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Abstract— The present work proposes a novel approach for 
multichannel Electroencephalogram (EEG) microstates extrac-
tion based on the fundamentals of spectral clustering algorithm 
as a lower cost alternative technique from the classical model. 
This approach involves microstates generated from the Lapla-
cian matrix spectrum with special attention to the graph metric 
distances effects on the model performances. Results have 
demonstrated the potential of the technique to soften the clus-
tering stages and encompass the variation present on the EEG. 
Two groups of subjects EEG have been used in this work, con-
trol and schizophrenic adolescents, and the experiments have 
presented the minimum of 79.64% explained variance for 6 mi-
crostates. 
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I. INTRODUCTION  

According to the World Health Organization (OMS), by 
2019 almost one billion people was suffering from mental 
disorders [1], these statistics also include 14% of the world's 
teenager’s population, and over 800,000 people die by sui-
cide every year due to their effects. The situation is so alarm-
ing that the World Federation for Mental Health (WFMH) 
has promoted a suicide prevention campaign for that year [2] 
and has highlighted the situation for teenagers since 2018 [2]. 
Earlier diagnosis is essential for prevention.  

In this context, Electroencephalogram (EEG) microstates are 
prominent candidates for an earlier diagnosis based on bi-
omarkers [3][4][5], able to make the earlier diagnosis simple 
and objective. EEG microstates is a different manner of in-
terpreting the information restrained in the EEG time series 
[6][7]. The EEG signal is one of the most important infor-
mation sources for brain functional analysis due to its low 
cost and non-invasive nature [5][8]. 

However, the traditional clustering method to obtain mi-
crostates generally does not represent well the variations of 
the EEG signals with few microstates, needing a larger 
amount of microstates, making it difficult to analyze. Fur-
thermore, with more microstates, more time is taken to pro-
cess the EEG signal. 

This work proposes a novel approach for designing EEG mi-
crostates, based on the Spectral Clustering techniques. The 
method focuses on the preprocessing stages in order to speed 
up the other steps on the microstates extraction, with natural 
dimension reduction and higher information a lower cost al-
ternative technique achievement. Thus, with few microstates 
is possible to achieve a better representation of EEG signals. 

II.  MATERAILS AND METHODS 

A. The database 

The database (EEG of healthy adolescents and adolescents 
with symptoms of schizophrenia) used in this work is com-
posed of EEG records from adolescents that have been ana-
lyzed by specialists and divided into two groups: 39 healthy 
male subjects (age between 11 to 13 years old), and 45 male 
subjects with symptoms of schizophrenia (age between 10 to 
14 years old). The middle age in both groups is 12 years and 
3 months. Each file has the EEG record for one subject. Each 
file has 122,880 samples, where every interval of 7,680 sam-
ples represents one channel of the EEG, going from 1 to 16 
channels. The sampling rate is 128 Hz representing one mi-
nute of record. This public domain database can be down-
loaded from the Laboratory for Neurophysiology and Neuro-
Computer Interfaces [9] and its classification was carried out 
by the National Mental Health Research center (NMHRC) 
experts. Each file was preprocessed as 𝑋௡

௖, 𝑐 = 1,2. .16, 𝑛 =

1,2. . .7,680 . (c refers to the number of channels and n repre-
sents the number of EEG samples). After preprocessing, the 
files have been concatenated in one full dataset of 84 subsets 
(39 + 45). 

B. EEG Microstates 

EEG can be interpreted as electric scalp potential topography 
that shifts in millisecond range as a consequence of the un-
derlying brain activity. More specifically, the scalp electric 
topography is related to the location of neurons in the gray 
matter and the amplitudes are related to the number of 



  

 

organized active neurons [6]. Far from randomness, these 8 
to 12 Hz scalp topographies are regarded as “atoms of 
thought” [10] or EEG microstates. Several studies have 
demonstrated the differences in microstates statistics from 
control groups to groups with different neuronal disorders 
[3][4][5][11], suggesting microstates as likely neuronal bi-
omarkers, making possible earlier detection for neuronal and 
psychiatric disorders, even before clinical signs. Despite the 
practical EEG application, the automated microstates extrac-
tion and their analyzes are challenging processes, where sev-
eral studies have been carried out to improve the workflow 
and enlighten the classification approaches [3][5][12]. 

