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Abstract We aim to construct a probabilistic classifier to predict a
latent, time-dependent boolean label given an observed vector of mea-
surements. Our training data consists of sequences of observations paired
with a label for precisely one of the observations in each sequence. As
an initial approach, we learn a baseline supervised classifier by training
on the labeled observations alone, ignoring the unlabeled observations in
each sequence. We then leverage this first classifier and the sequential
structure of our data to build a second training set as follows: (1) we
apply the first classifier to each unlabeled observation and then (2) we
filter the resulting estimates to incorporate information from the labeled
observations and create a much larger training set. We describe a Bayesian
filtering framework that can be used to perform step 2 and show how a
second classifier built using the latter, filtered training set can outperform
the initial classifier.
At Adobe, our motivating application entails predicting customer segment
membership from readily available proprietary features. We administer
surveys to collect label data for our subscribers and then generate feature
data for these customers at regular intervals around the survey time.
While we can train a supervised classifier using paired feature and label
data from the survey time alone, the availability of nearby feature data
and the relative expensive of polling drive this semi-supervised approach.
We perform an ablation study comparing both a baseline classifier and
a likelihood-based augmentation approach to our proposed method and
show how our method best improves predictive performance for an in-
house classifier.

Keywords: Bayesian filtering, Discriminative modeling, Data augmentation,
Semi-supervised learning, Machine learning, Learning from survey data

1 Problem description and notation

We aim to predict a binary-valued label of interest Zt ∈ {0, 1} from a vector
Xt ∈ Rm of measurable features. We are provided a supervised dataset

D0 = {(x1τ , z1τ ), (x2τ , z
2
τ ), . . . , (xnτ , z

n
τ )}
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of n labeled training pairs and an unsupervised dataset

D1 = {x11:τ−1, x1τ+1:T ;x21:τ−1, x
2
τ+1:T ; . . . ;xn1:τ−1, x

n
τ+1:T }

of time-indexed feature data for each training instance in a contiguous period
1 ≤ t ≤ T surrounding τ . We adopt the notation xi1:T = (xi1, x

i
2, . . . , x

i
T ) for

indexed sequences of data and let τ ∈ {1, 2, . . . , T} denote the time for which each
sequence xi1:T of features has an associated label ziτ . Strictly speaking, we allow
this time τ to be different for each sequence, i.e. τ may depend on i. We suppress
the superscript i when describing calculations for a single, generic instance.

If we have reason to believe that the relationship between the observed features
and latent labels is stationary, i.e. that p(zt|xt) does not depend on the time t,
then a natural first approach to solving this problem entails training a supervised
classifier on the dataset D0. Can the unlabeled sequences of observations in D1

help us to build a better classifier? That question, central to the field of semi-
supervised learning, motivates our work. We intend to incorporate information
from D1 through a process of data augmentation. In this paper, we develop and
validate a novel method for estimating labels for the augmentation process. We
develop a discriminative Bayesian filtering framework that provides a principled
way to incorporate information from the unlabeled observations with information
from the known label provided for a different observation in the same sequence.

Our work focuses on creating new training pairs (xit, ẑ
i
t) where xit belongs to

one of the sequences in D1 and ẑit denotes an estimated label for that observation
at that time. We combine two sources of knowledge to form our estimate: (1) the
snapshot xit of feature data, to which we may apply our original model for p(zt|xt)
and (2) the ground-truth label ziτ that fixes instance i’s label at a nearby point
in time, to which we may iteratively apply a latent state model. For each point in
D1, we calculate the posterior probability p(zt|xτ+1, . . . , xt, zτ ) when t > τ and
p(zt|xt, . . . , xτ−1, zτ ) when t < τ . We then take estimates for the posterior that
are almost certain (very near to zero or one), threshold them, and use them to
form an augmented training set, paired with their corresponding feature-values.
We use this larger set to train a second classifier and argue that it tends to have
better predictive ability than both the first classifier and a classifier trained using
only the first source of knowledge. See Figure 1 for a visual comparison of these
approaches.

