
EasyChair Preprint

№ 1438

An effective multi-level synchronization

clustering method based on a framework of

”divide and collect” and SSynC algorithm

Xinquan Chen

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 28, 2019

 1

Title Page

An effective multi-level synchronization clustering method based on a

framework of “divide and collect” and SSynC algorithm

Xinquan Chen1, 2
1School of Computer & Information, Anhui Polytechnic University, Wuhu, 241000, China
2Key Laboratory of Intelligent Information Processing and Control, Chongqing Three Gorges

University, Chongqing, 404100, China

chenxqscut@126.com

Author: Xinquan Chen

Corresponding Author: Xinquan Chen

* Corresponding author. Tel.: 0086-15123428097.

E-mail address: chenxqscut@126.com (X. Chen).

Post Address:

Xinquan Chen

School of Computer & Information, Anhui Polytechnic University, Wuhu, 241000,

China

Conflicts of interest: None

 2

An effective multi-level synchronization clustering method based on a

framework of “divide and collect” and SSynC algorithm

Abstract: Facing big data, general clustering methods cannot process all data in main

memory one time. In order to conquer this problem, this paper presents an effective

Multi-Level Synchronization Clustering (MLSynC) method based on SSynC

algorithm by using a framework of “divide and collect” and a linear weighted Vicsek

model. MLSynC method has different process with SynC algorithm, ESynC algorithm,

and SSynC algorithm. In this paper, we present two concrete implementations of

MLSynC method, a two-level framework algorithm and a recursive algorithm. By the

theoretic analysis, we find the time complexity of MLSynC method is less than

SSynC algorithm. By some simulated experiments of some artificial data sets, eight

UCI data sets, and three picture data sets, we observe that MLSynC method not only

gets better local synchronization effect but also needs less iterative times and time

cost than SynC algorithm. Moreover, we also observe that MLSynC method not only

needs less time cost than ESynC algorithm and SSynC algorithm, but also almost gets

the same local synchronization effect as ESynC algorithm and SSynC algorithm if the

partition of the data set is proper. Further comparison experiments with some classical

clustering algorithms demonstrate the clustering effect of MLSynC method.

Keywords: Divide and collect; Kuramoto model; Shrinking synchronization

clustering; A linear weighted Vicsek model; Near neighbor point set

1. Introduction

Clustering is an unsupervised learning method that tries to find some obvious

distribution structures and patterns in unlabeled data sets by maximizing the similarity

of the objects in a common cluster and minimizing the similarity of the objects in

different clusters (Jain et al., 1999). Clustering has been used in many areas such as

machine learning, pattern recognition, image processing, marketing and costumer

analysis, agriculture, security and crime detection, information retrieval, and

bioinformatics. Cluster is often one important step in the process of data analysis.

Clustering algorithms have been studied for decades. There have been hundreds

of clustering algorithms until now, but none of them is all purpose. Almost all

clustering algorithms have flaws. Some clustering algorithms are suitable for dealing

with data with certain types, and others are suitable for handling data with special

distribution structures. Many real data have complex distributions, diversiform types,

 3

great capacity, noises, or isolates. So there is a continuous demand for researching

different kinds of clustering methods. In order to obtain better clustering results in

real-world applications where the amount of data is often very large and the types of

data are diversiform, researchers try their best to develop new efficient and effective

clustering algorithms.

The traditional clustering algorithms are usually classified into partitioning

methods (Bezdek, 1981; MacQueen, 1967), hierarchical methods (Bouguettaya et al.,

2015; Guha et al., 1998; Karypis et al., 1999; Zhang et al., 1996), density-based

methods (Ankerst et al., 1999; Ester et al., 1996; Roy et al., 2005), grid-based

methods (Agrawal et al., 1998; Wang et al., 1997), model-based methods

(Theodoridis et al., 2006), and graph-based methods (Tan et al., 2005; Theodoridis et

al., 2006; Zahn, C. T., 1971). Recent clustering methods have quantum clustering

algorithms (Horn et al., 2002), spectral clustering algorithms (Luxburg, 2007;

Schölkopf et al., 1998), affinity propagation clustering algorithms (Frey et al., 2007),

synchronization clustering algorithms (Böhm et al., 2010; Huang et al., 2013; Shao et

al., 2013a, 2013b, 2014; Chen, 2014, 2017, 2018; Hang et al., 2017), and so on.

Recently, several original clustering algorithms, such as Affinity Propagation

(AP) algorithm (Frey et al., 2007), Synchronization Clustering (SynC) algorithm

(Böhm et al., 2010), and clustering by fast search and find of Density Peaks (DP)

algorithm (Rodriguez et al., 2014), were published. AP algorithm is a new type of

clustering algorithm published on Science in 2007. After AP algorithm was published,

clustering based on probability graph models grew a new research direction. As we

know, SynC algorithm is the first synchronization clustering algorithm. After SynC

algorithm was presented, synchronization clustering attracts some researchers. Some

synchronization clustering methods (Huang et al., 2013; Shao et al., 2013a, 2013b,

2014; Chen, 2014, 2017, 2018; Hang et al., 2017) were published from different

views. DP algorithm is a clustering algorithm based on the assumption that “cluster

centers can be characterized by a higher density than their neighbors and by a

relatively large distance from points with higher densities”. In DP algorithm, the

number of clusters can be obtained automatically, outliers can be identified easily, and

even nonspherical clusters can be explored quickly. So we think DP algorithm can

lead a new research direction in clustering field.

Synchronization clustering is a kind of novel clustering approach. The original

synchronization clustering algorithm (named as SynC) says that it can find the

 4

intrinsic structure of the data set without any distribution assumptions and handle

outliers by dynamic synchronization (Böhm et al., 2010).

In the circumstance of big data, general clustering algorithms cannot process a

large amount of data in main memory one time. In order to conquer this problem,

basing on SynC algorithm (Böhm et al., 2010), ESynC algorithm (Chen, 2017), and

SSynC algorithm (Chen, 2014), this paper researches a Multi-Level Synchronization

Clustering (MLSynC) method based on SSynC algorithm by using a framework of

“divide and collect” and a linear weighted Vicsek model. MLSynC method has a

different process with SynC algorithm, ESynC algorithm, and SSynC algorithm.

SynC algorithm (Böhm et al., 2010) is based on an extensive Kuramoto model,

ESynC algorithm (Chen, 2017) is based on a linear version of Vicsek model, SSynC

algorithm (Chen, 2014) is based on a linear weighted Vicsek model, and MLSynC

method uses the strategy of “divide and conquer” and a linear weighted Vicsek model

for clustering. Because the linear weighted Vicsek model has nicer superposition

characteristic for clustering, MLSynC method can be used to process big data

effectively and efficiently.

The idea of “divide and collect” in MLSynC method is similar to MapReduce

framework (Dean et al., 2008) in some aspects, although it is developed

independently. MapReduce is a parallel and distributed programming model that is

used to process very large data sets on a cluster. In MapReduce framework, the Map

and Reduce operations affect the clustering result very much, so they cannot be

directly extended to clustering field. MLSynC method can be used for clustering on a

cluster with a parallel programming model or on a personal computer with a serial

programming method. If the partition of the data set is proper, MLSynC method is

both efficient and effective.

The remainder of this paper is organized as follows. Section 2 lists some related

work. Section 3 gives some basic knowledge. Section 4 introduces MLSynC method.

Section 5 validates MLSynC method by some simulated experiments. Conclusions

and future works are presented in Section 6.

2. Related work

This paper is inspired by several papers (Vicsek et al., 1995; Jadbabaie et al.,

2003; Wang et al., 2009; Böhm et al., 2010; Chen, 2014, 2017) and the strategy of

“divide and conquer”.

 5

In 2010, Böhm et al. presented a novel clustering approach, SynC algorithm,

inspired by the synchronization principle. SynC algorithm can find the intrinsic

structure of the data set without any distribution assumptions and handle outliers by

dynamic synchronization. In order to implement automatic clustering, those natural

clusters can be discovered by using the Minimum Description Length (MDL)

principle (GrÄunwald, 2005). After SynC algorithm was presented, some researchers

published several synchronization clustering papers from different views (Shao et al.,

2010, 2011, 2013a, 2013b, 2014; Huang et al., 2013; Chen, 2014, 2017, 2018; Hang et

al., 2017). In order to find subspace clusters of some high-dimensional sparse data

sets, a novel effective and efficient subspace clustering algorithm, ORSC (Shao et al.,

2011), was proposed. In order to detect the outliers from a real complex data set more

naturally, a novel outlier detection algorithm was presented from a new perspective,

“Out of Synchronization” (Shao et al., 2010). In order to find the intrinsic patterns of

a complex graph, a novel and robust graph clustering algorithm, RSGC (Shao et al.,

2013a), was proposed by regarding the graph clustering as a dynamic process towards

synchronization. In order to explore meaningful levels of the hierarchical cluster

structure, a novel dynamic hierarchical clustering algorithm, hSync (Shao et al.,

2013b), was presented based on synchronization and the MDL principle. In 2013,

Huang et al. (2013) also presented a synchronization-based hierarchical clustering

method basing on the work of Böhm et al. (2010). Inspired by the work of Böhm et al.