The common EEG microstate workflow encompasses several 
techniques, where the steps leading to the final segment la-
beling and statistics pass through years since the first ap-
proach [13]. Clustering the EEG information is a crucial step 
for the microstates achievement, where few alternatives have 
demonstrated to be viable, such as K-means [14], Modified 
K-means [15], and Topographic Atomize Agglomerative Hi-
erarchical Clustering (TAAHC) [12].  
As aforementioned, the microstates are a different manner of 
interpreting the information restrained in the EEG and de-
mands a preprocessing stage of the information received 
from the ordinary EEG.   Figure 1 illustrates an example of 
the international 10-20 electrodes arrangement, and Figure 2 
presents the EEG as a time series for each channel. 
 

 
Figure 1. EEG 10-20 electrodes international system, adapted from [9]. 

 

 
Figure 2. EEG multi-channel record, adapted from [12]. 

The microstate theory states that there are several segments 
in the EEG time series, each of them representing a specific 
electric topography on the scalp. However, few segments are 
more frequent in the alfa band (8 to 12 Hz) [6], as the EEG 
section is carried out with eyes closed, resting state, but not 
asleep.  To find these prominent patterns, the Global Field 
Power (GFP), which is the same as the standard deviation 
among all the electrodes on the scalp, must be traced. Studies 
identified [10] that the microstates are found in the GFP due 
to the highest signal-to-noise ratio. Equation 1 defines the 
GFP, where 𝑢௜ (𝑖 = 1,2, … 𝑐) is the signal in the ith electrode, 
from c EEG electrodes, at time sample t [16].   

𝐺𝐹𝑃௧ = ට
ଵ

௖
 ∑ (𝑢௜(𝑡) − ū(𝑡))²௖

௜ୀଵ                                            (1) 

Once the patterns at GFP peaks are computed, an unsuper-
vised learning algorithm is applied to cluster these topogra-
phies (or microstates). On average, 4 clusters can explain 
over 60% of the whole data set variation [17]. The Global 
Explained Variance (GEV) [16] is used to state how much 
information a set of microstates prototype encompasses from 
the EEG signal. Equation 2 presents the 𝐺𝐸𝑉௡ for a given pro-
totype, the 𝐺𝐹𝑃௡ is the global field power, 𝒖𝒏 is the n’th time 
sample, 𝑎𝑙௞ is the prototype 𝑘௜ ∈  𝐾 (set of prototypes) as-
signed to 𝑢௡, 𝑁 represents the number of time samples in the 
EEG.  

𝐺𝐸𝑉௡ =  𝐶𝑜𝑟𝑟(𝑢௡, 𝑎𝑙௡)ଶ. ( 𝐺𝐹𝑃௡
ଶ/ ∑ 𝐺𝐹𝑃௡ᇱ

ଶே
௡ᇱ )                     (2) 

The GEV is a measure of how similar each EEG sample (𝑛) 
is from a microstate prototype. The most similar prototype to 
sample n is assigned to it. The sum of the GEV of every sam-
ple measures the amount of information a given prototype set 
encompass.   
K-means clustering [14] is a basic clustering algorithm and 
belongs to a group named “partition method”. Due to its sim-
plicity and efficiency, it is one of the most widely used clus-
tering algorithms. It encompasses the data set into a pre-set 
number of clusters, where every cluster is the nearest centroid 
of a data set partition. The algorithm recalculates the new 
centroids at every iteration until the convergence, which may 
occur at a pre-set number of iterations or the difference in the 
assigned points reaches a pre-set trigger.  
Modified K-means was introduced specifically for treating 
the EEG signal [12] and to enhance the efficiency of K-
means. There are two main differences between the tech-
niques: the microstates topographies are polarity invariant, 
and the microstates activations are modeled.   

Topographic Atomize and Agglomerative Hierarchical Clus-
ter (TAAHC) belongs to another clustering technique group, 
the “hierarchical clustering” [12]. It derives from de Atom-
ize and Agglomerative Hierarchical Cluster in the manner it 



  

 

measures the quality of the cluster. Basically, in the TAAHC 
it starts the algorithm with every sample having their own 
cluster, then, the worst cluster is removed (atomized) at every 
iteration, and the process continues until a minimum pre-set 
number of clusters, or a minimum of two clusters. 

