
EasyChair Preprint
№ 6255

Bilinear Boundary Optimal Control of a Kirchhoff
Plate Equation

Abdelhak Bouhamed, Abella El Kabouss and Hassane Bouzahir

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 7, 2021



Bilinear Boundary Optimal Control of a Kirchhoff Plate Equation

****

16th May, 2021

Abstract

We consider the problem of optimal control of a Kirchhoff plate equation governed by bilinear
control such as coefficient like hz. The question is to obtain a distributed control which minimizes a
function cost constituted of the deviation between a desired state and the reached one, and the energy
term. The purpose of this study is to prove that an optimal control exists, and it is characterized as
a solution to an optimality system. Thus, we give a sufficient condition for the uniqueness of such a
control.
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1 Introduction

In this paper, we are concerned with the following system,
ztt +∆2z = 0 Q = Ω×]0,T [,
∆z+(1−µ)B1z = 0 Σ = Γ×]0,T [,
∂

∂υ
∆z+(1−µ)B2z = kzt +hz Σ = Γ×]0,T [,

z(x,y,0) = z0, zt(x,y,0) = z1 Ω,

(1)

where Ω ⊂ R2 is an open, bounded domain with boundary Γ and υ = (n1,n2) denotes an outward unit
normal to the boundary, the operators B1 and B2 are given by

B1z = 2n1n2zxy−n2
1zyy−n2

2zxx,

B2z =
∂

∂τ
[(n2

1−n2
2)zxy +n1n2(zyy− zxx)],
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where τ = (−n2,n1) denotes tangential direction. In the boundary conditions, 0 < µ <
1
2

is the Poisson’s
ratio and k > 0 is a positive constant.
The objective functional is given by

J(h) =
1
2

(∫
Q
(z− zd)

2dQ+β

∫
Σ

h2dΣ

)
. (2)

where z is a solution of System (1), zd ∈ L2(Ω) is a desired value and β is a constant positive. The cost
of implementing the control belonging

U = {h ∈ L∞(Γ)/−M ≤ h≤M} (3)

where M is a constant positive such that 0 < M < 2k−1.
We consider the following optimal control problem:

J(h∗) = min
h∈U

J(h), (4)

Our purpose is to establish the existence and uniqueness of solutions for the System (1), seek an optimal
control h∗ ∈U satisfying the optimal control problem (4), and derive some necessary optimality condi-
tions for the optimal control h∗.

In recent years, plate models and control have received great attention by researches, we can refer to
Lagnese and Lions [9] , Lagnese, Leugering and Schmidt [11] and Li and Yong [14]. They have success-
ful applications in many disciplines, namely, economics, environment,management and engineering etc.
In the context of control theory and, in particular, optimal control problem, some authors have studied
a variety of plate models. In [8] the authors have discussed an optimal control of a Kirchoff plate with
boundary control that allows to minimize a functional cost which contains the energy of the control and
the gradient of the error between the actual trajectory and the desired. In [17], R. Prakash has studied
an optimal control problem for the time-dependent Kirchhoff-Love plate with distributed control. Also
in [2] the authors have considered a control problem for the system of non-linear Karman’s equations
for a thin elastic plate. Existence and uniqueness of an optimal control have been established. On the
other hand, the bilinear control problem for the Kirchoff plate equation has been first studied by Bradely
and Lenhart [5] on what concerns a bilinear spatial control problem. Also, in collaboration with Young
[6] they have considered a bilinear system excited by spatial-temporal controls, and in [4] Bradely and
Lenhart have considered the same problem with distributed control. In [16] the authors have studied a
Von Karman plate equation and have derived the existence and uniqueness of a spatial bilinear optimal
control which is a function of the spatial variables.
Other papers have examined bilinear boundary control problems, which is the case of Lenhart and Wilson
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[13] which have studied the optimal control of an equation with the convective boundary condition such
as the bilinear control that represents a heat transfer coefficient. The used approach consists in finding
a unique optimal control in terms of the solution of an optimality system, while Zerrik and El Kabouss
[18] have discussed a bilinear boundary control problem of an output of parabolic systems with bounded
control set. Moreover, in [19], they have studied an optimal control problem for the heat equation in
order to give a control that leads to a state as close possible to a desired state, only on a subregion of the
domain of evolution under unbounded controls sets.

