorithm of MLSynC method 

Input: Data set S = {X1, X2, ···, Xn}, dissimilarity measure dis(·, ·), parameter m, 

a setting set of parameter δ: {δ1, δ2, ···, δm, δmerge}, and parameter ε. 

Output: The clustering result of the data set S = {X1, X2, ···, Xn}. 

The main procedure of the two-level framework algorithm of MLSynC method 

is described by Table 2. 

Table 2 

The main procedure of the two-level framework algorithm of MLSynC method. 

1 Step1: Partition the data set S = {X1, X2, ···, Xn} that is read from a file or a data base into m 
sections, {S1, S2, ···, Sm}. Usually, S = S1 ∪ S2 ∪··· ∪ Sm should be satisfied. 
2 Step2: Clustering each subset Si (i = 1, 2, …, m) from {S1, S2, ···, Sm} using SSynC algorithm. 
That is: 
2.1: int NumOfClusters[m]; /* Each element in array NumOfClusters is used to record the number 

The Original Data Set S

Partial Data Set S1  Partial Data Set S2 Partial Data Set Sm 

Partitioning

Clustering all root cores
using SSynC algorithm 

Collect all root cores

The final root cores represent 
clusters or isolates 

Clustering S1 using   
SSynC algorithm 

Clustering S2 using 
SSynC algorithm 

Clustering Sm using   
SSynC algorithm 
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of clusters of each subset. */ 
2.2: for (i = 1; i ≤ m; i++) 
2.3: { 
2.4:  Create the initial core set CSi from the subset Si, according to Eq.(4) of Definition 4; 
2.5:  NumOfClusters[i] ← SSynC(CoreSet CSi, float δi, float ε); /* The initial value of the core 
set CSi is the input of SSynC algorithm. After finished the clustering procedure, core set CSi records the 
clustering result of subset Si. Here, NumOfClusters[i] is used to record the return value of SSynC 
algorithm. */ 
2.6: } 
3 Step3: Create a new core set, CS, by collecting all root cores from the above clustering results of 
m subsets.  /* Here, m subsets are {S1, S2, ···, Sm}. */ 
4 Step4: Clustering the collected core set CS using SSynC algorithm. That is: 
4.1: int FinalNumOfClusters ← SSynC(CoreSet CS, float δmerge, float ε);  /* FinalNumOfClusters 
is used to record the final number of clusters of CS. */ 
 /* After the collected core set CS is operated by SSynC algorithm, the paths of some inactive 
cores are compressed just like the joint-set method such that the largest height of leaf cores is less than 
or equal to two (note: the height of root cores is one). */ 
5 Step5: The final root cores of the core set CS operated by SSynC algorithm represent the clusters 
or isolates of the data set S = {X1, X2, ···, Xn}. Suppose finally the set CS has K root cores, we think the 
data set S = {X1, X2, ···, Xn} has K clusters or isolates. The location of the root core that represents 
some cores is regarded as their cluster center, and the location of the root core that represents only one 
or several cores is regarded as the final synchronization location of one or several isolates. 

Note: In Table 2, Step1 and Step2 belong to “divide stage”, and Step3 and Step4 belong to 

“collect stage”. 

4.4 The recursive algorithm of MLSynC method 

Here, we present a description of the recursive algorithm of MLSynC method. 

Algorithm name: The recursive algorithm of MLSynC method 

Input: Data set S = {X1, X2, ···, Xn}, dissimilarity measure dis(·, ·), parameter m, 

a setting set of parameter δ, and parameter ε. 

Output: The clustering result of the data set S = {X1, X2, ···, Xn}. 

The main procedure of the recursive algorithm of MLSynC method is described 

by Table 3. 

Table 3 

The main procedure of the recursive algorithm of MLSynC method. 

1 Step1: Create an initial core set InitCS = {C1, C2, ···, Cn} from the data set S = {X1, X2, ···, Xn} 
according to Eq.(4) of Definition 4. 
2 Step2: Call the dichotomy recursive function, MLSynC_Recursion, which is described by the 
following: 
 /* MLSynC_Recursion is a dichotomy recursive function that can operate some huge data sets 
that are stored in in-memory or disk. InitCS is the core set used as the input of this algorithm, which 
represents the input data that may be loaded into in-memory step by step from disk. First is the label or 
index of the first record in InitCS, and Last is the label or index of the last record in InitCS. ResultCS 
that represents clusters and isolates will be used to store the clustering results of InitCS. The return 
value of this function records the number of clusters and isolates. */ 
2.1: int MLSynC_Recursion (InputData InitCS, int First, int Last, OutputData ResultCS)  
2.2: { 
2.3:  if ((Last - First) > FitNumber)  /* Parameter FitNumber is a predefined threshold or a 
maximum that the computer system can operate the loaded data in its in-memory directly. */ 
2.4:  { 
2.5:   int MidLocation ← Divide_InitCS (InitCS, First, Last); /* The function, 
Divide_InitCS, will partition InitCS into two parts. The return value of the function records the middle 
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location of InitCS. */ 
2.6:   int NumberCS1 ← MLSynC_Recursion (InitCS, First, MidLocation, OutputCS1); 
2.7:   int NumberCS2 ← MLSynC_Recursion (InitCS, MidLocation + 1, Last, OutputCS2); 
2.8:   InputData NewInputCS ← OutputCS1 ∪ OutputCS2; /* NewInputCS can be 
obtained by connecting OutputCS1 and OutputCS2 directly. */ 
2.9:   int ResultNumberCS ← SSynC (NewInputCS, NumberCS1 + NumberCS2, ResultCS);
   /* SSynC algorithm is used to clustering NewInputCS. ResultCS that represents clusters 
and isolates will store the clustering results of NewInputCS. The return value of the function records the 
number of clusters and isolates. */ 
2.10:  } 
2.11:  else 
2.12:   int ResultNumberCS ← SSynC (InitCS, Last - First, ResultCS); /* InitCS is 
operated by SSynC algorithm directly. */ 
2.13:  return ResultNumberCS; 
2.14: } 
3 Step3: The parameter in the function MLSynC_Recursion of Step2, ResultCS, represents the 
clusters or isolates of the data set S = {X1, X2, …, Xn}. 
 