(2010) and Vicsek model, Chen (2014) presented a Shrinking Synchronization

Clustering (SSynC) algorithm by using a linear weighted Vicsek model. Inspired by

the work of Böhm et al. (2010), Chen (2017) proposed an Effective Synchronization

Clustering (ESynC) algorithm based on a linear version of Vicsek model. Simulations

validate that the linear version of Vicsek model is an effective synchronization model

for clustering. Based on the metaphor of gravitational kinematics and central force

optimization method, Hang et al. (2017) presented a local synchronization clustering

algorithm, which can find clusters of those data sets with arbitrary size, shape, and

density, and determine the number of clusters automatically. Chen (2018) present

three Fast Synchronization Clustering (FSynC) algorithms basing on the work of

Böhm et al. (2010) and the grid-based index method in Chen (2013). FSynC

algorithm, which is a parametric algorithm, is an improved version of SynC algorithm

by combining multidimensional grid partitioning method and Red-Black tree structure

to construct the near neighbor point sets of all points (Chen, 2018).

 6

Recent, Cao et al. (Cao et al., 2017) proposed a fuzzy SV-k-modes algorithm that

can cluster categorical data with set-valued attributes by using a fuzzy k-modes

clustering process. The fuzzy SV-k-modes algorithm can cluster categorical data with

single-valued and set-valued attributes together. Spurek et al. (Spurek et al., 2017)

proposed an active function Cross-Entropy Clustering (afCEC) method by using

Gaussians in curvilinear coordinate systems. The afCEC method can adapt well to

curved and strongly nonlinear data and automatically determine the number of

clusters. Güngör et al. (Güngör et al., 2017) proposed a Gaussian Density Distance

(GDD) clustering algorithm by using both Gaussian kernel and distances to form

clusters according to the density and shape of data set. The GDD algorithm can find

best possible clusters without any prior information and parameters.

3. Some basic knowledge

Suppose there is a data set S = {X1, X2, …, Xn} in a d-dimensional Euclidean

space. Naturally, we use Euclidean metric as our dissimilarity measure, dis(·, ·). In

order to describe our method clearly, some concepts are presented first.

Definition 1 The δ near neighbor point set δ(P) of point P is defined as:

δ(P) = {X | 0 < dis(X, P) ≤ δ, X ≠ P, X S}, (1)

where dis(X, P) is the dissimilarity measure between point X and point P in the data

set S. Parameter δ is a predefined threshold.

Definition 2 (Böhm et al., 2010). The extensive Kuramoto model for clustering

is defined as:

Point X = (x1, x2, …, xd) is a vector in d-dimensional Euclidean space. If each

point X is regarded as a phase oscillator based on Kuramoto model, with an

interaction in the δ near neighbor point set δ(X), then the dynamics of the k-th

dimension xk (k = 1, 2, …, d) of point X over time is described by:

xk (t+1) = xk (t) + 



))((

))()(sin(
|))((|

1

tXY
kk txty

tX 
, (2)

where X(t = 0) = (x1(0), x2(0), ···, xd(0)) represents the original phase of point X, xk(t+1)

describes the renewal phase value in the k-th dimension of point X at the t-step

evolution, and Y = (y1, y2, …, yd) is a δ near neighbor point of point X at the t-step

evolution.

Definition 3 (Chen, 2017). A linear version of Vicsek model for clustering is

defined as:

 7

Point X = (x1, x2, ···, xd) is a vector in d-dimensional Euclidean space. If each

point X is regarded as an agent based on a linear version of Vicsek model, with an

interaction in the δ near neighbor point set δ(X), then the dynamics of point X over

time according to Jadbabaie et al. (2003) and Wang et al. (2009) is described by:

X(t+1) =   









 
))((

)(
))((1

1

tXY

YtX
tX 

, (3)

where X(t = 0) = (x1(0), x2(0), ···, xd(0)) represents the original location of point X, and

X(t+1) describes the renewal location of point X at the t-step evolution.

Definition 4 (Chen, 2014). A core is defined as:

In Shrinking Synchronization Clustering (SSynC) algorithm, point X can be

regarded as an active core C if and only if:

(1). Point X is active in the current synchronization step.

(2). Point X is not labeled as an attributive point of another core.

At this time, the other points in the ε near neighbor point set ε(C) of core C

should be labeled as attributive points of core C, where parameter ε is a small real

number that is less than parameter δ. Usually, if the distance of two points is less than

ε, then they are regarded in the same cluster.

 The data structure of core C can be defined as:

DS(C) = (Core_Id, Core_Location, Parent_CoreId, Number_ContainingPoints). (4)

 In Eq.(4),

Core_Id is the identification number in the original data set.

Core_Location is the current location of core C. It is a d-dimensional vector

expressed by C = (c1, c2, ···, cd).

Parent_CoreId is the identification number of the parent of core C. In the first step

of dynamic clustering, the Parent_CoreId of core C is itself. In the middle or final step

of dynamic clustering, the Parent_CoreId of core C is the Core_Id of the attributive

core of core C.

Number_ContainingPoints is the number of points that are represented or

contained by core C.

Definition 5 (Chen, 2014). A synchronization model for clustering a core set is

defined as:

Core C = (c1, c2, ···, cd) is a vector in a d-dimensional Euclidean space. If each

core C is regarded as a phase oscillator based on an extended linear version of Vicsek

 8

model (this model is also named as the linear weighted Vicsek model), with an

interaction in the δ near neighbor point set δ(C), then the dynamics of core C over

time is described by:

C(t+1) =  









  


))((
))((

)()())((
))())(((

1

tCY
tCY

YYcounttCtCcount
YcounttCcount 



, (5)

where C(t = 0) = (c1(0), c2(0), ···, cd(0)) represents the original phase of core C, C(t+1)

describes the renewal phase value of core C at the t-step evolution, and count(C)

represents the value of the Number_ContainingPoints of core C.

In the dynamics clustering, if the Parent_CoreId of core C is itself and the value

of the Number_ContainingPoints of core C is equal to 1, then Eq.(5) is equivalent with

Eq.(3). Actually, in the dynamics clustering, if core C is represented by its parent core

(which means that the value of the Number_ContainingPoints of the parent core of

core C is added by count(C)), then Eq.(5) can be used for saving time and space.

Definition 6 (Chen, 2014). The data set S = {X1, X2, ···, Xn} using the linear

weighted Vicsek model described by Eq.(5) for clustering is said to achieve local

synchronization if the final locations of all points satisfy:

parent(Xi(t = T)) = RCk(T), i = 1, 2, ···, n, k = 1, 2, ···, K. (6)

 In Eq.(6), where T is the times of the final synchronization, K is the number of the

root cores in the final synchronization step, RCk(T) is the k-th root core in the final

synchronization step, and parent(Xi(t = T)) is the parent of core Ci(T) after the

path-compressed process in the final synchronization step.

Usually, the final location of point Xi (i = 1, 2, ···, n) depends on the value of

parameter δ and the original location of itself and the original locations of other points

in the data set S.

Definition 7. The data set S = {X1, X2, …, Xn} uses the linear weighted Vicsek

model described by Eq.(5) for synchronization clustering. In each evolution step of

synchronization clustering, all cores become some trees with synchronization action.

When the number of root cores in the t-step evolution is equal to that in the (t+1)-step

evolution, an average difference between the root cores in the t-step evolution and the

root cores in the (t+1)-step evolution is defined as:

differInRootCores(t, t+1) =





tn

k
kk

t

LocationCoretRCLocationCoretRCdis
n 1

)_).1(,_).((
1

, k = 1, 2, ···, nt, (7)

 9

where nt is the number of the root cores in the t-step evolution, RCk(t).Core_Location

is the location of the k-th root core in the t-step evolution, and

dis(RCk(t).Core_Location, RCk(t+1).Core_Location) is the dissimilarity between the

location of the k-th root core in the t-step evolution and that in the (t+1)-step

evolution.

 Apparently, if the average difference between the root cores in the t-step

evolution and that in the (t+1)-step evolution computed by Eq.(7) is less than a

predefined threshold, we think SSynC algorithm can exit.

Theorem 1 (Chen, 2014). The data set S = {X1, X2, ···, Xn} using the linear

weighted Vicsek model described by Eq.(5) for clustering will achieve local

synchronization, if parameter δ satisfies:

δmin ≤ δ ≤ δmax. (8)

Suppose emin(MST(S)), which is equal to min{dis(Xi, Xj)| (Xi, Xj ∈ S) ∧ (Xi ≠

Xj)}, is the weight of the minimum edge in the Minimum Span Tree (MST) of the

complete graph of the data set S, and emax(MST(S)) is the weight of the maximum edge

in the MST of the complete graph of the data set S. Apparently, there is δmin =

emin(MST(S)). If the data set S has no isolate, then usually there is emax(MST(S)) ≤ δmax

≤ max{dis(Xi, Xj)| (Xi, Xj ∈ S) ∧ (Xi ≠ Xj)}. If the data set S has isolates, we should

filtrate all isolates at first.

Proof: if δ < δmin, then for any point Xi (i = 1, 2, ···, n), there is δ(Xi) = Ø. In this

case, any point in the data set S cannot synchronize with other points, so

synchronization will not happen.