Outline. The paper is organized as follows. In the next section, we introduce
our filtering framework and describe how to form filtered estimates for a given
sequence. In section 3, we show how to use these filtered estimates to create
an augmented training dataset. Then in section 4, we compare our classifier
trained using filtered data to both the baseline classifier and to an augmented
classifier trained using pseudo-labeling [20], a common self-learning approach
that augments the training set using estimates for the likelihood alone. We survey
related work in section 5 before concluding in section 6.
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Figure 1. Schematic comparing the baseline, augmented, and filtered methods. The
baseline method uses the supervised set D0 alone, ignoring D1. The augmented method
assigns a probabilistic estimate to each feature-point in D1 (a type of pseudo-labeling),
increasing the available data by a factor of T prior to thresholding. The filtered
method additionally incorporates information from the ground truth label to improve
its probabilistic estimates.

2 Filtering methodology

In this section we focus on a single instance i and describe a filtering process that
produces predictions for each unlabeled member of the sequence x1:T = xi1:T of
observations using a provided model p(zt|xt) and the sequence’s corresponding
binary label zτ = ziτ for some time τ = τ(i).

We view the labels and corresponding observations as belonging to a latent
state space model. Letting Z1:T := Z1, . . . , ZT denote random variables corre-
sponding to the latent labels and X1:T := X1, . . . , XT denote random variables
corresponding to the observations, we model the relationship between these
variables according to the Bayesian network:

Z1 −−−−→ · · · −−−−→ Zt−1 −−−−→ Zt −−−−→ · · · −−−−→ ZTy y y y
X1 Xt−1 Xt XT

(1)

Using this framework, we aim to infer the predictive posterior distribution
p(zt|xτ+1:t, zτ ) for times t > τ and p(zt|xt:τ−1, zτ ) for times t < τ , where Zt is
uncertain. To motivate this exercise, we hypothesize that augmented pairs (xt, ẑt)
produced using the posterior will better assist in training than those produced
using the likelihood, p(zt|xt).
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Traditional approaches to filtering specify a state model p(zt|zt−1) that
relates the current state to the previous state and a measurement model p(xt|zt)
that relates the current observation to the current latent state. The posterior
distribution of the hidden state given a sequence of measurements can then be
calculated or approximated through a series recursive updates. See Chen [10] or
Särkkä [30] for comprehensive surveys.

In the remainder of this section, we outline the details of our filtering frame-
work and show how to calculate the posterior probability under our model. In
the subsequent section, we outline how this filtering approach can be used for
data augmentation.

2.1 Discriminative Measurement Model

As opposed to the distribution p(xt|zt) that describes the outcomes of hundreds
of measurements (m� 1) given a single boolean label, the distribution p(zt|xt)
that describes the likelihood of a label given a vector of measurements often
proves much more tractable to learn effectively using off-the-shelf classifiers.
Consequently, we approximate the measurement model using p(zt|xt). We apply
Bayes’ rule and note that, up to a constant depending only on xt, we may replace
p(xt|zt) with p(zt|xt)/p(zt). We further assume that this model is stationary, so
that p(zt|xt) is independent of t. This approach mirrors that of McCallum et al’s
Maximum Entropy Markov Model [22] and the more recent Discriminative Kalman
Filter [5,6], as it relies on a discriminative approximation to the measurement
model. (In particular, the model is no longer generative, following the terminology
of Ng and Jordan [25].)

2.2 Reversible State model

We specify the state model as as stationary Markov chain

P(Zt = 1|Zt−1 = 0) = α0, (2a)

P(Zt = 1|Zt−1 = 1) = α1, (2b)

for some 0 < α0, α1 < 1 and 2 ≤ t ≤ T . If we let

β = α0/(1 + α0 − α1), (3)

it follows that if
P(Zt0 = 1) = β (4)

at some time t0, then P(Zt = 1) = β for all t. Furthermore, this chain is
reversible [11, sec. 6.5], and

P(Zt = 1|Zt+1 = 0) = (1− α1)β/(1− β) = α0, (5a)

P(Zt = 1|Zt+1 = 1) = α1, (5b)

for all t.
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2.3 Filtering forward in time

We first describe how to filter forward in time. Starting with the ground-truth
label at time τ , we iteratively combine information from our estimate of the
previous label (using the state model) with our estimate of the current label
given the measurements at that time (using the measurement model). For t > τ ,
we recursively calculate the posterior

ρτ :t := P(Zt = 1|Xτ+1:t = xτ+1:t, Zτ = zτ ) (6)

in terms of the likelihood pt = P(Zt = 1|Xt = xt) and the previous posterior
ρτ :t−1 as

ρτ :t ∝
P(Zt = 1|Xt = xt)