4.5 The comparison of the dynamic clustering processes among SynC algorithm, 

ESynC algorithm, SSynC algorithm, and MLSynC method 

SynC algorithm uses the extensive Kuramoto model described by Eq.(2) at each 

step evolution that is a nonlinear renewal model. ESynC algorithm uses the linear 

version of Vicsek model described by Eq.(3) at each step evolution that is a linear 

renewal model. SSynC algorithm uses the linear weighted Vicsek model described by 

Eq.(5) at each step evolution that is a linear weighted renewal model. MLSynC 

method uses a framework of “divide and collect” and the linear weighted Vicsek 

model described by Eq.(5). 

Figure 2 compares the tracks of 2000 data points from DS0 among the clustering 

processes of SynC algorithm, ESynC algorithm, SSynC algorithm, and MLSynC 

method. From Figure 2, we observe that MLSynC method, ESynC algorithm, and 

SSynC algorithm have better local synchronization effect than SynC algorithm. 

Figure 3 (a) compares a measure index of clustering result, the cluster order 

parameter with t-step evolution (t: 0 - 49) (Böhm et al., 2010), among SynC algorithm, 

ESynC algorithm, SSynC algorithm, and MLSynC method. Figure 3 (b) compares 

another measure index of clustering result, the t-step average length of edges (t: 0 - 49) 

(Chen, 2017), among SynC algorithm, ESynC algorithm, SSynC algorithm, and 

MLSynC method. And Figure (c) compares the relation between the final number of 

clusters and parameter δ after finished clustering using the four algorithms 

respectively. 

From Figure 3 (a) and (b), we observe that the t-step average length of edges is 

better than the cluster order parameter with t-step evolution in measuring the final 
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synchronization results. From Figure 3 (c), we observed that parameter δ has a long 

valid interval in ESynC algorithm, SSynC algorithm, and MLSynC method. From 

Figure 3 (c), we also observe that the smaller parameter δ is set in SynC, ESynC, 

SSynC, and MLSynC, the larger the final number of clusters is. In many data sets 

with obvious clusters, if we use a proper partitioning method to group the data set, 

MLSynC method can often get the correct number of clusters when parameter δ 

chooses any value from its valid interval. ESynC algorithm and SSynC algorithm can 

often get the correct number of clusters when parameter δ chooses any value from its 

valid interval. But the final number of clusters using SynC algorithm is often much 

larger than the actual number of clusters whenever parameter δ gets any value in a 

long interval. 

  
(a) t = 0 (The original locations of 2000 data points from DS0) (a*) MLSynC method, t = 0 

  
(b-1) SynC algorithm, t = 1   (b-2) ESynC algorithm, t = 1 
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(b-3) SSynC algorithm, t = 1   (b-4) MLSynC method, t = 1 

  
(c-1) SynC algorithm, t = 2   (c-2) ESynC algorithm, t = 2 

 

  
(c-3) SSynC algorithm, t = 2   (c-4) MLSynC method, t = 2 
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(d-1) SynC algorithm, t = 5   (d-2) ESynC algorithm, t = 5 

  
(d-3) SSynC algorithm, t = 5   (d-4) MLSynC method, t = 5 

 

  
(e-1) SynC algorithm, t = 45   (e-2) ESynC algorithm, t = 45 
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(e-3) SSynC algorithm, t = 45   (e-4) MLSynC method, t = 45 

Fig. 2 The comparison of the dynamical clustering processes with time evolution 
among SynC algorithm, ESynC algorithm, SSynC algorithm, and MLSynC method. 
From (a) to (e) of Fig. 2, the data set is from DS0 with 2000 points, parameter δ is set 
as 18 in the four algorithms, and parameter ε is set as 1 in SSynC algorithm and 
MLSynC method. In MLSynC method, parameter m is set as 10, and the two-level 
framework algorithm is used. Fig. 2 (a*), (b-4), (c-4), (d-4), and (e-4) are the 
evolution displays in the “collect stage” of the two-level framework algorithm of 
MLSynC method. 