In another case, that is δ > δmax, then for any point Xi (i = 1, 2, ···, n), there is

δ(Xi(t)) = S - {Xi(t)}. According to Eq.(5), there is Xi(t+1) = mean(S). Here, mean(S) is

the mean of all points in the data set S. Any point in the data set S will synchronize

with all other points, so global synchronization happens. After one time

synchronization, all points in the data set S will synchronize to their mean location.

Apparently, if δmin ≤ δ ≤ δmax, local synchronization will happen. And the final

result of synchronization is affected by the value of parameter δ and the original

locations of all points in the data set S.

Property 1 (Chen, 2014). The data set S = {X1, X2, ···, Xn} using the linear

weighted Vicsek model described by Eq.(5) for clustering will obtain an effective

 10

result of local synchronization with some obvious clusters or isolates, if parameter δ

satisfies:

max{longestEdgeInMst(clusterk) | k = 1, 2, ···, K } < δ < min{dis(clusteri, clusterj)

| i, j = 1, 2, ···, K}. (9)

 In Eq.(9), longestEdgeInMst(clusterk) is the weight of the longest edge in the

minimum spanning tree of the k-th cluster, dis(clusteri, clusterj) is the weight of the

minimum edge connecting the i-th cluster and the j-th cluster, and K is the number of

clusters in the final synchronization step.

Proof: Suppose the data set S = {X1, X2, …, Xn} has K obvious clusters. If

parameter δ is larger than or equal to max{longestEdgeInMst(clusterk) | k = 1, 2, ···,

K }, then data points in the same cluster will synchronize. If parameter δ is less than

min{dis(clusteri, clusterj) | i, j = 1, 2, ···, K}, then data points in different obvious

clusters cannot synchronize.

4. An effective multi-level synchronization clustering method based

on a framework of “divide and collect” and SSynC algorithm

Facing big data, general clustering methods cannot process all data in main

memory one time. In order to conquer this problem, we present an effective

Multi-Level Synchronization Clustering (MLSynC) method by using a framework of

“divide and collect” and a linear weighted Vicsek model. The framework of “divide

and collect” is an application of the strategy of “divide and conquer” in clustering

field. The linear weighted Vicsek model described by Eq.(5) is used in SSynC

algorithm.

Although we use the Euclidean metric as our dissimilarity measure in this paper,

this method is by no means restricted to this metric and this kind of data space. If we

can construct a proper dissimilarity measure in a hybrid-attribute space, this method

can still be used.

4.1 The description of SSynC algorithm

Shrinking Synchronization Clustering (SSynC) algorithm (Chen, 2014) is

presented in another paper by Chen, X. SSynC algorithm based on the

synchronization model represented by Eq.(5) has a similar process with SynC

algorithm and ESynC algorithm. In order to make a difference between SSynC

algorithm and MLSynC method, we introduce it below.

Algorithm name: Shrinking Synchronization Clustering algorithm (named as

 11

SSynC algorithm).

Input: Data set S = {X1, X2, ··· Xn}, dissimilarity measure dis(·, ·), parameter δ,

and parameter ε (a very small real number, if the distance of two points is less than ε,

then they are regarded in the same cluster).

Output: The final core set C(T) = {C1(T), C2(T), ···, Cn(T)} and the number of

root cores in C(T).

The main procedure of SSynC algorithm is described by Table 1.

Table 1

The initialization and iterative synchronization clustering procedure of SSynC

algorithm.

1: IterateStep t is set as zero firstly, that is: t ← 0;
 /* Create initial core set C(t = 0) = {C1(t = 0), C2(t = 0), …, Cn(t = 0)}. */
2: for (i = 1; i ≤ n; i++)
3: {
4: Ci(t = 0).Core_Id ← i;
5: Ci(t = 0).Core_Location ← Xi;
6: Ci(t = 0).Parent_CoreId ← i;
7: Ci(t = 0).Number_ContainingPoints ← 1;
8: }
 /* Create initial active point set AP(t = 0). */
9: AP(t = 0) ← {X1, X2, ···, Xn};
10: NumberOfAP(t = 0) ← n;
11: while ((the dynamical synchronization clustering does not satisfy its convergent condition) and (t
< 50))
12: {
13: for (each point Y(t) in the active point set AP(t))
14: {
15: According to Definition 1, construct the δ near neighbor point set δ(Y(t)) for point Y(t)
in the active point set AP(t);
16: Compute the renewal value, Y(t+1), of Y(t) using Eq.(5);
17: } /* After the above for repetition, we get an update point set AP(t+1) that is composed of
the renewal value Y(t+1) of each point Y(t) in the active point set AP(t). */
18: for (each unlabeled point Y(t+1) in the point set AP(t+1))
19: {
20: The member “Core_Location” of the corresponding core of point Y(t+1) is updated by
the value of Y(t+1);
21: According to Definition 1, construct the ε near neighbor point set ε(Y(t+1)) for point
Y(t+1) in the point set AP(t+1);
22: for (each unlabeled point Z(t+1) in the ε near neighbor point set ε(Y(t+1)) of point
Y(t+1))
23: {
24: Point Z(t+1) is labeled as inactive point;
25: The member “Parent_CoreId” of the corresponding core of point Z(t+1) is
assigned by the member “Core_Id” of the corresponding core of point Y(t+1);
26: The member “Number_ContainingPoints” of the corresponding core of point
Z(t+1) is added into the member “Number_ContainingPoints” of the corresponding core of point
Y(t+1);
27: }
28: }
29: Delete all labeled inactive points from AP(t+1); /* After this deleting process, AP(t+1)
only contains those active points, which are also the root nodes in its disjoint-set forest. */
30: NumberOfAP(t+1) is assigned by the current number of unlabeled points of the renewal

 12

active point set AP(t+1);
31: IterateStep t is increased by 1, that is: t++;
32: if (NumberOfAP(t+1) == NumberOfAP(t) and (the difference between AP(t+1) and AP(t) is
very small)) /* Here, NumberOfAP(t+1) == NumberOfAP(t) means the number of points in the
renewal active point set AP(t+1) is equal to the number of points in the active point set AP(t), and the
difference between AP(t+1) and AP(t) can be computed by Eq.(7). */
33: We think the dynamical clustering reaches its convergent result, and then exit from the
while repetition;
34: }
35: Compress the paths of some inactive core points in C(t) just like the joint-set method such that the
largest height of leaf core points is less than or equal to two (Note: the height of root core points is
one).
36: Finally we get a core set C(T) = {C1(T), C2(T), ···, Cn(T)} and the number of root cores in C(T),
where T is the times of the above while repetition. The final convergent set C(T) reflects the natural
clusters or isolates of the data set S.

4.2 The application condition of MLSynC method

Online Resource 1 of Supplementary Material of this paper presents a figure

(named as Fig. 1 of Supplementary Material) that compares the synchronization

clustering results of MLSynC method using two different partitioning methods, a

random partitioning method and a direct partitioning method. From Fig. 1 of

Supplementary Material, we observe that if the spatial distributions of two

partitioned data subsets vary very large and the clustering structure of the original

data set is dissevered by the partitioning, MLSynC method will get a different

clustering result with SSynC algorithm. If the spatial distributions of two partitioned

data subsets vary very small, or the partitioning is uniform, MLSynC method will get

a similar clustering result with SSynC algorithm.

4.3 The description of a two-level framework algorithm of MLSynC method

MLSynC method has a different clustering process with SynC algorithm (Böhm

et al., 2010), ESynC algorithm (Chen, 2017), and SSynC algorithm (Chen, 2014).

Figure 1 presents a two-level framework algorithm of MLSynC method. In the

two-level framework algorithm of MLSynC method, original data set that is usually

large and cannot be processed in main memory one time is partitioned into m subsets.

Each subset is processed by a clustering model (or a clustering machine) based on

SSynC algorithm. After collected all root cores from the m clustering models, a

clustering model based on SSynC algorithm is used.

In Figure 1, if m is too large, then the two-level framework algorithm of

MLSynC method should be replaced by a three-level (or four-level above) framework

algorithm. A three-level framework algorithm of MLSynC method is presented in

Online Resource 2 of Supplementary Material of this paper.

From Figure 1, we observe that MLSynC method has a natural framework based

 13

on SSynC algorithm by integrating the clustering results of all subsets. MLSynC

method also has nicer incremental clustering ability. For example, in Figure 1, if

every subset in {S2, S3, ···, Sm} only has one point, then the two-level framework

algorithm becomes an incremental clustering algorithm.

Fig. 1 A two-level framework algorithm of MLSynC method

Here, we present a description of the two-level framework algorithm of MLSynC

method.

Algorithm name: The two-level framework algorithm of MLSynC method

Input: Data set S = {X1, X2, ···, Xn}, dissimilarity measure dis(·, ·), parameter m,

a setting set of parameter δ: {δ1, δ2, ···, δm, δmerge}, and parameter ε.

Output: The clustering result of the data set S = {X1, X2, ···, Xn}.

The main procedure of the two-level framework algorithm of MLSynC method

is described by Table 2.

Table 2

The main procedure of the two-level framework algorithm of MLSynC method.