P(Zt = 1)
P(Zt = 1|Xτ+1:t−1 = xτ+1:t−1, Zτ = zτ )

∝ pt
P(Zt = 1)

(
P(Zt = 1|Zt−1 = 1)ρτ :t−1 + P(Zt = 1|Zt−1 = 0)(1− ρτ :t−1)

)
where we initialize ρτ :τ as the observed point mass p(Zτ = 1). It follows from
our state model (2) and initialization (4) that

ρτ :t ∝
pt
β

(
α1ρτ :t−1 + α0(1− ρτ :t−1)

)
(7)

up to a constant depending on the observations alone. To relieve ourselves of
that constant, we note that

1− ρτ :t ∝
P(Zt = 0|Xt = xt)

P(Zt = 0)
P(Zt = 0|Xτ+1:t−1 = xτ+1:t−1, Zτ = zτ )

∝ 1− pt
P(Zt = 0)

(
P(Zt = 0|Zt−1 = 1)ρτ :t−1 + P(Zt = 0|Zt−1 = 0)(1− ρτ :t−1)

)
which itself simplifies to

1− ρτ :t ∝
1− pt
1− β

(
(1− α1)ρτ :t−1 + (1− α0)(1− ρτ :t−1)

)
. (8)

Dividing the right-hand side of (7) by the sum of (7) and (8) cancels the constant
of proportionality and yields ρτ :t.

2.4 Filtering backward in time

Now, we describe how to filter backward in time. As before, we proceed recursively
to calculate

ρ̃t:τ := P(Zt = 1|Xt:τ−1 = xt:τ−1, Zτ = zτ ) (9)

for t = τ − 1, τ − 2, . . . , 1 in terms of ρ̃t+1:τ and the likelihood pt:

ρ̃t:τ ∝
P(Zt = 1|Xt = xt)

P(Zt = 1)
P(Zt = 1|Xt+1:τ−1 = xt+1:τ−1, Zτ = zτ )

∝ pt
P(Zt = 1)

(
P(Zt = 1|Zt+1 = 1)ρ̃t+1:τ + P(Zt = 1|Zt+1 = 0)(1− ρ̃t+1:τ )

)
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where, analogously, ρ̃τ :τ is taken to be the observed point mass p(Zτ = 1). Upon
substituting the state model (2) and initialization (4), we have

ρ̃t:τ ∝
pt
β

(
α1ρ̃t+1:τ + α0(1− ρ̃t+1:τ )

)
. (10)

To remove the constant of proportionality, we also calculate:

1− ρ̃t:τ ∝
P(Zt = 0|Xt = xt)

P(Zt = 0)
P(Zt = 0|Xt+1:τ−1 = xt+1:τ−1, Zτ = zτ )

∝ 1− pt
P(Zt = 0)

(
P(Zt = 0|Zt+1 = 1)ρ̃t+1:τ + P(Zt = 0|Zt+1 = 0)(1− ρ̃t+1:τ )

)
which simplifies to

1− ρ̃t:τ ∝
1− pt
1− β

(
(1− α1)ρ̃t+1:τ + (1− α0)(1− ρ̃t+1:τ )

)
. (11)

Dividing the right-hand side of (10) by the sum of (10) and (11) then yields
our objective, ρ̃t:τ .

3 Augmentation methodology

In this section, we describe our method for data augmentation, relying on
the filtering framework developed in the previous section. Given n sequences of
measurements xi1:T with corresponding labels ziτ ∈ {0, 1} for τ = τ(i) ∈ {1, . . . , T}
and 1 ≤ i ≤ n, we define the supervised dataset

D0 = {(x1τ , z1τ ), (x2τ , z
2
τ ), . . . , (xnτ , z

n
τ )}

of features xiτ ∈ Rm paired with their corresponding labels ziτ ∈ {0, 1}, along with
the unsupervised dataset containing the unlabeled portions of each sequence,

D1 = {x11:τ−1, x1τ+1:T ;x21:τ−1, x
2
τ+1:T ; . . . ;xn1:τ−1, x

n
τ+1:T }.