 

 
(a) The cluster order parameter with t-step evolution (t: 0 - 49) 
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(b) The t-step average length of edges (t: 0 - 49) 

 

 
(c) The relation between the final number of clusters and parameter δ (δ: 0 - 99) among four 

synchronization algorithms. 
Fig. 3 The comparison of SynC algorithm, ESynC algorithm, SSynC algorithm, 

and MLSynC method in two measure indexes of clustering result and the relation 
between the final number of clusters and parameter δ. In Fig. 3, the data set is from 
DS0 with 2000 points, and parameter ε is set as 1 in SSynC algorithm and MLSynC 
method. In MLSynC method, parameter m is set as 10, the two-level framework 
algorithm is used. In Fig. 3 (a) and (b), parameter δ is set as 18 in the four algorithms. 
In MLSynC method of Fig. 3 (a) and (b), two indexes (The cluster order parameter 
with t-step evolution and the t-step average length of edges) are computed in the 
“collect stage” of the two-level framework algorithm of MLSynC method. 
4.6 Time and space complexity analysis of MLSynC method 

 From the time complexity analysis of SSynC algorithm that presented in another 

paper, we know that SSynC algorithm needs Time = O(d·(n(t = 0)
2 + n(t = 1)

2) + … + n(t = 

T-1)
2)) < O(Tdn2), which is usually less than SynC algorithm and ESynC algorithm. 
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Here T is the times of synchronization in SSynC algorithm and n(t) is the number of 

active cores in the t-step synchronization evolution. 

4.6.1 Time and space complexity analysis of the two-level framework algorithm of 

MLSynC method 

In the two-level framework algorithm of MLSynC method, Step1 needs Time = 

O(n) and Space = O(n). 

The time cost of Step2 is: 

Time =  

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≈ O(d·(ň(t = 0)
2 +ň(t = 1)

2 + … 

+ň(t = MaxT-1)
2) /m).            (10) 

In Eq. (10), Ti is the synchronization times in the i-th clustering module based on 

SSynC algorithm, ni(t = 0) is the initial number of active cores in the i-th clustering 

module, ň(t = 0) is the initial average number of active cores in the m clustering 

modules, and MaxT is the max synchronization times in the m clustering modules. 

Suppose subset Si (i = 1, 2, …, m) has Ki clusters or isolates, then Step3 needs 

Time = O(K1 + K2 + … + Km) = O(|CS|). Here |CS| is the number of elements in the 

core set CS. 

Step4 needs Time = O(d·((|CS|(t = 0))
2 + (|CS|(t = 1))

2 + … + (|CS|(t = T-1))
2)). Here T 

is the synchronization times using SSynC algorithm in Step 4 and |CS|(t) is the number 

of active cores in the t-step synchronization evolution. 

Step5 needs Time = O(n) and Space = O(n). 

4.6.2 Time and space complexity analysis of the recursive algorithm of MLSynC 

method 

In the recursive algorithm of MLSynC method, Step1 needs Time = O(n) and 

Space = O(n). 

In many cases, the time cost of Step2 is: 
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Step3 needs Time = O(n) and Space = O(n). 

According to our analysis, usually MLSynC method needs less time than SSynC 

algorithm. 

4.7 The setting of parameters δ, ε, m and in MLSynC method 

For each subset or collected core set in MLSynC method, SSynC algorithm is 

used for clustering with proper values of parameter δ and parameter ε. In Böhm et al. 
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(2010), parameter δ is optimized by the MDL principle. In Chen (2015), two other 

methods were presented to estimate parameter δ. Here, we can also select a proper 

value for parameter δ according to Theorem 1 and Property 1. 

5.7.1 The setting of parameter δ in MLSynC method 

(1) The optimization of parameter δ in Böhm et al. (2010) 

Parameter δ can affect the results of clusters. In Böhm et al. (2010), parameter δ 

can be optimized by a heuristic method and the MDL principle. In the heuristic 

method presented by Böhm et al. (2010), parameter δ is initialized with the average 

value of the k-nearest neighbor distance determined from the data set for a small k. 

For example, k = 3 is recommended in their experiments. Then parameter δ is 

increased with a reasonable step size. For example, the step size is recommended by 

the difference between the average (k+1)-nearest neighbor distance and the average 

k-nearest neighbor distance. 

The proper value of parameter δ is determined by minimizing the total coding 

cost L(S, M) of a clustering model M. Here, L(S, M) = L(S|M) + L(M). 

L(S|M) is denoted by the following equation: 

L(S|M) =  
1

log ( )
k

K

k X C

P X
 

  ,           (12) 

where P(X) is the probability of point X assigned to the k-th cluster Ck, S is the data 

set, and K is the number of clusters. 

And the cost for coding the clustering model M, L(M), is denoted by the 

following equation: 

L(M) =  
1 1 1

log log
2

kCK K

k
k j kk

n d
C

C  

 
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 
  ,           (13) 

where M is the clustering model, Ck is the k-th cluster, n is the number of points in the 

data set, and d is the number of dimensions. 

(2) The heuristic selection of parameter δ in Chen (2017a) 

In Chen (2017a), parameter δ can be selected by the following heuristic equation: 

max{longthestEdgeInMst(clusterk) | k = 1, 2, …, K } ≤ δ < min{dis(clusteri, 

clusterj) | i, j = 1, 2, …, K},           (14) 

where longthestEdgeInMst(clusterk) is the weight of the longest edge in the minimum 

spanning tree of the k-th cluster, dis(clusteri, clusterj) is the weight of the minimum 
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edge connecting the i-th cluster and the j-th cluster, and K is the number of clusters in 

the final synchronization step.  