1 Step1: Partition the data set S = {X1, X2, ···, Xn} that is read from a file or a data base into m
sections, {S1, S2, ···, Sm}. Usually, S = S1 ∪ S2 ∪··· ∪ Sm should be satisfied.
2 Step2: Clustering each subset Si (i = 1, 2, …, m) from {S1, S2, ···, Sm} using SSynC algorithm.
That is:
2.1: int NumOfClusters[m]; /* Each element in array NumOfClusters is used to record the number

The Original Data Set S

Partial Data Set S1 Partial Data Set S2 Partial Data Set Sm

Partitioning

Clustering all root cores
using SSynC algorithm

Collect all root cores

The final root cores represent
clusters or isolates

Clustering S1 using
SSynC algorithm

Clustering S2 using
SSynC algorithm

Clustering Sm using
SSynC algorithm

 14

of clusters of each subset. */
2.2: for (i = 1; i ≤ m; i++)
2.3: {
2.4: Create the initial core set CSi from the subset Si, according to Eq.(4) of Definition 4;
2.5: NumOfClusters[i] ← SSynC(CoreSet CSi, float δi, float ε); /* The initial value of the core
set CSi is the input of SSynC algorithm. After finished the clustering procedure, core set CSi records the
clustering result of subset Si. Here, NumOfClusters[i] is used to record the return value of SSynC
algorithm. */
2.6: }
3 Step3: Create a new core set, CS, by collecting all root cores from the above clustering results of
m subsets. /* Here, m subsets are {S1, S2, ···, Sm}. */
4 Step4: Clustering the collected core set CS using SSynC algorithm. That is:
4.1: int FinalNumOfClusters ← SSynC(CoreSet CS, float δmerge, float ε); /* FinalNumOfClusters
is used to record the final number of clusters of CS. */
 /* After the collected core set CS is operated by SSynC algorithm, the paths of some inactive
cores are compressed just like the joint-set method such that the largest height of leaf cores is less than
or equal to two (note: the height of root cores is one). */
5 Step5: The final root cores of the core set CS operated by SSynC algorithm represent the clusters
or isolates of the data set S = {X1, X2, ···, Xn}. Suppose finally the set CS has K root cores, we think the
data set S = {X1, X2, ···, Xn} has K clusters or isolates. The location of the root core that represents
some cores is regarded as their cluster center, and the location of the root core that represents only one
or several cores is regarded as the final synchronization location of one or several isolates.

Note: In Table 2, Step1 and Step2 belong to “divide stage”, and Step3 and Step4 belong to

“collect stage”.

4.4 The recursive algorithm of MLSynC method

Here, we present a description of the recursive algorithm of MLSynC method.

Algorithm name: The recursive algorithm of MLSynC method

Input: Data set S = {X1, X2, ···, Xn}, dissimilarity measure dis(·, ·), parameter m,

a setting set of parameter δ, and parameter ε.

Output: The clustering result of the data set S = {X1, X2, ···, Xn}.

The main procedure of the recursive algorithm of MLSynC method is described

by Table 3.

Table 3

The main procedure of the recursive algorithm of MLSynC method.

1 Step1: Create an initial core set InitCS = {C1, C2, ···, Cn} from the data set S = {X1, X2, ···, Xn}
according to Eq.(4) of Definition 4.
2 Step2: Call the dichotomy recursive function, MLSynC_Recursion, which is described by the
following:
 /* MLSynC_Recursion is a dichotomy recursive function that can operate some huge data sets
that are stored in in-memory or disk. InitCS is the core set used as the input of this algorithm, which
represents the input data that may be loaded into in-memory step by step from disk. First is the label or
index of the first record in InitCS, and Last is the label or index of the last record in InitCS. ResultCS
that represents clusters and isolates will be used to store the clustering results of InitCS. The return
value of this function records the number of clusters and isolates. */
2.1: int MLSynC_Recursion (InputData InitCS, int First, int Last, OutputData ResultCS)
2.2: {
2.3: if ((Last - First) > FitNumber) /* Parameter FitNumber is a predefined threshold or a
maximum that the computer system can operate the loaded data in its in-memory directly. */
2.4: {
2.5: int MidLocation ← Divide_InitCS (InitCS, First, Last); /* The function,
Divide_InitCS, will partition InitCS into two parts. The return value of the function records the middle

 15

location of InitCS. */
2.6: int NumberCS1 ← MLSynC_Recursion (InitCS, First, MidLocation, OutputCS1);
2.7: int NumberCS2 ← MLSynC_Recursion (InitCS, MidLocation + 1, Last, OutputCS2);
2.8: InputData NewInputCS ← OutputCS1 ∪ OutputCS2; /* NewInputCS can be
obtained by connecting OutputCS1 and OutputCS2 directly. */
2.9: int ResultNumberCS ← SSynC (NewInputCS, NumberCS1 + NumberCS2, ResultCS);
 /* SSynC algorithm is used to clustering NewInputCS. ResultCS that represents clusters
and isolates will store the clustering results of NewInputCS. The return value of the function records the
number of clusters and isolates. */
2.10: }
2.11: else
2.12: int ResultNumberCS ← SSynC (InitCS, Last - First, ResultCS); /* InitCS is
operated by SSynC algorithm directly. */
2.13: return ResultNumberCS;
2.14: }
3 Step3: The parameter in the function MLSynC_Recursion of Step2, ResultCS, represents the
clusters or isolates of the data set S = {X1, X2, …, Xn}.

4.5 The comparison of the dynamic clustering processes among SynC algorithm,

ESynC algorithm, SSynC algorithm, and MLSynC method

SynC algorithm uses the extensive Kuramoto model described by Eq.(2) at each

step evolution that is a nonlinear renewal model. ESynC algorithm uses the linear

version of Vicsek model described by Eq.(3) at each step evolution that is a linear

renewal model. SSynC algorithm uses the linear weighted Vicsek model described by

Eq.(5) at each step evolution that is a linear weighted renewal model. MLSynC

method uses a framework of “divide and collect” and the linear weighted Vicsek

model described by Eq.(5).

Figure 2 compares the tracks of 2000 data points from DS0 among the clustering

processes of SynC algorithm, ESynC algorithm, SSynC algorithm, and MLSynC

method. From Figure 2, we observe that MLSynC method, ESynC algorithm, and

SSynC algorithm have better local synchronization effect than SynC algorithm.

Figure 3 (a) compares a measure index of clustering result, the cluster order

parameter with t-step evolution (t: 0 - 49) (Böhm et al., 2010), among SynC algorithm,

ESynC algorithm, SSynC algorithm, and MLSynC method. Figure 3 (b) compares

another measure index of clustering result, the t-step average length of edges (t: 0 - 49)

(Chen, 2017), among SynC algorithm, ESynC algorithm, SSynC algorithm, and

MLSynC method. And Figure (c) compares the relation between the final number of

clusters and parameter δ after finished clustering using the four algorithms

respectively.

From Figure 3 (a) and (b), we observe that the t-step average length of edges is

better than the cluster order parameter with t-step evolution in measuring the final

 16

synchronization results. From Figure 3 (c), we observed that parameter δ has a long

valid interval in ESynC algorithm, SSynC algorithm, and MLSynC method. From

Figure 3 (c), we also observe that the smaller parameter δ is set in SynC, ESynC,

SSynC, and MLSynC, the larger the final number of clusters is. In many data sets

with obvious clusters, if we use a proper partitioning method to group the data set,

MLSynC method can often get the correct number of clusters when parameter δ

chooses any value from its valid interval. ESynC algorithm and SSynC algorithm can

often get the correct number of clusters when parameter δ chooses any value from its

valid interval. But the final number of clusters using SynC algorithm is often much

larger than the actual number of clusters whenever parameter δ gets any value in a

long interval.

(a) t = 0 (The original locations of 2000 data points from DS0) (a*) MLSynC method, t = 0

(b-1) SynC algorithm, t = 1 (b-2) ESynC algorithm, t = 1

 17

(b-3) SSynC algorithm, t = 1 (b-4) MLSynC method, t = 1

(c-1) SynC algorithm, t = 2 (c-2) ESynC algorithm, t = 2

(c-3) SSynC algorithm, t = 2 (c-4) MLSynC method, t = 2

 18

(d-1) SynC algorithm, t = 5 (d-2) ESynC algorithm, t = 5

(d-3) SSynC algorithm, t = 5 (d-4) MLSynC method, t = 5

(e-1) SynC algorithm, t = 45 (e-2) ESynC algorithm, t = 45

 19

(e-3) SSynC algorithm, t = 45 (e-4) MLSynC method, t = 45

Fig. 2 The comparison of the dynamical clustering processes with time evolution
among SynC algorithm, ESynC algorithm, SSynC algorithm, and MLSynC method.
From (a) to (e) of Fig. 2, the data set is from DS0 with 2000 points, parameter δ is set
as 18 in the four algorithms, and parameter ε is set as 1 in SSynC algorithm and
MLSynC method. In MLSynC method, parameter m is set as 10, and the two-level
framework algorithm is used. Fig. 2 (a*), (b-4), (c-4), (d-4), and (e-4) are the
evolution displays in the “collect stage” of the two-level framework algorithm of
MLSynC method.