We augment our supervised dataset D0 with information from D1 as follows:

1. We first learn a supervised model f : Rm → [0, 1] on D0 such that for inputs
x ∈ Rm,

f(x) ≈ P(Zτ = 1|Xτ = x). (12)

We refer to this probabilistic classifier as the baseline model.
2. For each instance i, we apply the baseline model to each feature-point in D1

to form

D̃1 = {(xit, f(xit))}xi
t∈D1

,

as our stationarity assumption implies f(x) ≈ P(Zt = 1|Xt = x) for all x, t.
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3. For each i, we apply the filtering equations from the previous section, starting
at the time point τ , and filtering forward in time to calculate the posterior
estimates ρiτ :t for t = τ + 1, τ + 2, . . . , T , and backward in time to determine
ρ̃it:τ for t = τ − 1, τ − 2, . . . , 1. We form

D̆1 = {(xit, ρiτ :t)}1≤i≤n,t≥τ ∪ {(xit, ρ̃it:τ )}1≤i≤n,t<τ

and threshold a subset of these points in the manner we will describe in
section 3.1.

We use a held-out validation dataset to select parameters α0, α1 from (2)
for the underlying state model.? These control the propensity for an instance
to maintain a label from one time step to the next. As E[Zt] = β = E[Zτ ] can
be approximated from the training data, once an optimal value for α0 has been
selected, this value along with an empirical approximation for E[Zτ ] can be used
with (3) to select a good value for α1.

3.1 Thresholding to create binary labels

As many classifiers (including the lightGBM and XGBoost models) expect binary
(non-probabilistic) labels for training data, we threshold the filtered labels and
form a binary-valued set D̆′1 from the filtered set D̆1 and lower and upper bounds
0 < bL < bU < 1 as follows. For each point (x, ρ) ∈ D̆1, if ρ < bL, we add (x, 0)
to D̆′1; if bL < ρ < bU , we discard the point; and if bU < ρ, we add (x, 1) to D̆′1.
This yields a thresholded, filtered training set D̆′1 with binary-valued labels that
contains D0 as a subset. The parameters 0 < bL < bU < 1 can also be selected
using validation (or cross-validation).

We summarize our approach using pseudo-code in Algorithm 1.

4 Ablation study and results

In this section, we describe how we applied these methods to real-life customer
survey data at Adobe.

4.1 Data provenance

We surveyed approximately ten thousand Adobe subscribers in October 2019
and a distinct set of approximately equal size in February 2020. Based on survey
responses alone, we assigned classifications to each subscriber. For the purposes of

? Given a set {αk0}k∈K of candidate values for α0 and a set {α`1}`∈L for α1, we select
parameters via an exhaustive grid search as follows. For each (k, `) ∈ K×L, we apply
Algorithm 1 with αk0 and α`1 to the training set, train a classifier on the resulting
filtered dataset, and then evaluate this classifier’s predictive performance on the
validation set (using AUC). Upon completion, we select the parameter values αk0 and
α`1 that yield the most performant classifier.
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Data: labeled dataset D0 and unlabeled dataset D1; parameters 0 < α0, α1 < 1
and 0 < bL < bU < 1 obtained from validation

Result: labeled binary-valued dataset D̆′1 extending D0 that can be used for
supervised learning

Train a supervised model f : Rm → [0, 1] on D0 such that f(x) approximates
P(Zt = 1|Xt = x) for x ∈ Rm;

Initialize D̆′1 = D0;
for i = 1, . . . , n do #iterate over instances

#filter forward from τ ;

let ρτ :τ = ziτ from D0;
for t = τ + 1, τ + 2, . . . , T − 1, T do

#determine predictive posterior ;
let ρτ :t = π1/(π0 + π1) where
π0 = (1− f(xit))

(
(1− α1)ρτ :t−1 + (1− α0)(1− ρτ :t−1)

)
/(1− β) and

π1 = f(xit)
(
α1ρτ :t−1 + α0(1− ρτ :t−1)

)
/β;

#threshold ;

if ρτ :t < bL then add (xit, 0) to D̆′1 ;

if ρτ :t > bU then add (xit, 1) to D̆′1 ;

end
#filter backward from τ ;

let ρ̃τ :τ = ziτ from D0;
for t = τ − 1, τ − 2, . . . , 2, 1 do

#determine predictive posterior ;
let ρ̃t:τ = π1/(π0 + π1) where
π0 = (1− f(xit))

(
(1− α1)ρ̃t+1:τ + (1− α0)(1− ρ̃t+1:τ )

)
/(1− β) and

π1 = f(xit)
(
α1ρ̃t+1:τ + α0(1− ρ̃t+1:τ )

)
/β;

#threshold ;

if ρ̃t:τ < bL then add (xit, 0) to D̆′1 ;

if ρ̃t:τ > bU then add (xit, 1) to D̆′1;

end

end

Algorithm 1: Discriminative Bayesian Filtering for Data Augmentation
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testing this algorithm, we considered only a single survey category. We engineered
hundreds of proprietary features for each user. We then trained a supervised
classifier using the ground-truth survey data to predict segment membership
given feature data. We generated features for the surveyed subscribers for each
of the twelve months between April 2019 and March 2020, inclusive.