 (3) A linear-searching exploring method of parameter δ 

Usually, parameter δ has a very long valid range for many kinds of data sets. 

Some simulated experiments in Chen (2017a) and this paper also validate this 

conclusion. Some times, parameter δ have several long valid ranges for different 

clustering levels. So we can explore the valid range of parameter δ by the 

linear-searching method. 

5.7.2 The setting of parameter ε in MLSynC method 

Parameter ε affects the time cost of MLSynC method slightly. Usually, parameter 

ε has a long valid interval. For example, if parameter δ > 15, then the valid interval of 

parameter ε is about in (0, 10]. In simulations, we almost get the same results for 

several different values (such as 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, and 10) of 

parameter ε. 

5.7.3 The setting of parameter m in MLSynC method 

In the two-level framework algorithm of MLSynC method, parameter m affects 

its whole time cost. If parameter m is set too large, then the number of points in each 

part of the data set becomes less. So SSynC algorithm in the two-level framework 

algorithm of MLSynC method needs less clustering time for each subset, and the 

two-level framework algorithm of MLSynC method needs much divide and collect 

time. Usually, there is a balance between the increase of “divide and collect” time and 

the decrease of clustering time with the increase of parameter m. So we think that 

parameter m cannot be set too large. 

4.8 The improvement of MLSynC method 

In MLSynC method, one improved version of SSynC algorithm can be obtained 

by combining multidimensional grid partitioning method and Red-Black tree structure 

to construct the near neighbor point sets of all active cores. The improving method 

that can decrease its time cost is introduced in Chen (2018). Generally, we first 

partition the data space of the data set S = {X1, X2, …, Xn} by using a kind of 

multidimensional grid partitioning method. Then design an effective index of all grid 

cells and construct δ near neighbor grid cell set for each grid cell. If every grid cell 

uses a Red-Black tree to index its active cores in each synchronization step, then 

constructing the δ near neighbor point set for every active core will become quicker 

when the number of grid cells is proper. 
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Before synchronization iterative evolution, if we set a proper value for parameter 

δ to filtrate isolates, then these isolates can be set as inactive cores that will not be 

operated in the next iterative evolution. This improvement of implementation 

technique is often effective in some data sets. 

4.9 The convergence of MLSynC method 

In MLSynC method, SSynC algorithm is used to clustering each subset and the 

collected core set. So the convergence of MLSynC method is completely depended on 

the convergence of SSynC algorithm. According to the convergence analysis of 

SSynC algorithm and our simulations, we know that MLSynC method is also 

convergent. 

5. Simulated experiments 

5.1 Experimental design 

Our experiments are finished on a personal computer (Capability Parameters: 

Pentium(R) Dual-Core CPU T4500 2.30 GHz, 2G Memory). Experimental programs 

are developed using C and C++ language under Windows XP. 

To verify the improvement in clustering effect and time cost of MLSynC method, 

there will be some simulated experiments of some artificial data sets, eight UCI data 

sets (Frank et al., 2010), and three bmp pictures in the next three subsections. 

Four kinds of artificial data sets (DS1 - DS4) are produced in a 2-D region [0, 

600] × [0, 600] by a program presented in Online Resource 3 of Supplementary 

Material of this paper. Other kinds of artificial data sets (DS5 - DS16) are produced in 

a interval [0, 600] in each dimension by a similar program. DS0 is produced in a 2-D 

region [0, 200] × [0, 200] by a similar program. Iris et al. (Frank et al., 2010) are eight 

UCI data sets that used in our experiments. Three bmp pictures (named as Picture1, 

Picture2, and Picture3) are obtained from Internet. Table 4 is the description of the 

experimental data sets. 
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Table 4 The description of experimental data sets 
(a) The description of sixteen kinds of artificial data sets 

Data Sets Number of Clusters With Noise Cluster 
Semidiameter 

Dimension 
(d) 

DS0 9 no 30 2 
DS1 5 yes 40 2 
DS2 5 no 50 2 
DS3 9 yes 30 2 
DS4 9 no 40 2 
DS5 12 no 30 2 
DS6 12 no 30 4 
DS7 12 no 30 6 
DS8 12 no 30 8 
DS9 5 no 30 2 

DS10 5 no 30 4 
DS11 5 no 30 6 
DS12 5 no 30 8 
DS13 5 no 30 20 
DS14 5 no 30 40 
DS15 5 no 30 80 
DS16 5 no 30 100 
 

(b) The description of eight UCI data sets (Frank and Asuncion, 2010) 
UCI Data Sets Number of Points (n) Dimension

(d) 
Number of Classes

Iris 150 4 3 
Wine 178 13 3 
Wdbc 569 30 2 
Glass 214 9 6 

Ionosphere 351 34 2 
Letter-recognition 20000 16 26 

Segmentation 210 19 7 
Cloud 2048 10 2 

 
(c) The description of three bmp picture data sets (obtained from Internet) 
Picture Data Sets Number of Pixels (n) Dimension

(d) 
Picture1 200*200 3 
Picture2 200*200 3 
Picture3 200*200 3 

 

In our simulated experiments, the maximum times of synchronization evolution 

in the while repetition of SynC algorithm, ESynC algorithm, SSynC algorithm, and 

MLSynC method is set as 50. MLSynC method is implemented using the two-level 

framework algorithm of MLSynC method. 