(a) The cluster order parameter with t-step evolution (t: 0 - 49)

 20

(b) The t-step average length of edges (t: 0 - 49)

(c) The relation between the final number of clusters and parameter δ (δ: 0 - 99) among four

synchronization algorithms.
Fig. 3 The comparison of SynC algorithm, ESynC algorithm, SSynC algorithm,

and MLSynC method in two measure indexes of clustering result and the relation
between the final number of clusters and parameter δ. In Fig. 3, the data set is from
DS0 with 2000 points, and parameter ε is set as 1 in SSynC algorithm and MLSynC
method. In MLSynC method, parameter m is set as 10, the two-level framework
algorithm is used. In Fig. 3 (a) and (b), parameter δ is set as 18 in the four algorithms.
In MLSynC method of Fig. 3 (a) and (b), two indexes (The cluster order parameter
with t-step evolution and the t-step average length of edges) are computed in the
“collect stage” of the two-level framework algorithm of MLSynC method.
4.6 Time and space complexity analysis of MLSynC method

 From the time complexity analysis of SSynC algorithm that presented in another

paper, we know that SSynC algorithm needs Time = O(d·(n(t = 0)
2 + n(t = 1)

2) + … + n(t =

T-1)
2)) < O(Tdn2), which is usually less than SynC algorithm and ESynC algorithm.

 21

Here T is the times of synchronization in SSynC algorithm and n(t) is the number of

active cores in the t-step synchronization evolution.

4.6.1 Time and space complexity analysis of the two-level framework algorithm of

MLSynC method

In the two-level framework algorithm of MLSynC method, Step1 needs Time =

O(n) and Space = O(n).

The time cost of Step2 is:

Time =  











m

i
iiii TtntntndO

1

222)1(...)1()0(

≈ O(d·(ň(t = 0)
2 +ň(t = 1)

2 + …

+ň(t = MaxT-1)
2) /m). (10)

In Eq. (10), Ti is the synchronization times in the i-th clustering module based on

SSynC algorithm, ni(t = 0) is the initial number of active cores in the i-th clustering

module, ň(t = 0) is the initial average number of active cores in the m clustering

modules, and MaxT is the max synchronization times in the m clustering modules.

Suppose subset Si (i = 1, 2, …, m) has Ki clusters or isolates, then Step3 needs

Time = O(K1 + K2 + … + Km) = O(|CS|). Here |CS| is the number of elements in the

core set CS.

Step4 needs Time = O(d·((|CS|(t = 0))
2 + (|CS|(t = 1))

2 + … + (|CS|(t = T-1))
2)). Here T

is the synchronization times using SSynC algorithm in Step 4 and |CS|(t) is the number

of active cores in the t-step synchronization evolution.

Step5 needs Time = O(n) and Space = O(n).

4.6.2 Time and space complexity analysis of the recursive algorithm of MLSynC

method

In the recursive algorithm of MLSynC method, Step1 needs Time = O(n) and

Space = O(n).

In many cases, the time cost of Step2 is:








 

.)2/(2)1(

,))...((
)(

2
)1(

2
)1(

2
)0(

FitNumbernifnTO

FitNumbernifnnndO
nT Tttt (11)

Step3 needs Time = O(n) and Space = O(n).

According to our analysis, usually MLSynC method needs less time than SSynC

algorithm.

4.7 The setting of parameters δ, ε, m and in MLSynC method

For each subset or collected core set in MLSynC method, SSynC algorithm is

used for clustering with proper values of parameter δ and parameter ε. In Böhm et al.

 22

(2010), parameter δ is optimized by the MDL principle. In Chen (2015), two other

methods were presented to estimate parameter δ. Here, we can also select a proper

value for parameter δ according to Theorem 1 and Property 1.

5.7.1 The setting of parameter δ in MLSynC method

(1) The optimization of parameter δ in Böhm et al. (2010)

Parameter δ can affect the results of clusters. In Böhm et al. (2010), parameter δ

can be optimized by a heuristic method and the MDL principle. In the heuristic

method presented by Böhm et al. (2010), parameter δ is initialized with the average

value of the k-nearest neighbor distance determined from the data set for a small k.

For example, k = 3 is recommended in their experiments. Then parameter δ is

increased with a reasonable step size. For example, the step size is recommended by

the difference between the average (k+1)-nearest neighbor distance and the average

k-nearest neighbor distance.

The proper value of parameter δ is determined by minimizing the total coding

cost L(S, M) of a clustering model M. Here, L(S, M) = L(S|M) + L(M).

L(S|M) is denoted by the following equation:

L(S|M) =  
1

log ()
k

K

k X C

P X
 

  , (12)

where P(X) is the probability of point X assigned to the k-th cluster Ck, S is the data

set, and K is the number of clusters.

And the cost for coding the clustering model M, L(M), is denoted by the

following equation:

L(M) =  
1 1 1

log log
2

kCK K

k
k j kk

n d
C

C  

 
  

 
  , (13)

where M is the clustering model, Ck is the k-th cluster, n is the number of points in the

data set, and d is the number of dimensions.

(2) The heuristic selection of parameter δ in Chen (2017a)

In Chen (2017a), parameter δ can be selected by the following heuristic equation:

max{longthestEdgeInMst(clusterk) | k = 1, 2, …, K } ≤ δ < min{dis(clusteri,

clusterj) | i, j = 1, 2, …, K}, (14)

where longthestEdgeInMst(clusterk) is the weight of the longest edge in the minimum

spanning tree of the k-th cluster, dis(clusteri, clusterj) is the weight of the minimum

 23

edge connecting the i-th cluster and the j-th cluster, and K is the number of clusters in

the final synchronization step.

 (3) A linear-searching exploring method of parameter δ

Usually, parameter δ has a very long valid range for many kinds of data sets.

Some simulated experiments in Chen (2017a) and this paper also validate this

conclusion. Some times, parameter δ have several long valid ranges for different

clustering levels. So we can explore the valid range of parameter δ by the

linear-searching method.

5.7.2 The setting of parameter ε in MLSynC method

Parameter ε affects the time cost of MLSynC method slightly. Usually, parameter

ε has a long valid interval. For example, if parameter δ > 15, then the valid interval of

parameter ε is about in (0, 10]. In simulations, we almost get the same results for

several different values (such as 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, and 10) of

parameter ε.

5.7.3 The setting of parameter m in MLSynC method

In the two-level framework algorithm of MLSynC method, parameter m affects

its whole time cost. If parameter m is set too large, then the number of points in each

part of the data set becomes less. So SSynC algorithm in the two-level framework

algorithm of MLSynC method needs less clustering time for each subset, and the

two-level framework algorithm of MLSynC method needs much divide and collect

time. Usually, there is a balance between the increase of “divide and collect” time and

the decrease of clustering time with the increase of parameter m. So we think that

parameter m cannot be set too large.

4.8 The improvement of MLSynC method

In MLSynC method, one improved version of SSynC algorithm can be obtained

by combining multidimensional grid partitioning method and Red-Black tree structure

to construct the near neighbor point sets of all active cores. The improving method

that can decrease its time cost is introduced in Chen (2018). Generally, we first

partition the data space of the data set S = {X1, X2, …, Xn} by using a kind of

multidimensional grid partitioning method. Then design an effective index of all grid

cells and construct δ near neighbor grid cell set for each grid cell. If every grid cell

uses a Red-Black tree to index its active cores in each synchronization step, then

constructing the δ near neighbor point set for every active core will become quicker

when the number of grid cells is proper.

 24

Before synchronization iterative evolution, if we set a proper value for parameter

δ to filtrate isolates, then these isolates can be set as inactive cores that will not be

operated in the next iterative evolution. This improvement of implementation

technique is often effective in some data sets.

4.9 The convergence of MLSynC method

In MLSynC method, SSynC algorithm is used to clustering each subset and the

collected core set. So the convergence of MLSynC method is completely depended on

the convergence of SSynC algorithm. According to the convergence analysis of

SSynC algorithm and our simulations, we know that MLSynC method is also

convergent.

5. Simulated experiments

5.1 Experimental design

Our experiments are finished on a personal computer (Capability Parameters:

Pentium(R) Dual-Core CPU T4500 2.30 GHz, 2G Memory). Experimental programs

are developed using C and C++ language under Windows XP.

To verify the improvement in clustering effect and time cost of MLSynC method,

there will be some simulated experiments of some artificial data sets, eight UCI data

sets (Frank et al., 2010), and three bmp pictures in the next three subsections.

Four kinds of artificial data sets (DS1 - DS4) are produced in a 2-D region [0,

600] × [0, 600] by a program presented in Online Resource 3 of Supplementary

Material of this paper. Other kinds of artificial data sets (DS5 - DS16) are produced in

a interval [0, 600] in each dimension by a similar program. DS0 is produced in a 2-D

region [0, 200] × [0, 200] by a similar program. Iris et al. (Frank et al., 2010) are eight

UCI data sets that used in our experiments. Three bmp pictures (named as Picture1,

Picture2, and Picture3) are obtained from Internet. Table 4 is the description of the

experimental data sets.