C. Spectral Cluster 

Spectral cluster is an unsupervised learning algorithm based 
on the spectral graph theory [18], its basic concept is to scat-
ter the data points into several groups such that points in the 
same group are similar, and points in different groups have 
low similarity. Beginning from a Given set of 𝑛  patterns 
(𝑥ଵ, 𝑥ଶ, . . . 𝑥௡), converted into a similarity graph (𝐺) of verti-
ces (points) and edges (link between vertices), we can com-
pute a symmetric matrix of weighted edges W. The weight 
between two vertices 𝑥௜ and 𝑥௝ is zero (𝑤௜௝ = 0) if they are 
not linked, otherwise, the weight is a positive value 𝑤௜௝ ≥ 0, 
with 𝑤௜௝ = 𝑤௝௜ .  
For the same graph (G), the degree matrix (𝐷) is defined as a 
diagonal matrix, with the degrees (𝑑ଵ … 𝑑௡) on it, where the 
degree of a vertex (𝑥௜) represents the number of other vertices 
(𝑥௝) that are linked to it, according to Equation 3. 

𝑑௜ = ∑ 𝑤௜௝
௡
௝ୀଵ                                                                      (3) 

The vertex degree equation shows the sum only happens over 
the vertices adjacent to 𝑥௜, and zero to any other vertex. If 
taken a subset with vertices 𝐴 ⊂  𝑉(the group of all the ver-
tices in G), and its complement 𝐴. The indicator vector is 
１஺ = (𝑓ଵ, 𝑓ଶ … 𝑓௡)ᇱ, ∈  𝑅௡, where the entries 𝑓௜ = 1, if 𝑣௜  ∈
 𝐴, and 0, for the complements. Finally, the unnormalized La-
placian matrix (L) is defined by Equation 4, 𝑊 is the weight 
matrix and the 𝐷 is the degree matrix. 

𝐿 = 𝑊 − 𝐷                                                                        (4) 

In practice, from a matrix of 𝑛 patterns 𝑋௡
௖, turned into a sim-

ilarity graph 𝐺 (by approximation) and, the matrices in the 
Equation 4 would have the form according to the Figure 3. 
 

 

Figure 3.  Weight matrix (W), adjacency matrix (D) and the Laplacian ma-
trix (L), adapted from [19]  

Note that the Laplacian matrix (𝐿) has the same entries as 𝐷 
on the diagonal and, out of the diagonal, 𝐿 has -1 if there is 
an edge between nodes of row 𝑖 and column 𝑗,  and zero, oth-
erwise. Also, note that the sums of the elements in a row or 

column always is equal to zero, as the constraint of the La-
placian matrix, and that this is a block matrix with 𝐿௜ blocks 
corresponding to the real clusters in the data. So, the matter 
is to find the spectrum of 𝐿. Given that, all these features give 
the following properties to 𝐿: 

a. Equation 5 is valid for every vector 𝑓 ∈  𝑅௡, and 
there are different ways to manipulate this equation 
to draw the Laplacian matrix eigenvectors and ei-
genvalues. 

𝑓𝐿𝑓ᇱ =  
ଵ

ଶ
 ∑ 𝑤௜௝(𝑓௜ − 𝑓௝)²௡

௜,௝ୀଵ                              (5)                                                                                   

b. 𝐿 is symmetric and positive semi-definite. 
c. The smallest eigenvalue of 𝐿 is 0, the corresponding 

eigenvector is the constant １஺ of ones. 
d. 𝐿 has a non-negative, real-valued eigenvalues 0 =

𝜆ଵ ≤ 𝜆ଶ  …  ≤ 𝜆௡. 

Once we have the matrix spectrum, some heuristics can be 
used to try to identify the best number of clusters. Traditional 
clustering techniques, k-means for instance, can be used to 
group the data over the matrix spectrum. 

Off course there are several constraints that have to be re-
garded, since at one step we turned the problem of 𝐿 to work 
with zeros and ones weights, but the real problems bring non-
binary wights, which demands a trade-off relaxing adjust-
ment for 𝐿. Also, the construction of the graph (G) has a seed 
of randomness [18][19] to be regarded in order not to impair 
the results. In the end, even with the relaxing adjustment, the 
spectral cluster outperforms the traditional spectral methods 
[18] and fits to most clustering problems.  

In this work, there is a point where the spectral clustering 
workflow is bent: the unnormalized Laplacian spectrum ma-
trix is analyzed through the eigengap heuristic to identify a 
suitable number of eigenvectors to be kept on the spectrum 
matrix, 𝑈௡

௠, 𝑚 ≤ 𝑛 (U is the spectrum of the symmetric La-
placian matrix), this procedure normally results in dimen-
sionality reduction. Finally, K-means is applied over 𝑈௡

௠ to 
cluster the data into a pre-set number of clusters, that will 
operate as the prototypes mentioned in Section II. Note that 
this prototype works on the spectrum matrices spaces, this 
means that the whole operation takes place in the latent space 
and, since the 𝑈௡

௠ has all the rows of the initial data set, every 
pattern will be assigned to one of the clusters (EEG mi-
crostates) labels.  