The comparison results of these clustering algorithms are presented by six 

figures (Figs. 3 - 8 of Supplementary Material) and nine tables (Tables 1 - 9 of 

Supplementary Material). Because of the limited pages, we only select two figures 

from Figs. 3 - 8 of Supplementary Material in the manuscript. All six figures are 

presented in Online Resource 4 of Supplementary Material. All nine tables are 

presented in Online Resource 5 of Supplementary Material.  And performance of 
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algorithms is measured by time cost (second). Clustering quality of algorithms is 

measured by display figures of clustering results and two robust information-theoretic 

measures, Adjusted Mutual Information (AMI) (Vinh et al., 2010) and Normalized 

Mutual Information (NMI) (Strehl et al., 2002). According to Vinh et al. (2010), the 

higher the value of the two measures gets, the better the clustering quality of 

algorithms is. In simulations, we use the Matlab code from Vinh et al. (2010) to 

compute the two clustering quality measures. 

In section 5.2, MLSynC method will be compared with SynC algorithm, ESynC 

algorithm, SSynC algorithm, and some other classic clustering algorithms (K-Means 

(MacQueen, 1967), FCM (Bezdek, 1981), AP (Frey et al., 2007), DBSCAN (Ester et 

al., 1996), Mean Shift (Fukunaga et al., 1975; Comaniciu et al., 2002) in clustering 

quality and time cost using some artificial data sets. 

In section 5.3, MLSynC method will be compared with SynC algorithm, ESynC 

algorithm, SSynC algorithm, and some other classic clustering algorithms in 

clustering quality and time cost using eight UCI data sets. 

In section 5.4, MLSynC method will be compared with SynC algorithm, ESynC 

algorithm, SSynC algorithm, and some other classic clustering algorithms in 

compressed effect of clustering results, clustering quality, and time cost using three 

bmp pictures. 

In the experiments, parameter δ used in SynC  algorithm, ESynC algorithm, 

SSynC algorithm, MLSynC method, DBSCAN algorithm, and Mean Shift algorithm 

is the threshold of Definition 1. In DBSCAN algorithm, parameter MinPts = 4, and 

parameter Eps is the same as parameter δ. 

The detailed discussion on how to construct δ near neighbor point sets is 

described in Chen (2013). How to select a proper value for parameter δ in SynC 

algorithm is discussed in Böhm et al. (2010). ESynC algorithm, SSynC algorithm, and 

MLSynC method use Theorem 1 and Property 1 to select a proper value for parameter 

δ. In SSynC algorithm and MLSynC method. In SSynC algorithm and MLSynC 

method, parameter ε has trivial effect in time cost and clustering results. 

To simplify our simulation of the two-level framework algorithm of MLSynC 

method, we set the same value for parameter δ1, δ2, ···, δm, and δmerge. So they are also 

named as δ. 

5.2 Experimental results of some artificial data sets (from DS1 - DS16) 

5.2.1 The comparison of the clustering results among SynC algorithm, ESynC 
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algorithm, SSynC algorithm, and MLSynC method (from DS1- DS4) 

 Table 1 of Supplementary Material presents the comparison results of four 

synchronization clustering algorithms (SynC, ESynC, SSynC, and MLSynC) by using 

four artificial data sets (from DS1 - DS4). In Table 1 of Supplementary Material, by 

intercomparing SynC, ESynC, SSynC, and MLSynC, we observe that MLSynC is the 

fastest clustering algorithm. At the same time, MLSynC, SSynC, and ESynC can get 

better local synchronization results than SynC in the four data sets. 

 In the two-level framework of MLSynC method, parameter m is set as 10. If we 

use two different partitioning methods (a near unevenly partitioning method and a near 

evenly partitioning method) in the four data sets, the two sequences of the number of 

clusters of 10 subsets in each data set are different. The comparison results are 

presented in Table 2 of Supplementary Material. From Table 2 of Supplementary 

Material, we observe that two different partitioning methods result in different 

clustering distributions of 10 subsets in each data set. 

5.2.2 The comparison of the clustering results among SynC algorithm, ESynC 

algorithm, SSynC algorithm, MLSynC method, and some classical clustering 

algorithms (from DS1 - DS8) 

 Table 3 of Supplementary Material presents the clustering quality of several 

clustering algorithms (SynC, ESynC, SSynC, MLSynC, and some classical clustering 

algorithms) by using six kinds of artificial data sets (DS2, DS4, DS5, DS6, DS7, and 

DS8). When computing the two information-theoretic measures (NMI and AMI), the 

predefined cluster labels of the eight artificial data sets are used in the true_mem that 

is an input file of the MATLAB code (Vinh et al., 2010). In Table 3 of 

Supplementary Material, by intercomparing MLSynC, SynC, ESynC, SSynC, and 

some classical clustering algorithms, we observe that MLSynC can get acceptable and 

similar clustering results with SSynC and ESynC in the eight data sets if the 

partitioning of the data set in MLSynC method is near evenly. Because the two data 

sets (DS4 (n = 1000) and DS5 (n = 12000)) have two connected clusters, MLSynC, 

SSynC, and ESynC do not get the largest values of NMI and AMI. We also observe 

that the partitioning method of data set can affect the clustering results of MLSynC 

method. 