 25

Table 4 The description of experimental data sets
(a) The description of sixteen kinds of artificial data sets

Data Sets Number of Clusters With Noise Cluster
Semidiameter

Dimension
(d)

DS0 9 no 30 2
DS1 5 yes 40 2
DS2 5 no 50 2
DS3 9 yes 30 2
DS4 9 no 40 2
DS5 12 no 30 2
DS6 12 no 30 4
DS7 12 no 30 6
DS8 12 no 30 8
DS9 5 no 30 2

DS10 5 no 30 4
DS11 5 no 30 6
DS12 5 no 30 8
DS13 5 no 30 20
DS14 5 no 30 40
DS15 5 no 30 80
DS16 5 no 30 100

(b) The description of eight UCI data sets (Frank and Asuncion, 2010)
UCI Data Sets Number of Points (n) Dimension

(d)
Number of Classes

Iris 150 4 3
Wine 178 13 3
Wdbc 569 30 2
Glass 214 9 6

Ionosphere 351 34 2
Letter-recognition 20000 16 26

Segmentation 210 19 7
Cloud 2048 10 2

(c) The description of three bmp picture data sets (obtained from Internet)
Picture Data Sets Number of Pixels (n) Dimension

(d)
Picture1 200*200 3
Picture2 200*200 3
Picture3 200*200 3

In our simulated experiments, the maximum times of synchronization evolution

in the while repetition of SynC algorithm, ESynC algorithm, SSynC algorithm, and

MLSynC method is set as 50. MLSynC method is implemented using the two-level

framework algorithm of MLSynC method.

The comparison results of these clustering algorithms are presented by six

figures (Figs. 3 - 8 of Supplementary Material) and nine tables (Tables 1 - 9 of

Supplementary Material). Because of the limited pages, we only select two figures

from Figs. 3 - 8 of Supplementary Material in the manuscript. All six figures are

presented in Online Resource 4 of Supplementary Material. All nine tables are

presented in Online Resource 5 of Supplementary Material. And performance of

 26

algorithms is measured by time cost (second). Clustering quality of algorithms is

measured by display figures of clustering results and two robust information-theoretic

measures, Adjusted Mutual Information (AMI) (Vinh et al., 2010) and Normalized

Mutual Information (NMI) (Strehl et al., 2002). According to Vinh et al. (2010), the

higher the value of the two measures gets, the better the clustering quality of

algorithms is. In simulations, we use the Matlab code from Vinh et al. (2010) to

compute the two clustering quality measures.

In section 5.2, MLSynC method will be compared with SynC algorithm, ESynC

algorithm, SSynC algorithm, and some other classic clustering algorithms (K-Means

(MacQueen, 1967), FCM (Bezdek, 1981), AP (Frey et al., 2007), DBSCAN (Ester et

al., 1996), Mean Shift (Fukunaga et al., 1975; Comaniciu et al., 2002) in clustering

quality and time cost using some artificial data sets.

In section 5.3, MLSynC method will be compared with SynC algorithm, ESynC

algorithm, SSynC algorithm, and some other classic clustering algorithms in

clustering quality and time cost using eight UCI data sets.

In section 5.4, MLSynC method will be compared with SynC algorithm, ESynC

algorithm, SSynC algorithm, and some other classic clustering algorithms in

compressed effect of clustering results, clustering quality, and time cost using three

bmp pictures.

In the experiments, parameter δ used in SynC algorithm, ESynC algorithm,

SSynC algorithm, MLSynC method, DBSCAN algorithm, and Mean Shift algorithm

is the threshold of Definition 1. In DBSCAN algorithm, parameter MinPts = 4, and

parameter Eps is the same as parameter δ.

The detailed discussion on how to construct δ near neighbor point sets is

described in Chen (2013). How to select a proper value for parameter δ in SynC

algorithm is discussed in Böhm et al. (2010). ESynC algorithm, SSynC algorithm, and

MLSynC method use Theorem 1 and Property 1 to select a proper value for parameter

δ. In SSynC algorithm and MLSynC method. In SSynC algorithm and MLSynC

method, parameter ε has trivial effect in time cost and clustering results.

To simplify our simulation of the two-level framework algorithm of MLSynC

method, we set the same value for parameter δ1, δ2, ···, δm, and δmerge. So they are also

named as δ.

5.2 Experimental results of some artificial data sets (from DS1 - DS16)

5.2.1 The comparison of the clustering results among SynC algorithm, ESynC

 27

algorithm, SSynC algorithm, and MLSynC method (from DS1- DS4)

 Table 1 of Supplementary Material presents the comparison results of four

synchronization clustering algorithms (SynC, ESynC, SSynC, and MLSynC) by using

four artificial data sets (from DS1 - DS4). In Table 1 of Supplementary Material, by

intercomparing SynC, ESynC, SSynC, and MLSynC, we observe that MLSynC is the

fastest clustering algorithm. At the same time, MLSynC, SSynC, and ESynC can get

better local synchronization results than SynC in the four data sets.

 In the two-level framework of MLSynC method, parameter m is set as 10. If we

use two different partitioning methods (a near unevenly partitioning method and a near

evenly partitioning method) in the four data sets, the two sequences of the number of

clusters of 10 subsets in each data set are different. The comparison results are

presented in Table 2 of Supplementary Material. From Table 2 of Supplementary

Material, we observe that two different partitioning methods result in different

clustering distributions of 10 subsets in each data set.

5.2.2 The comparison of the clustering results among SynC algorithm, ESynC

algorithm, SSynC algorithm, MLSynC method, and some classical clustering

algorithms (from DS1 - DS8)

 Table 3 of Supplementary Material presents the clustering quality of several

clustering algorithms (SynC, ESynC, SSynC, MLSynC, and some classical clustering

algorithms) by using six kinds of artificial data sets (DS2, DS4, DS5, DS6, DS7, and

DS8). When computing the two information-theoretic measures (NMI and AMI), the

predefined cluster labels of the eight artificial data sets are used in the true_mem that

is an input file of the MATLAB code (Vinh et al., 2010). In Table 3 of

Supplementary Material, by intercomparing MLSynC, SynC, ESynC, SSynC, and

some classical clustering algorithms, we observe that MLSynC can get acceptable and

similar clustering results with SSynC and ESynC in the eight data sets if the

partitioning of the data set in MLSynC method is near evenly. Because the two data

sets (DS4 (n = 1000) and DS5 (n = 12000)) have two connected clusters, MLSynC,

SSynC, and ESynC do not get the largest values of NMI and AMI. We also observe

that the partitioning method of data set can affect the clustering results of MLSynC

method.

 28

(a) Clusters identified by MLSynC (15 clusters or isolates) (b) Clusters identified by ESynC and
SSynC (15 clusters or isolates)

(c) Clusters identified by K-Means (predefined 5 clusters) (d) Clusters identified by FCM
(predefined 5 clusters)

(e) Clusters identified by AP (13 clusters) (f) Clusters identified by DBSCAN (5 clusters)

 29

(g) Clusters identified by Mean Shift (18 clusters) (h) Clusters identified by SynC (192 clusters or
isolates)
Fig. 4. The comparison of the clustering results of several algorithms (DS1, n = 400).

In Fig. 4, parameter δ = 18 in SynC, ESynC, SSynC, DBSCAN, Mean Shift, and

MLSynC method; the number of data points n = 400; parameter ε = 1 in SSynC

algorithm and MLSynC method. In MLSynC method, parameter m is set as 2, and the

two-level framework algorithm is used.

 Figure 4 and Figs. 4 - 6 of Supplementary Material present the comparison

clustering results of several clustering algorithms by some display figures that reflect

the clustering quality clearly. From Figure 4 and Figs. 4 - 6 of Supplementary

Material, we observe that MLSynC, SSynC and ESynC can get better clustering

quality (obvious clusters or isolates displayed by figures) than SynC, AP, K-Means,

and FCM in the four artificial data sets (from DS1 - DS4). Mean Shift, DBSCAN can

obtain similar clustering quality (obvious clusters displayed by figures) with MLSynC,

SSynC and ESynC in these artificial data sets. Especially, MLSynC, SynC, ESynC,

and SSynC can all easily find some isolates if setting a proper value for parameter δ,

and MLSynC can get the same clustering results (the same clusters displayed by

figures) with SSynC, ESynC in these data sets.

 Table 4 of Supplementary Material presents the comparison results of several

clustering algorithms in time cost. In Table 4 of Supplementary Material, for DS1,

parameter δ = 18 in SSynC, ESynC, SynC, and DBSCAN; parameter δ = 25 in

MLSynC. For DS2, parameter δ = 25 in MLSynC, SSynC, ESynC, SynC, and

DBSCAN. For DS3, parameter δ = 18 in MLSynC, SSynC, ESynC, SynC, and

DBSCAN. For DS4, parameter δ = 18 in SSynC, ESynC, SynC, and DBSCAN;

 30

parameter δ = 20 in MLSynC. Parameter ε = 1 in SSynC and MLSynC. In MLSynC,

parameter m is set as 10, and the two-level framework algorithm is used.

 In Table 4 of Supplementary Material, intercomparing MLSynC, SynC, ESynC,

SSynC, DBSCAN, FCM, and K-Means, we observe that MLSynC is faster than SynC,

ESynC, DBSCAN, and SSynC, and K-Means is the fastest clustering algorithm. Mean

Shift and AP cannot run normally on a personal computer because the number of data

points is set as 40000.

5.2.3 The comparison of the valid interval of parameter δ among MLSynC method,

SynC algorithm, ESynC algorithm, SSynC algorithm, DBSCAN algorithm, and Mean

Shift algorithm using some artificial data sets (from DS5 - DS16)

 Here we compare the valid interval of parameter δ among MLSynC method,

SynC algorithm, ESynC algorithm, SSynC algorithm, DBSCAN algorithm, and Mean

Shift algorithm.