We split the surveyed subscribers randomly into seven partitions of approx-
imately equal size. Each partition was further split into a training, validation,
and test set at a 70%-15%-15% ratio, respectively. For each partition, we took
the supervised training set D0 to be the training-set subscribers with paired
features and ground-truth survey results at their respective survey times and the
unsupervised set D1 to be the features of the training-set subscribers calculated
during the year-long period surrounding their survey dates.

4.2 Ablation with different supervised classification methods

As our method works with any supervised classifier, we learn f in (12) using a
variety of different methods: a LightGBM classifier, an XGBoost classifier, and a
feedforward neural network classifier. LightGBM [15] attempted to improve upon
other gradient boosting machines [12] by performing gradient-based sampling
for the estimation of information gain and by bundling infrequently co-occurring
features. Our implementation used the default parameters, to avoid over-tuning.
XGBoost [9], a predecessor to LightGBM, introduced a novel algorithm for
handling sparse data and allowed for unprecedented scalability. Our implemen-
tation relied on the default parameters. The neural network we used comprised
of a single hidden layer of 30 neurons with rectified linear activation [24] and
L2-regularization for network weights [17], trained with L-BFGS [21].

For each of the seven data partitions, we compare the predictive performance
(on the held-out test set) of three different approaches to building a supervised
classifier:

– For the baseline method, we take our classifier to be the original f trained
on the supervised dataset D0.

– For the augmented method, we apply the baseline model to D1 and threshold
the results as described in section 3.1 using thresholds selected for performance
on the validation dataset; we then train a classifier on the subsequent dataset.

– For the filtered method, we train a classifier using the dataset obtained by
applying Algorithm 1. Parameters 0 < α0, α1 < 1 and 0 < bL < bU < 1 were
chosen to maximize predictive performance on the validation set.

We aim to isolate the effects of augmenting the training dataset with fil-
tered, posterior-based estimates from the benefits obtained by simply employing
likelihood-based estimates.

To illustrate this difference, consider the following example. Suppose we
administer a survey in June to Alice, Bob, and ten thousand other subscribers.
We train a classifier using the data from June and apply it to Alice and Bob’s
feature data for July to predict that Alice has a 90% chance of belonging to
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the segment of interest in July while Bob has a 1% chance. If our lower-bound
threshold is uL = 2% and our upper threshold is uB = 95%, then for the
augmented training set, we would include only Bob’s features for July, with a
negative label. Suppose further that our ground truth labels in June indicate
that Alice and Bob both belonged to the segment of interest that month. If
subscribers have an 80% chance of maintaining a positive label from one month
to the next (α1 = 0.8 in eq. 2b), and the segment of interest includes 30% of the
population (β = 0.3 in eq. 3), then Alice has a 99% chance of belonging to the
segment given both her June and July data, while Bob has a 9% chance (see
eqs. (7) and (8)). Thus, with the same thresholds, our filtered training set would
include only Alice’s features for July, with a positive label.

We performed all numerical tests on a 15-inch 2018 MacBook Pro (2.6 GHz
Intel Core i7 Processor; 16 GB 2400 MHz DDR4 Memory). We used Python
3.8.6 with the following packages (versioning in parentheses): lightgbm (3.0.0),
numpy (1.18.5), pandas (1.1.4), scikit-learn (0.23.20), & xgboost (1.2.1).