The bilinear optimal control of a Kirchhoff Plate equation was considered in ([4], [6], [5]) with
internal control, so in this paper we extend to the case of boundary control using the approach given in
([13], [19]), we prove existence of an optimal control solution for Problem (4) by a minimizing sequence
argument. Then we derive the necessary optimality conditions of the optimal control and we prove that
the optimal control is unique for small time T.

An outline of the remainder of the paper is as follows: In Section 2, we prove existence of an optimal
control solution of Problem (4). In Section 3, we obtain a characterization of an optimal control as a
solution of an optimality system which is derived by differentiating the cost functional with respect to
the control, and we discuss a condition uniqueness.

2 Existence of a boundary optimal control

In this section, we show that System (5) has a unique solution. Then we show existence of an optimal
control solution for (4) by a minimizing sequence argument.
We consider the following system

ztt +∆2z = f Q = Ω×]0,T [,
∆z+(1−µ)B1z = 0 Σ = Γ×]0,T [,
∂

∂υ
∆z+(1−µ)B2z = kzt +hz+g Σ = Γ×]0,T [,

z(.,0) = z0, zt(.,0) = z1 Ω,

(5)

where f ∈ L2(Q) and g ∈ L2(Σ).
Let us first define the bilinear form.

a(z,w) =
∫

Ω

[
∆z∆w+(1−µ)(2zxywxy− zyywxx− zxxwyy)

]
dΩ (6)

We know that ([10]):

m1‖z‖2
H2(Ω) ≤ a(z,z)≤ m2‖z‖2

H2(Ω) for all z ∈ H2(Ω), (7)

3



where m1 and m2 are positive constants.
Also, we define

b(z,w) =
∫

Γ

(
kztw+hztw+gw

)
dΓ, (8)

For notational convenience, we set

H = H2(Ω)×L2(Ω)

z = z(h), z̃ = (z,zt)

We present our definition of weak solution:

Definition 1 Given h ∈U, we say that a function z ∈C
(
[0,T ];H2(Ω)

)
, with zt ∈C

(
[0,T ];L2(Ω)

)
,ztt ∈

C
(
[0,T ];(H2(Ω))′

)
is a weak solution of the problem (1) satisfies:∫ T

0
〈ztt ,w〉dt +

∫ T

0
a(z,w)(t)dt +

∫ T

0
b(z,w)(t)dt =

∫
Q

f wdQ, for all w ∈ H2(Ω) (9)

for any w ∈ H2(Ω) and 0≤ t ≤ T .
z(0) = z0, zt(0) = z1, 〈., .〉 denotes the duality pairing of

[
H2(Ω)

]′ and H2(Ω).

By using the technique from [3], [7] and [12], we represent System (5) as an abstract ordinary differential
equation, we define the operator A : L2(Ω)−→ L2(Ω) by

A z = ∆
2z, f or z ∈ D(A ) =

{
z ∈ H2(Ω) : ∆z+(1−µ)B1z|Γ = 0

and
∂

∂υ
∆z+(1−µ)B2z|Γ = 0

}
.

with A ∗ is adjoint operator. We also make use of the Green maps G : L2(Γ)−→ L2(Ω), defined by :
Gg1 = z⇐⇒ ∆2z = 0 in Ω,

∆z+(1−µ)B1z = 0 on Γ,
∂

∂υ
∆z+(1−µ)B2z = g1 on Γ.