 Table 5 of Supplementary Material presents the comparison results of the valid

interval of parameter δ among MLSynC, SynC, ESynC, SSynC, DBSCAN, and Mean

Shift. Here, [ek , ek+1] can be obtained from Eq.(8) of Chen (2015). In Table 5 of

Supplementary Material, intercomparing MLSynC, SynC, ESynC, SSynC,

DBSCAN, and Mean Shift, we observe that although the valid interval of parameter δ

in MLSynC is shorter than that in SSynC and ESynC, the valid interval of parameter δ

in MLSynC is long enough in many kinds of data sets.

 Table 6 of Supplementary Material compares the valid interval of parameter δ

in MLSynC method for several different value of parameter ε using some artificial

data sets with different dimensions. In Table 6 of Supplementary Material,

intercomparing several different value of parameter ε, we observe that if parameter ε

is less than parameter δ, the valid interval of parameter δ has very small difference for

several different values of parameter ε.

5.3 Experimental results of eight UCI data sets

 Because we do not know the true dissimilarity measure of these UCI data sets, all

points of these UCI data sets are standardized into a interval [0, 600] in each

dimension in the experiments. When computing the two information-theoretic

measures (NMI and AMI), because we do not know the true cluster labels of these

UCI data sets, the class labels of these UCI data sets are used in the true_mem that is

an input file of the MATLAB code (Vinh et al., 2010).

5.3.1 The comparison of the clustering results among MLSynC method, SynC

 31

algorithm, ESynC algorithm, and SSynC algorithm

 Table 7 of Supplementary Material presents the comparison results of four

synchronization clustering algorithms (MLSynC method, SynC algorithm, ESynC

algorithm, and SSynC algorithm) by using eight UCI data sets. In Table 7 of

Supplementary Material, intercomparing MLSynC method, SynC algorithm, ESynC

algorithm, SSynC algorithm, we observe that MLSynC method, ESynC algorithm,

and SSynC algorithm can get better local synchronization results than SynC algorithm

in the eight UCI data sets, and MLSynC method is the fastest algorithm. From this

simulated experiment, we also find that if the number of points in the data set is small

and we use an uneven partition method, the difference of clustering effect between

MLSynC method and SSynC algorithm is large.

5.3.2 The comparison of the clustering quality among MLSynC method, SynC

algorithm, ESynC algorithm, SSynC algorithm, and some classical clustering

algorithms

 Table 8 of Supplementary Material presents the comparison clustering quality

of several clustering algorithms (MLSynC method, SynC algorithm, ESynC algorithm,

SSynC algorithm, and some classical clustering algorithms) using eight UCI data sets.

In Table 8 of Supplementary Material, by intercomparing these clustering

algorithms, we observe that MLSynC method gets the largest value of NMI and AMI

in five UCI data sets (Iris, Wdbc, Glass, Segmentation, and Cloud) if it uses a

sequential and uneven partitioning method. So we can say that MLSynC method often

gets better clustering results than some clustering algorithms in some UCI data sets.

From the final number of clusters in Table 8 of Supplementary Material, we

observe that MLSynC method, SSynC algorithm, and ESynC algorithm can get better

local synchronization results than SynC algorithm.

5.4 Experimental results of three bmp pictures

 The value in RGB (Red, Green, and Blue) color space of pixel points is in a

interval [0, 255] in each dimension. In Table 9 of Supplementary Material, Fig. 7 of

Supplementary Material, and Figure 5, parameter ε = 1 in MLSynC method and

SSynC algorithm. In MLSynC method of Table 9 of Supplementary Material, Fig.

7 of Supplementary Material, and Figure 5, parameter m is set as 10, and the

two-level framework algorithm is used.

5.4.1 The comparison of the clustering results among SynC algorithm, ESynC

 32

algorithm, SSynC algorithm, and MLSynC method

 Table 9 of Supplementary Material presents the comparison results of four

synchronization clustering algorithms (SynC, ESynC, SSynC, and MLSynC) using

three pixel-point data sets from RGB color space of three bmp pictures. In Table 9 of

Supplementary Material, by intercomparing SynC, ESynC, SSynC, and MLSynC,

we observe that MLSynC is the fastest clustering algorithm. At the same time,

MLSynC, SSynC, and ESynC can get better local synchronization results than SynC

in these pixel-point data sets.

5.4.2 The comparison of the clustering compressed effect among MLSynC method,

SynC algorithm, ESynC algorithm, SSynC algorithm, and some classical clustering

algorithms

 Fig. 7 of Supplementary Material lists Picture3 and its RGB space distribution

of 200 * 200 pixel points.

MLSynC (final k = 45) SSynC, ESynC (final k = 26)

SynC (final k = 3375) Mean Shift (final k = 19)

 33

K-Means, FCM (final k = 1) DBSCAN (final k = 148)

(a) δ = 18 in MLSynC, SynC, ESynC, SSynC, DBSCAN, and Mean Shift; predefined k (number of
clusters) = 26 in K-Means and FCM.

MLSynC (final k = 14) SSynC, ESynC (final k = 10)

SynC (final k = 3402) Mean Shift (final k = 7)

K-Means, FCM (final k = 1) DBSCAN (final k = 53)

 (b) δ = 30 in MLSynC, SynC, ESynC, SSynC, DBSCAN, and Mean Shift; predefined k (number of
clusters) = 10 in K-Means and FCM.

 34

Fig. 5. The comparison of the original picture and several compressed pictures of
Picture3. In Fig. 5, several compressed pictures based on different clustering
algorithms are drawn by using the means of clusters that are obtained by clustering
the 200 * 200 pixel points of Picture3 in RGB space.
 Figure 5 lists the original picture and several compressed pictures of Picture3. In

Figure 5, the several compressed pictures are drawn by using the means of clusters

obtained by clustering the 200 * 200 pixel points of Picture3 in RGB color space

using different algorithms. Because AP algorithm needs too much time and space for

Picture3, this experiment does not use it. Although the queue of DBSCAN algorithm

slops over, it still gets a compressed picture basing on the clustering results. From

Figure 5, we observe that MLSynC method, ESynC algorithm, and SSynC algorithm

can get multi-level clustering compressed effect for different values of parameter δ.

5.5 Analysis and conclusions of experimental results

 From the comparison experimental results of these figures and tables (Figs. 3 - 8

of Supplementary Material and Tables 1 - 9 of Supplementary Material), we

observe that MLSynC method is faster than SSynC algorithm, ESynC algorithm, and

SynC algorithm. We think that MLSynC method is superior to SSynC algorithm,

ESynC algorithm, and SynC algorithm in time cost because of its framework of

“divide and collect”.

 From the simulations of some artificial data sets (from DS5 - DS16), we observe

that the effective interval of parameter δ in MLSynC method is enough long just like

Mean Shift algorithm, DBSCAN algorithm, SSynC algorithm, and ESynC algorithm.

In some cases, the effective interval of parameter δ in MLSynC method is longer than

that in DBSCAN algorithm.

 In some display figures, by intercomparing MLSynC method, SSynC algorithm,

ESynC algorithm, and SynC algorithm, we observe that MLSynC method can explore

the same clusters and isolates (displayed by some figures) with ESynC algorithm and

SSynC algorithm if the partition in MLSynC method is near well-proportioned or

unaided (each subset is independent with each other in the space). In many kinds of

data sets, MLSynC method, SSynC algorithm, and ESynC algorithm can explore

obvious clusters or isolates if selecting a proper value for parameter δ, and SynC

algorithm cannot explore obvious clusters in many data sets.

 From simulations of some data sets, we observe that the iterative times of SynC

algorithm, AP algorithm, K-Means algorithm, and FCM algorithm is larger than that

of MLSynC method, SSynC algorithm, and ESynC algorithm. In many data sets,

 35

MLSynC method, ESynC algorithm, SSynC algorithm, Mean Shift algorithm, and

DBSCAN algorithm have better ability than SynC algorithm, K-Means algorithm,

FCM algorithm, and AP algorithm in exploring clusters and isolates. Specially, AP

algorithm needs the longest time.

 MLSynC method is an improved clustering algorithm with faster clustering speed

than SSynC algorithm and ESynC algorithm almost in all cases. Usually, parameter ε

has a long effective interval (for example, the effective interval of parameter ε is about

(0, 10] if parameter δ > 15). In simulations, we observe that if parameter ε gets some

different values in its effective interval, the clustering results of MLSynC method is

almost the same except the time cost.

 Because the values in RGB space of the pixel points of Picture3 are almost

continuous and have no obvious clusters. In this case, MLSynC method, SSynC

algorithm, and ESynC algorithm can get more obvious multi-level compressed effect

than some other clustering algorithms, such as K-Means algorithm and FCM

algorithm. In simulations, we also observe that DBSCAN algorithm needs more space

than MLSynC method, SSynC algorithm, and ESynC algorithm because of its

recursive process.

 Because of the limited page space, we only select some typical data sets (sixteen

kinds of artificial data sets, eight UCI data sets, and three bmp picture data sets) used

in our experiments. For all experimental data sets, we observe that MLSynC method

improves ESynC algorithm in time cost. For other data sets, we think MLSynC

method is still superior to SynC algorithm in time cost. We believe that the selection

of experimental data sets is not biased.