4.3 Results

We measure model performance using AUC and report our results in Table 1.
Mean performance increases with each successive approach (baseline to augmented
to filtered methods) for each of the three types of classification methods used. For
the LightGBM classifier, we have reason to prefer the filtered training method
over the baseline (avg. +7.0% improvement in AUC; p = 0.00787; paired sample
t-test with 6 degrees of freedom against a one-sided alternative) and over the
augmented training method (avg. +5.7% improvement in AUC; p = 0.0333; same
test).

classifier method trial 1 trial 2 trial 3 trial 4 trial 5 trial 6 trial 7 mean

LightGBM baseline 0.611 0.564 0.698 0.564 0.645 0.636 0.588 0.615
augmented 0.611 0.536 0.689 0.525 0.720 0.611 0.687 0.626
filtered 0.630 0.582 0.704 0.620 0.705 0.668 0.690 0.657

XGBoost baseline 0.568 0.553 0.669 0.590 0.657 0.688 0.621 0.621
augmented 0.555 0.564 0.677 0.601 0.654 0.663 0.652 0.624
filtered 0.664 0.580 0.619 0.600 0.696 0.662 0.645 0.638

Feedforward NN baseline 0.556 0.520 0.517 0.485 0.621 0.581 0.514 0.542
augmented 0.591 0.551 0.511 0.458 0.634 0.558 0.570 0.553
filtered 0.589 0.554 0.539 0.460 0.640 0.565 0.595 0.563

Table 1. Classification AUC (Area Under the receiver operating characteristic Curve)
for each of the methods tested. The mean column reports the average AUC over the 7
independent trials for each method.
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5 Related work

We now describe how our proposed algorithm for data augmentation relates to
both filtering and semi-supervised learning.

5.1 Discriminative Bayesian filtering

State-space models having the graphical form (1) relate an unobserved Marko-
vian sequence (Z1, Z2, . . . ) of interest to a series of observed measurements
(X1, X2, . . . ), where each measurement depends only on the current hidden state.
Also known as hidden Markov models, they have been extensively studied due to
their wide range of applications. Discriminative variants, including Maximum
Entropy Markov Models [22] and Conditional Random Fields [18], allow one
to use p(zt|xt) instead of p(xt|zt) for inference. Moving from a generative to a
discriminative approach allows one to more directly consider the distribution of
states given observations, at the cost of no longer learning the joint distribution of
the hidden and observed variables. (In particular, after training such a model, one
cannot sample observations.) Applications include human motion tracking [33,16]
and neural modeling [4,3,2].

5.2 Data augmentation and semi-supervised learning

Given a small set of labeled training data and an additional set of unlabeled points,
semi-supervised methods attempt to leverage the location of the unlabeled training
points to learn a better classifier than could be obtained from the labeled training
set alone [38,8]. For example, graph-based approaches use pairwise similarities
between labeled and unlabeled feature-points to construct a graph, and then let
labeled points pass their labels to their unlabeled neighbors. In the sense that our
filtering process passes information along the Bayesian graph (1), our method is
similar in spirit to graph-based methods—like Label Propagation [39] and Label
Spreading [37]—though our graph derives from the natural temporal relationship
of our measurements and not from the locations of the feature-points.

Self-learning refers to the practice of using the predictions from one classifier
in order to train a second classifier [31,35,34]. For example, Pseudo-labeling [20]
assigns predicted labels to unlabeled features and adds them to a supervised train-
ing set, in an approach equivalent to minimum entropy regularization [13]. Recent
work in deep learning elaborates heavily on this idea, where latent representations
gained from intermediate network layers play a crucial role [28,29,19,32,14,40,7].
A common failure mode for self-learners in general entails inadvertently misclas-
sifying points and then propagating these erroneous labels to their unlabeled
neighbors. Recent proposals to reduce this so-called confirmation bias mostly
focus on deep neural networks [26,36,1].

6 Conclusions and Directions for Future Research

In this paper, we considered a semi-supervised learning problem involving se-
quential observation data and showed how filtering could be employed for data
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augmentation. We described a method that leverages the predictive posterior
to augment the training dataset and compared it to a standard pseudo-labeling
approach that performs augmentation using likelihood-based estimates. We then
showed how classifiers trained on the filtered dataset can outperform those trained
using pseudo-labeling.

The particular problem we considered consisted of time-delineated sequences
of features, each coupled with a single time-dependent label. This problem
corresponds to a relatively basic case, where each subscriber is surveyed at a
single point in time. One can imagine having ground truth labels for a subscriber
or instance at multiple points in time. In such a case, Bayesian smoothing may
be applied to determine the predictive posterior for the points in time between
the two labels. For more complex relationships between observations, belief
propagation [27] or expectation propagation [23] may be worth exploring.
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