  28

  
(a) Clusters identified by MLSynC (15 clusters or isolates) (b) Clusters identified by ESynC and 
SSynC (15 clusters or isolates) 

  
(c) Clusters identified by K-Means (predefined 5 clusters) (d) Clusters identified by FCM 
(predefined 5 clusters) 

  
(e) Clusters identified by AP (13 clusters)   (f) Clusters identified by DBSCAN (5 clusters) 
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(g) Clusters identified by Mean Shift (18 clusters) (h) Clusters identified by SynC (192 clusters or 
isolates) 
Fig. 4. The comparison of the clustering results of several algorithms (DS1, n = 400). 

In Fig. 4, parameter δ = 18 in SynC, ESynC, SSynC, DBSCAN, Mean Shift, and 

MLSynC method; the number of data points n = 400; parameter ε = 1 in SSynC 

algorithm and MLSynC method. In MLSynC method, parameter m is set as 2, and the 

two-level framework algorithm is used. 

 Figure 4 and Figs. 4 - 6 of Supplementary Material present the comparison 

clustering results of several clustering algorithms by some display figures that reflect 

the clustering quality clearly. From Figure 4 and Figs. 4 - 6 of Supplementary 

Material, we observe that MLSynC, SSynC and ESynC can get better clustering 

quality (obvious clusters or isolates displayed by figures) than SynC, AP, K-Means, 

and FCM in the four artificial data sets (from DS1 - DS4). Mean Shift, DBSCAN can 

obtain similar clustering quality (obvious clusters displayed by figures) with MLSynC, 

SSynC and ESynC in these artificial data sets. Especially, MLSynC, SynC, ESynC, 

and SSynC can all easily find some isolates if setting a proper value for parameter δ, 

and MLSynC can get the same clustering results (the same clusters displayed by 

figures) with SSynC, ESynC in these data sets. 

 Table 4 of Supplementary Material presents the comparison results of several 

clustering algorithms in time cost. In Table 4 of Supplementary Material, for DS1, 

parameter δ = 18 in SSynC, ESynC, SynC, and DBSCAN; parameter δ = 25 in 

MLSynC. For DS2, parameter δ = 25 in MLSynC, SSynC, ESynC, SynC, and 

DBSCAN. For DS3, parameter δ = 18 in MLSynC, SSynC, ESynC, SynC, and 

DBSCAN. For DS4, parameter δ = 18 in SSynC, ESynC, SynC, and DBSCAN; 
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parameter δ = 20 in MLSynC. Parameter ε = 1 in SSynC and MLSynC. In MLSynC, 

parameter m is set as 10, and the two-level framework algorithm is used. 

 In Table 4 of Supplementary Material, intercomparing MLSynC, SynC, ESynC, 

SSynC, DBSCAN, FCM, and K-Means, we observe that MLSynC is faster than SynC, 

ESynC, DBSCAN, and SSynC, and K-Means is the fastest clustering algorithm. Mean 

Shift and AP cannot run normally on a personal computer because the number of data 

points is set as 40000. 

5.2.3 The comparison of the valid interval of parameter δ among MLSynC method, 

SynC algorithm, ESynC algorithm, SSynC algorithm, DBSCAN algorithm, and Mean 

Shift algorithm using some artificial data sets (from DS5 - DS16) 

 Here we compare the valid interval of parameter δ among MLSynC method, 

SynC algorithm, ESynC algorithm, SSynC algorithm, DBSCAN algorithm, and Mean 

Shift algorithm. 

 Table 5 of Supplementary Material presents the comparison results of the valid 

interval of parameter δ among MLSynC, SynC, ESynC, SSynC, DBSCAN, and Mean 

Shift. Here, [ek , ek+1] can be obtained from Eq.(8) of Chen (2015). In Table 5 of 

Supplementary Material, intercomparing MLSynC, SynC, ESynC, SSynC, 

DBSCAN, and Mean Shift, we observe that although the valid interval of parameter δ 

in MLSynC is shorter than that in SSynC and ESynC, the valid interval of parameter δ 

in MLSynC is long enough in many kinds of data sets. 

 Table 6 of Supplementary Material compares the valid interval of parameter δ 

in MLSynC method for several different value of parameter ε using some artificial 

data sets with different dimensions. In Table 6 of Supplementary Material, 

intercomparing several different value of parameter ε, we observe that if parameter ε 

is less than parameter δ, the valid interval of parameter δ has very small difference for 

several different values of parameter ε. 

5.3 Experimental results of eight UCI data sets 

 Because we do not know the true dissimilarity measure of these UCI data sets, all 

points of these UCI data sets are standardized into a interval [0, 600] in each 

dimension in the experiments. When computing the two information-theoretic 

measures (NMI and AMI), because we do not know the true cluster labels of these 

UCI data sets, the class labels of these UCI data sets are used in the true_mem that is 

an input file of the MATLAB code (Vinh et al., 2010). 