(10)

with G∗ is adjoint operator. It can be shown that (see [15]):

G ∈L (Hs(Γ)−→ H7/2+s(Ω)), f or all s ∈ R. (11)
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Next we define : A : D(A)⊂ H −→ H by

Az̃ =
(

0 I
A 0

)(
z
zt

)
with D(A) = D(A )×H2(Ω). (12)

Note that A is skew adjoint, hence D(A) = D(A∗) and A generates a unitary group on H [3].

We define another linear operator B : L2(Γ)−→ D(A)′
(
see [3], page 8 with U = L2(Γ)

)
Bw =

(
0

A Gw

)
, (13)

The adjoint operator B∗ of B is computed by:

(Bw, z̃)H2(Ω)×L2(Ω) = (w,G∗A ∗z2)L2(Γ) for z̃ ∈ D(A∗)and w ∈ L2(Γ).

We obtain

B∗z̃ = G∗A ∗z2, for z̃ ∈ D(A). (14)

On the other hand, by using the Green formula, we can show (see [3]) that

G∗A ∗z =−z |Γ, f or z ∈ D(A ). (15)

Next F is linear operator from H2(Ω)×L2(Ω)−→ L2(Γ) given by

F z̃ =−kB∗z̃. (16)

where z̃ = (z1,z2). By the above notation, Equation (5) may be written as an abstract ODE

d
dt

z̃(t) = Az̃(t)+BF z̃(t)+BH (z̃(t))+ B̃(z̃(t)),

z̃(0) = (z0,z1),

(17)

where H (z̃(t)) = hz+g, and B̃(z̃(t)) =

0

f

.

Now we prove that System (5) has a unique weak solution z(t) in C([0;T ];H), for this we need the
following results:
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Lemma 2.1
Let AF =A+BF with domain D(AF)= {x̃=(x1,x2)∈H2(Ω)×L2(Ω) : x2 ∈H2(Ω)and x1+kGG∗A x2 ∈
D(A )}.
(H1) AF generate an exponentially stable semigroup on H2(Ω)×L2(Ω).

(H2) A−1
F B ∈L (L2(Γ)−→ H2(Ω)×L2(Ω)).

(H3)
∫ T

0
‖B∗eA∗F t x̃‖L2(Γ)dt ≤C‖x̃‖H2(Ω)×L2(Ω) for some 0 < T < ∞ and for all x̃ ∈ D(A∗F).

Proof See Theorem 3.1
(
with B̃1F1 = 0

)
[3].

Lemma 2.2 [3]
Assume (H1) and (H2) hold. Then

sup
0≤t≤T

‖
∫ t

0
eAF (t−r)Bz(r))dr‖H2(Ω)×L2(Ω)≤C‖z‖C([0,T ];L2(Γ)), (18)

Theorem 1
For z̃0 = (z0,z1) ∈ H = H2(Ω)×L2(Ω) and h ∈U, System (5) has a unique weak solution z̃ = (z,zt) in
C([0;T ];H).

Proof The solution z to (5) can be written as:

z̃(t) = eAF t z̃0 +
∫ t

0
eAF (t−r)BH (z(r))dr+

∫ t

0
eAF (t−r)B̃(z̃(r))dr,

We prove that the map Th

Thz̃(t) = eAF t z̃0 +
∫ t

0
eAF (t−r)BH (z̃(.,r))dr+

∫ t

0
eAF (t−r)B̃(z̃)(.,r)dr.

has a unique fixed point in C([0,T0];H).