D. The Spectral Microstates Workflow 

The complete workflow to design the microstates prototypes, 
in MATLAB©, is presented in Figure 4. The full dataset (see 
section II.A), split into training and test partitions, was devel-
oped as follows: the control group ranges from files 1 to 39 



  

 

and the symptomatic range from 40 to 84, so, the first 70% 
from each group was separated to form the control and the 
symptomatic training subsets. In the sequence (third row of 
Figure 4), the potential prototypes are traced following the 
best signal-to-noise ratio: the EEG samples at the GFP peaks 
are extracted from a random sample of the training subsets 
(0.01 from each), this is the GFP peaks subset (a standard 
subset in this work), where the spectral clustering algorithm 
is carried out to draw 𝑈௡

௠. The dimension, 𝑚, is set with the 
eigengap heuristic [18], regarding that two different groups 
should have vertex weight null (since they are not con-
nected). The number of clusters is defined with K-means over 
𝑈௡

௠ (fifth row of Figure 4). The output of this procedure is a 
set of latent clusters since the unsupervised learning occurs 
in the spectral space of the Laplacian matrix. For consistency, 
these latent clusters must explain the variance of the same 
data set they have arisen from (GFP peaks subset). This pro-
cedure is necessary for tracing the following goals: 

1. Reduce the algorithm intrinsic loss due to the relax-
ing adjustment inherent from the algorithm [18]. 

2. Increase the consistency of results before different 
random seeds on the similarity graph design and 
clustering algorithm. 

3. Define, if possible, the best parameters, like Lapla-
cian normalization, number of eigenvectors for the 
spectrum matrix, metric “distance” for the similarity 
graph and K-means number of clusters. 

4. Check the GEV achieved by the likely prototypes 
over the self-backfit (spectral prototypes compared 
to the sample in the latent space). 
 

 

Figure 4. Spectral microstates workflow 

 

After the evaluation of consistency, the most suitable param-
eters are used for designing the likely prototypes, which are 
re-evaluated over a random partition of the training subsets, 
1% of each subset (fourth row in Figure 4). This new check 
is necessary for the previous evaluation was carried out over 
the GFP peaks subset. Following the workflow in Figure 4, 
every row receives a label based on its most similar proto-
type, based on the same metric distance used for extracting 
the prototypes. Since every row in the latent space has an 
equivalent row in 𝑋௡

௖, the label is the same (fifth and sixth 
row of Figure 4). Once the labels are assigned, it is ready for 
the statistics or classification. In the sequence, the method 
was applied to a group of unknown groups (test sets) to eval-
uate whether the method can trace these common states in 
every instance.  

III. RESULTS 

 

There are dozens of possibilities for the prototypes designing 
and any different parameter in the workflow will result in a 
new model. However, the most important group of parame-
ters and hyperparameters are those related to the similarity 
graph. Depending on the metric distances used, the graph will 
better interpret relations among the patterns in the datasets, 
making the other steps clearer to extract the best eigenvector 
and clustering. One advantage of this approach is the natural 
handling of dimensionality following the eigengap heuristic, 
which grants a notion of the best number of eigenvectors for 
a given metric distance. Figure 5 presents the behavior of the 
training data set for the Spearman eigengap approach, pro-
jecting 200 eigenvalues.  

 



  

 

Figure 5. Eigengap heuristic for Spearman graph. 

Although the projection is not clear, the most significant in-
terval is between 1 to 5 eigenvalues, which leads to this nat-
ural shrinkage of dimensions. Then, the matrix 𝑈௡

௠ will keep 
the same number of patterns (n), but the most significant la-
tent features or eigenvectors (𝑚), ready for K-means cluster-
ing. Given the best latent dimension, the number of mi-
crostates were designed by the GEV variation with the num-
ber of clusters, regarding the minimum accepted variance is 
60%. Figure 6 illustrates the GEV has highest variation be-
tween 4 to 6 clusters, Spearman on the left graphic and Jac-
card on the right.  