5.3.1 The comparison of the clustering results among MLSynC method, SynC 
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algorithm, ESynC algorithm, and SSynC algorithm 

 Table 7 of Supplementary Material presents the comparison results of four 

synchronization clustering algorithms (MLSynC method, SynC algorithm, ESynC 

algorithm, and SSynC algorithm) by using eight UCI data sets. In Table 7 of 

Supplementary Material, intercomparing MLSynC method, SynC algorithm, ESynC 

algorithm, SSynC algorithm, we observe that MLSynC method, ESynC algorithm, 

and SSynC algorithm can get better local synchronization results than SynC algorithm 

in the eight UCI data sets, and MLSynC method is the fastest algorithm. From this 

simulated experiment, we also find that if the number of points in the data set is small 

and we use an uneven partition method, the difference of clustering effect between 

MLSynC method and SSynC algorithm is large. 

5.3.2 The comparison of the clustering quality among MLSynC method, SynC 

algorithm, ESynC algorithm, SSynC algorithm, and some classical clustering 

algorithms 

 Table 8 of Supplementary Material presents the comparison clustering quality 

of several clustering algorithms (MLSynC method, SynC algorithm, ESynC algorithm, 

SSynC algorithm, and some classical clustering algorithms) using eight UCI data sets. 

In Table 8 of Supplementary Material, by intercomparing these clustering 

algorithms, we observe that MLSynC method gets the largest value of NMI and AMI 

in five UCI data sets (Iris, Wdbc, Glass, Segmentation, and Cloud) if it uses a 

sequential and uneven partitioning method. So we can say that MLSynC method often 

gets better clustering results than some clustering algorithms in some UCI data sets. 

From the final number of clusters in Table 8 of Supplementary Material, we 

observe that MLSynC method, SSynC algorithm, and ESynC algorithm can get better 

local synchronization results than SynC algorithm. 

5.4 Experimental results of three bmp pictures 

 The value in RGB (Red, Green, and Blue) color space of pixel points is in a 

interval [0, 255] in each dimension. In Table 9 of Supplementary Material, Fig. 7 of 

Supplementary Material, and Figure 5, parameter ε = 1 in MLSynC method and 

SSynC algorithm. In MLSynC method of Table 9 of Supplementary Material, Fig. 

7 of Supplementary Material, and Figure 5, parameter m is set as 10, and the 

two-level framework algorithm is used. 

5.4.1 The comparison of the clustering results among SynC algorithm, ESynC 
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algorithm, SSynC algorithm, and MLSynC method 

 Table 9 of Supplementary Material presents the comparison results of four 

synchronization clustering algorithms (SynC, ESynC, SSynC, and MLSynC) using 

three pixel-point data sets from RGB color space of three bmp pictures. In Table 9 of 

Supplementary Material, by intercomparing SynC, ESynC, SSynC, and MLSynC, 

we observe that MLSynC is the fastest clustering algorithm. At the same time, 

MLSynC, SSynC, and ESynC can get better local synchronization results than SynC 

in these pixel-point data sets. 

5.4.2 The comparison of the clustering compressed effect among MLSynC method, 

SynC algorithm, ESynC algorithm, SSynC algorithm, and some classical clustering 

algorithms 

 Fig. 7 of Supplementary Material lists Picture3 and its RGB space distribution 

of 200 * 200 pixel points. 

  
MLSynC (final k = 45)   SSynC, ESynC (final k = 26) 

  
SynC (final k = 3375)    Mean Shift (final k = 19) 
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K-Means, FCM (final k = 1)   DBSCAN (final k = 148) 

(a) δ = 18 in MLSynC, SynC, ESynC, SSynC, DBSCAN, and Mean Shift; predefined k (number of 
clusters) = 26 in K-Means and FCM. 

  
MLSynC (final k = 14)    SSynC, ESynC (final k = 10) 

  
SynC (final k = 3402)    Mean Shift (final k = 7) 

  
K-Means, FCM (final k = 1)   DBSCAN (final k = 53) 

 (b) δ = 30 in MLSynC, SynC, ESynC, SSynC, DBSCAN, and Mean Shift; predefined k (number of 
clusters) = 10 in K-Means and FCM. 
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Fig. 5. The comparison of the original picture and several compressed pictures of 
Picture3. In Fig. 5, several compressed pictures based on different clustering 
algorithms are drawn by using the means of clusters that are obtained by clustering 
the 200 * 200 pixel points of Picture3 in RGB space. 
 Figure 5 lists the original picture and several compressed pictures of Picture3. In 

Figure 5, the several compressed pictures are drawn by using the means of clusters 

obtained by clustering the 200 * 200 pixel points of Picture3 in RGB color space 

using different algorithms. Because AP algorithm needs too much time and space for 

Picture3, this experiment does not use it. Although the queue of DBSCAN algorithm 

slops over, it still gets a compressed picture basing on the clustering results. From 

Figure 5, we observe that MLSynC method, ESynC algorithm, and SSynC algorithm 

can get multi-level clustering compressed effect for different values of parameter δ. 

5.5 Analysis and conclusions of experimental results 

 From the comparison experimental results of these figures and tables (Figs. 3 - 8 

of Supplementary Material and Tables 1 - 9 of Supplementary Material), we 

observe that MLSynC method is faster than SSynC algorithm, ESynC algorithm, and 

SynC algorithm. We think that MLSynC method is superior to SSynC algorithm, 

ESynC algorithm, and SynC algorithm in time cost because of its framework of 

“divide and collect”. 

