
EasyChair Preprint
№ 2702

Processing Algorithmic Skeletons at
Compile-Time

Alexis Pereda, David R.C. Hill, Claude Mazel, Loïc Yon and
Bruno Bachelet

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 18, 2020



Processing algorithmic skeletons at compile-time

Alexis Pereda, David R.C. Hill, Claude Mazel, Loïc Yon, Bruno Bachelet
Université Clermont Auvergne, CNRS, LIMOS, Clermont-Ferrand, France

{alexis.pereda, david.hill, claude.mazel, loic.yon, bruno.bachelet}@uca.fr

Keywords: algorithmic skeletons, metaheuristics, metaprogramming, compile-time

1 Introduction
When developing software in Operational Research (OR), one usually aims at getting the
shortest execution time. There are multiple means to achieve this, including improving the
algorithmic time complexity (finding better suited algorithms and data structures), optimizing
the code (e.g. to avoid cache misses), parallelizing the execution... These improvements can
be written by the end developer, requiring some coding effort and knowledge, whereas some of
them could be achieved automatically.

In [3] we proposed a library to ease the building of parallel implementations of OR algorithms
from the knowledge of their structure with no runtime overhead. We chose to use algorithmic
skeletons [2] in order to describe metaheuristics and make them ready for parallelization. For
this purpose, Template Metaprogramming (TMP) techniques are used first to provide facilities
to describe a metaheuristic as a composition of algorithmic skeletons, and secondly to analyze
and transform the skeleton, at compile-time, into an efficient code to be executed at runtime.

C++ TMP allows writing full algorithms to be executed at compile-time, but it is rare for
an end developer to use TMP directly, as its syntax greatly differs from the usual language.
Hence, we present here some insights of an intermediary library designed to ease the writing
of code to process the algorithmic skeletons at compile-time as trees and vectors.

2 Skeletons as trees
To explain our approach, we consider the algorithmic skeleton of the Greedy Randomized
Adaptive Search Procedure (GRASP). This algorithm is a parametric structure that can be
illustrated as in figure 1 where each circle corresponds to a muscle (i.e. a parameter that is a
sequential function to be provided by the end developer) and each dotted box corresponds to a
bone (i.e. an elementary predefined sequential or parallel pattern). A farm (farmsel) repeats
a series (serial) of a constructive heuristic (CH) followed by a local search (LS), and keeps the
best result (Sel).

Once a skeleton has been described with our skeleton library using TMP [3], we propose to
transform it, at compile-time, into a tree (cf. figure 2), as it is a well-known data structure,
easier to manipulate than algorithmic skeletons by the end developer. In such a tree, branch
nodes are bones (their children being the tasks they execute) and leaves are muscles.

From this structure, it is simple for instance to detect, at compile-time, the number of
parallelizable levels of an algorithm, which is necessary to produce an efficient parallel imple-
mentation. GRASP has only one parallelizable level (as it only has one farmsel, cf. figure 2),
whereas GRASPxELS (GRASP with Evolutionary Local Search (ELS) as local search, cf.
figure 3) has two levels (as it results in a farmsel composed of another farmsel).

Our library provides functions to use directly with trees at compile-time, like TreeAccumulate
that, similarly to the std::accumulate function on containers of C++ standard library, goes
through all the nodes N of a tree to apply an accumulation function F in order to compute



a value (e.g. the sum of the values of the nodes). Writing such an algorithm is some kind of
functional programming based on template recursivity. Here, TreeAccumulate calls function
F on each node N , from root to leaves, given R1, ..., Rn the results of TreeAccumulate on
each child C1, ..., Cn of N . Such code is hidden from the end developer that will only call the
algorithm providing a function for accumulation, which can be compared to Boost.MPL [1].

CH ...CH

LS ... LS

Sel

farmsel

se
ria

l

FIG. 1: GRASP skeleton

farmsel

serial

CH LS

Sel

FIG. 2: GRASP skeleton as tree

farmsel

serial

CH itersel

farmsel

serial

M LS

Sel3

Sel2

Sel1

FIG. 3: GRASPxELS skeleton as tree

For instance, counting the parallelizable levels of a skeleton using TreeAccumulate requires
for the end developer to write an accumulation function ParLevel(N, R1, ..., Rn) that returns
1 + max(R1, ..., Rn) if the current node is a branch and a farmsel, max(R1, ..., Rn) otherwise.

The tree structure can also be transformed into a vector (storing the nodes in sequence
according to a specific order). With this form, it is possible for the end developer to get the
number of parallelizable levels of a skeleton by writing a sequence of common accumulate and
transform operations on vectors. Both structures (tree and vector) and their algorithms will
be presented in TMP code excerpts to show how to write programs executed at compile-time
in a form close to the programming language that the end developer is accustomed to.

3 Conclusion
Through our algorithmic skeleton library, we demonstrate the possibility to process information
at compile-time using metaprogramming with no runtime overhead on generated program. This
is in use, for example, to calculate the number of parallelizable levels in a given algorithm or
to apply transformations to a skeleton (e.g. merging serial structures) in order to improve the
generated code. This processing is simplified by the usage of an intermediary tool set that
allows one to write Template Metaprogramming (TMP) by a means similar to classic run-time
algorithms (e.g. transformations and accumulations).

References
[1] David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming: Concepts,

Tools, and Techniques from Boost and Beyond. 5. printing. The C++ In-Depth Series.
Boston, Mass: Addison-Wesley, 2004. 373 pp.

[2] J. Darlington et al. “Parallel Programming Using Skeleton Functions”. In: PARLE ’93
Parallel Architectures and Languages Europe. Ed. by Arndt Bode, Mike Reeve, and Got-
tfried Wolf. Red. by G. Goos and J. Hartmanis. Vol. 694. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1993, pp. 146–160.

[3] Alexis Pereda et al. “Modeling Algorithmic Skeletons for Automatic Parallelization Using
Template Metaprogramming”. In: 2019 International Conference on High Performance
Computing & Simulation (HPCS). Dublin: IEEE, July 2019, pp. 265–272.


	Introduction
	Skeletons as trees
	Conclusion