 

 
Figure 6. GEV growth for the number of clusters 

In the end, two metrics could capture the information free 
from unwanted effects experienced during the experiments. 
Normally when the metric distance does not produce a proper 
graph, the samples tend to overfit in one cluster or the same 
microstates distribution is replicated for every EEG sample. 
Out of these effects, Jaccard and Spearman distances [20] 
have generated the most suitable information for the matrices 
D and U. The most reasonable GEV was achieved by combi-
nation of Jaccard (for the graph) and cosine distance for K-
means and pairwise assignment, as highlighted in Table 1 
(94.16% for training control group, and 91.68% for the train-
ing symptomatic). Regarding the techniques afore mentioned 
for eigenvectors (V) and for the number of cluster (K), the 
prototypes coincided in 6 clusters, but 4 dimensions for 
Spearman prototypes (6/4) and 3 dimensions for Jaccard ones 
(6/3). 

     Table 1 Results for general samples backfit 
Metric dis-
tance for 
similarity 

graph 

Metric dis-
tance for k-
means clus-

tering 

Laplacian 
normaliza-

tion 
K V 

GEV for 
general 
training 

control (%) 

GEV for gen-
eral training 
symptomatic 

(%) 
Spearman 

6/4 Cosine None 6 4 79.64 80.30 
Jaccard 

6/3 Cosine None 6 3 94.16 91.68 
K: number of spectral clusters V: number of eigenvectors in U 

 
Figure 7. Spearman 6/4 prototypes (rows) 

These protype performed the average GEV of 73.74% among 
all the EEGs for the control test set, and 77.57% among the 
EEG for the symptomatic test set. The performance of the 
entire groups of spectral prototypes is presented in Table 2. 
Again the Jaccard 6/3 prototypes performed better for ex-
plaining the data in the latent space, after every sample on the 
each EEG teste set received their label, and the standard de-
viation ranged from 2.43% in the control, to 2.58% in the 
symptomatic test set. Regarding the standard deviation for 
the Spearman 6/4, the GEV performed for one subject was 
inferior to those achieved to the rest of the test set, the reason 
for the standard deviation of 14.45%. 

Table 2 Results for individual samples GEV 

Model 
GEV for 

control test 
set 

Std for 
control test 

GEV for 
sympto-

matic test 
set 

Std for 
sympto-

matic test 

Spear-
man6/4 

73.74 14.45 77.57 2.26 

Jaccard 6/3 92.31 2.43 91.51 2.58 

Even though all the procedure takes place in the latent do-
main, every pattern in the EEG receives a label relative to its 
latent prototype.  

 

Figure 8. Jaccard spectral microstates ocurrence, control subjects range 
from 28 to 39 and symptomatic subjects range from 72 to 83. 

Groups are distributed along the columns, blue for lesser and 
green for the most frequent. This distribution was drawn by 
the spectral prototypes designed by Jaccard 3/6. Similar ef-
fects have been observed using the other models. Thus, it is 



  

 

possible to extract the statistics and trace the dependencies in 
the microstates time series for classification of each EEG file 
in control or symptomatic subject. Figure 8 shows the fre-
quency of each label (1 to 6 in the rows) among the EEG file 
for each subject in the test set, 28 to 39 for the control group, 
and 72 to 84 for the symptomatic (one pattern has been omit-
ted for convenience in the figure).  

 

IV. CONCLUSION 

 

In this paper, we proposed the spectral clustering approach 
over the EEG data as a novel alternative for the extraction of 
EEG microstates, partially operating during the prepro-
cessing stage and partially in the new features generation. In 
other words, the algorithm is not used to cluster the data, it is 
applied to generate the Laplacian data spectrum before the 
clustering process. The preprocessing stage is an important 
step for the performance of several approaches, in the sense 
can soften some complex challenges, which has been noticed 
during the experiments. Among several parameters, only few 
have generated the suitable distributions (spectrums) for trig-
gering the models to catch the slight differences and generate 
better spectral microstates. This stage is so important that the 
clustering algorithm over the spectrum becomes viable. This 
means that other models      could possibly carry out the same 
task easily, once the spectral clustering algorithm has prepro-
cessed the data. The metric chosen for assessing the hypoth-
esis was the GEV. In this case, the appraisal took place in the 
latent space (one intrinsic aspect of the spectral clustering) 
and achieved high rates of information variability (one model 
achieved a minimum of 91.51%, as seen in Table 2). How-
ever, it is difficult to compare the results with classic ap-
proaches since they work in different domains and this task 
is for future works. When the whole model was applied over 
each EEG file in the test section, and the instances in the time 
domain have been assigned, some patterns have arisen as a 
time series (Figure 8), which state the efficiency of the hy-
pothesis to extract the information able to support classifica-
tion approaches. In the end, the novel approach has achieved 
the aims of the work, leaving several possibilities for further 
studies that can secure the spectral microstates as a viable al-
ternative for analysis of EEG signals. 
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