 From the simulations of some artificial data sets (from DS5 - DS16), we observe 

that the effective interval of parameter δ in MLSynC method is enough long just like 

Mean Shift algorithm, DBSCAN algorithm, SSynC algorithm, and ESynC algorithm. 

In some cases, the effective interval of parameter δ in MLSynC method is longer than 

that in DBSCAN algorithm. 

 In some display figures, by intercomparing MLSynC method, SSynC algorithm, 

ESynC algorithm, and SynC algorithm, we observe that MLSynC method can explore 

the same clusters and isolates (displayed by some figures) with ESynC algorithm and 

SSynC algorithm if the partition in MLSynC method is near well-proportioned or 

unaided (each subset is independent with each other in the space). In many kinds of 

data sets, MLSynC method, SSynC algorithm, and ESynC algorithm can explore 

obvious clusters or isolates if selecting a proper value for parameter δ, and SynC 

algorithm cannot explore obvious clusters in many data sets. 

 From simulations of some data sets, we observe that the iterative times of SynC 

algorithm, AP algorithm, K-Means algorithm, and FCM algorithm is larger than that 

of MLSynC method, SSynC algorithm, and ESynC algorithm. In many data sets, 
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MLSynC method, ESynC algorithm, SSynC algorithm, Mean Shift algorithm, and 

DBSCAN algorithm have better ability than SynC algorithm, K-Means algorithm, 

FCM algorithm, and AP algorithm in exploring clusters and isolates. Specially, AP 

algorithm needs the longest time. 

 MLSynC method is an improved clustering algorithm with faster clustering speed 

than SSynC algorithm and ESynC algorithm almost in all cases. Usually, parameter ε 

has a long effective interval (for example, the effective interval of parameter ε is about 

(0, 10] if parameter δ > 15). In simulations, we observe that if parameter ε gets some 

different values in its effective interval, the clustering results of MLSynC method is 

almost the same except the time cost. 

 Because the values in RGB space of the pixel points of Picture3 are almost 

continuous and have no obvious clusters. In this case, MLSynC method, SSynC 

algorithm, and ESynC algorithm can get more obvious multi-level compressed effect 

than some other clustering algorithms, such as K-Means algorithm and FCM 

algorithm. In simulations, we also observe that DBSCAN algorithm needs more space 

than MLSynC method, SSynC algorithm, and ESynC algorithm because of its 

recursive process. 

 Because of the limited page space, we only select some typical data sets (sixteen 

kinds of artificial data sets, eight UCI data sets, and three bmp picture data sets) used 

in our experiments. For all experimental data sets, we observe that MLSynC method 

improves ESynC algorithm in time cost. For other data sets, we think MLSynC 

method is still superior to SynC algorithm in time cost. We believe that the selection 

of experimental data sets is not biased. 

 From Figure 1 and some other simulated experimental results, we conclude the 

application condition of MLSynC method. In any one of the following two cases, 

MLSynC method can get similar clustering effect with SSynC algorithm and ESynC 

algorithm. 
 Case 1: The spatial distribution of any partitioned data subset is almost the same 

as that of the original data set. 

 Case 2: Any two partitioned data subsets cannot be intersect, cannot be joined, or 

cannot be much near (less than or equal to parameter δ). In this case, any unabridged 

cluster of the original data set will not be partitioned into multiple near (larger than 

parameter δ) small clusters after the partition process of MLSynC method. 

 When the partition of the original data set does not satisfy any one case above, 
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MLSynC method will often get different clustering effect with SSynC algorithm and 

ESynC algorithm. 

6. Conclusions 

 This paper presents an improved synchronization clustering method, MLSynC, 

which often gets better clustering results than the original synchronization clustering 

algorithm, SynC. From the experimental results, we observe that MLSynC method 

can often obtain less iterative times, faster clustering speed, and better clustering 

quality than SynC algorithm in many kinds of data sets. 

The major contributions of this paper can be summarized as follows: 

(1) It develops an effective framework of “divide and collect” in clustering field 

by using a linear weighted Vicsek model. 

(2) It presents two concrete implementations of MLSynC method, a two-level 

framework algorithm and a recursive algorithm. 

(3) It validates the improved effect of MLSynC method in time cost and 

clustering quality by some simulated experiments. 

 MLSynC method is also robust to outliers and can find obvious clusters with 

different shapes. The number of clusters does not have to be fixed before clustering. 

Usually, parameter δ has some valid interval that can be determined by using an 

exploring method listed in Chen (2015), the heuristic method described by Theorem 1 

and Property 1 presented in Chen (2017), or using the MDL-based method presented 

in Böhm et al. (2010). 

 MLSynC method has some similarities with MapReduce framework. So we can 

also say it is an application example of MapReduce framework in clustering field. 

 This work opens some possibilities for further improvement and investigation. 

First, further improve MLSynC method in time cost. For example, designing 

similarity-preserving hashing function that needs O(1) time complexity is valuable in 

the process of constructing δ near neighbor point set. Second, extend the applicability 

and explore the clustering effect of our algorithms in high-dimensional data. Third, 

implement MLSynC method on a cluster with a parallel programming model or on 

MapReduce framework. 
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