 From Figure 1 and some other simulated experimental results, we conclude the

application condition of MLSynC method. In any one of the following two cases,

MLSynC method can get similar clustering effect with SSynC algorithm and ESynC

algorithm.
 Case 1: The spatial distribution of any partitioned data subset is almost the same

as that of the original data set.

 Case 2: Any two partitioned data subsets cannot be intersect, cannot be joined, or

cannot be much near (less than or equal to parameter δ). In this case, any unabridged

cluster of the original data set will not be partitioned into multiple near (larger than

parameter δ) small clusters after the partition process of MLSynC method.

 When the partition of the original data set does not satisfy any one case above,

 36

MLSynC method will often get different clustering effect with SSynC algorithm and

ESynC algorithm.

6. Conclusions

 This paper presents an improved synchronization clustering method, MLSynC,

which often gets better clustering results than the original synchronization clustering

algorithm, SynC. From the experimental results, we observe that MLSynC method

can often obtain less iterative times, faster clustering speed, and better clustering

quality than SynC algorithm in many kinds of data sets.

The major contributions of this paper can be summarized as follows:

(1) It develops an effective framework of “divide and collect” in clustering field

by using a linear weighted Vicsek model.

(2) It presents two concrete implementations of MLSynC method, a two-level

framework algorithm and a recursive algorithm.

(3) It validates the improved effect of MLSynC method in time cost and

clustering quality by some simulated experiments.

 MLSynC method is also robust to outliers and can find obvious clusters with

different shapes. The number of clusters does not have to be fixed before clustering.

Usually, parameter δ has some valid interval that can be determined by using an

exploring method listed in Chen (2015), the heuristic method described by Theorem 1

and Property 1 presented in Chen (2017), or using the MDL-based method presented

in Böhm et al. (2010).

 MLSynC method has some similarities with MapReduce framework. So we can

also say it is an application example of MapReduce framework in clustering field.

 This work opens some possibilities for further improvement and investigation.

First, further improve MLSynC method in time cost. For example, designing

similarity-preserving hashing function that needs O(1) time complexity is valuable in

the process of constructing δ near neighbor point set. Second, extend the applicability

and explore the clustering effect of our algorithms in high-dimensional data. Third,

implement MLSynC method on a cluster with a parallel programming model or on

MapReduce framework.

Acknowledgments

 This work was supported by Chongqing Cutting-edge and Applied Foundation

Research Program of China (grant numbers cstc2016jcyjA0521, cstc2016jcyjA0063);

 37

Chongqing Municipal Key Laboratory of Institutions of Higher Education (grant

number [2017]3); Program of Chongqing Development and Reform Commission

(grant number 2017[1007]); and Chongqing Three Gorges University of China (grant

number 16PY08).

References

Agrawal, R., Gehrke, J., & Gunopolos, D., et al. (1998). Automatic subspace

clustering of high dimensional data for data mining applications. In Proceedings of

ACM SIGMOD (pp. 94-105).

Ankerst, M., Breunig, Markus M., Kriegel, Hans-Peter., & Sander, Jörg. (1999).

OPTICS: Ordering points to identify the clustering structure. In Proceedings of ACM

SIGMOD (pp. 49-60).

Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms.

New York, Plenum Press.

Bouguettaya, A., Yu, Q., & Liu, X., et al. (2015). Efficient agglomerative hierarchical

clustering. Expert Systems with Applications, 42(5), 2785-2797.

Böhm, C., Plant, C., & Shao, J., et al. (2010). Clustering by synchronization. In

Proceedings of ACM SIGKDD (pp. 583-592).

Cao, F., Huang, J. Z., & Liang, J. (2017). A fuzzy SV-k-modes algorithm for

clustering categorical data with set-valued attributes. Applied Mathematics and

Computation, 297, 1-15.

Chen, X. (2013). Clustering based on a near neighbor graph and a grid cell graph.

Journal of Intelligent Information Systems, 40(3), 529-554.

Chen, X. (2014). Synchronization Clustering based on a Linearized Version of Vicsek

model. arXiv: 1411.0189 [cs.LG]. http://arxiv.org/abs/1411.0189.

Chen, X. (2015). A new clustering algorithm based on near neighbor influence. Expert

Systems with Applications, 42(21), 7746-7758.

Chen, X. (2017). An effective synchronization clustering algorithm. Applied

Intelligence, 46(1): 135 - 157.

Chen, X. (2018). Fast synchronization clustering algorithms based on spatial index

structures. Expert Systems with Applications, Accepted for publication in 2018.

Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature

space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24(5):603-619.

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large

 38

clusters. Communication of the ACM, 51(1), 107-113.

Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for

discovering clusters in large spatial data sets with noise. In Proceedings of ACM

SIGKDD (pp. 226-231).

Frank, A., & Asuncion, A. (2010). UCI Machine Learning Repository Irvine,

University of California.

Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points.

Science, 315(16), 972-976.

Fukunaga, K., & Hostetler, L. (1975). The estimation of the gradient of a density

function, with applications in pattern recognition. IEEE Transactions on Information

Theory, 21(1):32-40.

Grunwald, P. (2005). A tutorial introduction to the minimum description length

principle. Cambridge, MIT Press.

Guha, S., Rastogi, R., & Shim, K. (1998). CURE: An efficient clustering algorithm

for clustering large databases. In Proceedings of ACM SIGMOD (pp. 73-84).

Güngör, E., & Özmen, A. (2017). Distance and density based clustering algorithm

using Gaussian kernel. Expert Systems with Applications, 69, 10-20.

Hang, W., Choi, K., & Wang, S. (2017). Synchronization clustering based on central

force optimization and its extension for large-scale datasets. Knowledge-Based

Systems, 118, 31-44.

Horn, D., & Gottlieb, A. (2002). Algorithm for data clustering in pattern recognition

problems based on quantum mechanics. Physical Review Letters, 88(1), 018702.

Huang, J. B., Kang, J. M., Qi, J. J., & Sun, H. L. (2013). A hierarchical clustering

method based on a dynamic synchronization model. Science in China Series F:

Information Sciences, 43(5), 599-610.

Jadbabaie, A., Lin, J., & Morse, A.S. (2003). Coordination of groups of mobile

autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic

Control, 48(6):998-1001.

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM

Computing Surveys, 31(3), 264-323.

Karypis, G., Han, E. H., & Kumar, V. (1999). CHAMELEON: A hierarchical

clustering algorithm using dynamic modeling. IEEE Computer, 32(8), 68-75.

Luxburg, U. V. (2007). A tutorial on spectral clustering. Statistics and Computing,

 39

17(4), 395-416.

MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate

observations. In MSP (pp. 281-297).

Roy, S., & Bhattacharyya, D. K. (2005). An approach to find embedded clusters using

density based techniques. Lecture Notes in Computer Science, 3816:523-535.

Schölkopf, B., Smola, A., & Müller, K. R. (1998). Nonlinear component analysis as a

kernel eigenvalue problem. Neural Computation, 10(5): 1299-1319.

Shao, J., Hahn, K., & Yang, Q., et al. (2010). Hierarchical density-based clustering of

white matter tracts in the human brain. International Journal of Knowledge Discovery

in Bioinformatics, 1(4):1-25.

Shao, J., Yang, Q., Böhm, C., & Plant, C. (2011). Detection of arbitrarily oriented

synchronized clusters in high-dimensional data. In Proceedings of ICDM (pp.

607-616).

Shao, J., He, X., Plant, C., Yang, Q., & Böhm, C. (2013a). Robust

synchronization-based graph clustering. In Proceedings of PAKDD (PP. 249-260).

Shao, J., He, X., Böhm, C., Yang, Q., & Plant, C. (2013b). Synchronization inspired

partitioning and hierarchical clustering. IEEE Transactions on Knowledge and Data

Engineering, 25(4), 893-905.

Shao, J., Ahmadi, Z., & Kramer, S. (2014). Prototype-based learning on

concept-drifting data streams. In Proceedings of ACM SIGKDD (pp. 412-421).

Spurek, P., Tabor, J., & Byrski, K. (2017). Active function Cross-Entropy Clustering.

Expert Systems with Applications, 72, 49-66.

Tan, P.N., Steinbach, M., & Kumar, V. (2005). Introduction to data mining. Addison

Wesley.

Theodoridis, S., & Koutroumbas, K. (2006). Pattern recognition (3rd edition).

Academic Press.

Vicsek, T., Czirok, A., & Ben-Jacob, E., et al. (1995). Novel type of phase transitions

in a system of self-driven particles. Physics Review Letter, 75(6):1226-1229.

Wang, L., & Liu, Z. (2009). Robust consensus of multi-agent systems with noise.

Science in China Series F: Information Sciences, 52(5):824-834.

Wang, W., Yang, J., & Muntz, R. (1997). STING: A statistical information grid

approach to spatial data mining. In Proceedings of VLDB (pp. 186-195).

White, D. A., & Jain, R. (1996). Similarity indexing with the SS-tree. In IEEE ICDE

(pp. 516-523).

 40

Zahn, C. T. (1971). Graph-theoretical methods for detecting and describing gestalt

clusters. IEEE Transactions on Computers, C-20(1), 68-86.

Zhang, T., Ramakrishnan R., & Livny, M. (1996). BIRCH: An efficient data clustering

method for very large databases. In Proceedings of ACM SIGMOD (pp. 103-114).