Step 1. We prove that, if T0 is small enough, there exists a unique fixed point such that

Thz̃(t) = z̃(t) in C([0,T0];H)

To use the contraction mapping theorem, we need to show that Th is bounded and contractive.
For boundedness,

‖Thz̃‖C([0;T0];H) = ‖eAF t z̃0 +
∫ t

0
eAF (t−r)BH (z̃(.,r))dr+

∫ t

0
eAF (t−r)B̃(z̃)(.,r)dr‖C([0;T0];H)

≤ ‖eAF t z̃0‖C([0;T0];H)+ sup
0≤t≤T0

∫ t

0
‖eAF (t−r)FH (z̃(.,r))‖Hdr+ sup

0≤t≤T0

∫ t

0
‖eAF (t−r)B̃(z̃)(.,r)‖Hdr.
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Using Lemma (2.2), we get

‖Thz̃‖C([0;T0];H) ≤ ‖eAF t z̃0‖H+C sup
0≤t≤T0

∫ t

0
‖h(.,r)z(.,r)+g(.,r)‖L2(Γ)dr+ sup

0≤t≤T0

∫ t

0
‖eAF (t−r) f (.,r)‖L2(Ω)dr.

Since AF generates an exponentially stable semi-group on H2(Ω)×L2(Ω), we obtain

‖Thz̃‖C([0;T0];H) ≤C‖z̃0‖H+C sup
0≤t≤T0

∫ t

0
‖h(.,r)z(.,r)‖L2(Γ)dr+CT0‖g‖C([0,T0];L2(Γ)+CT0‖ f‖C([0,T0];L2(Ω))

≤C‖z̃0‖H+C sup
0≤t≤T0

∫ t

0
‖h(.,r)‖L∞(Γ)‖z(.,r)‖L2(Γ)dr+CT0‖g‖C([0,T0];L2(Γ)+CT0‖ f‖C([0,T0];L2(Ω)).

Since ‖h(.,r)‖L∞(Γ)≤M, we have

‖Thz̃‖C([0;T0];H) ≤C‖z̃0‖H+MC sup
0≤t≤T0

∫ t

0
‖z(.,r)‖L2(Γ)dr+CT0‖g‖C([0,T0];L2(Γ))+CT0‖ f‖C([0,T0];L2(Ω)).

For n≥ 2, there exists a constant C > 0 such that for every z ∈ H1(Ω) see [1]

‖z‖L2(∂Ω)≤C‖z‖H1(Ω),

it yields

‖Thz̃‖C([0;T0];H) ≤C‖z̃0‖H+MC sup
0≤t≤T0

∫ t

0
‖z(.,r)‖H1(Ω)dr+CT0‖g‖C([0,T0];L2(Γ))+CT0‖ f‖C([0,T0];L2(Ω)).

Hence,

‖Thz̃‖C([0;T0];H) ≤C‖z̃0‖H+MC sup
0≤t≤T0

∫ t

0
‖z(.,r)‖H2(Ω)dr+CT0‖g‖C([0,T0];L2(Γ))+CT0‖ f‖C([0,T0];L2(Ω)).

Which gives

‖Thz̃‖C([0;T0];H) ≤C‖z̃0‖H+CMT0‖z̃‖C([0;T0];H2(Ω)×L2(Ω))+CT0‖g‖C([0,T0];L2(Γ))+CT0‖ f‖C([0,T0];L2(Ω)).

We obtain that Th is bounded.
For contraction, :
similarly for any z̃ = (z1,z2), w̃ = (w1,w2) ∈C([0;T0];H)

‖Thz̃−Thw̃‖C([0;T0];H) ≤CMT0‖z̃− w̃‖C([0;T0];H).
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Taking T0 <
1

MC
, we obtain that Th is a contractive mapping for t ≤ T0. Thus, we have existence of a

unique fixed point on C([0;T0];H).

Step 2. Extend the above result to a solution on [T0,2T0]. We set z̃(T0) as the new initial data. By
a second contraction argument, we have a unique solution on C([T0;2T0];H). Repeating the process a
finite number of times, yields the result on [0,T ].

�

We now present a priori estimate needed for existence of an optimal control.

Lemma 2.3
if z̃0 = (z0,z1) ∈ H = H2(Ω)×L2(Ω), g ∈ L2(Σ) and f ∈ L2(Q). Then, the weak solution z of System
(5) satisfies the following inequalities:

sup
0≤t≤T

(
‖z(t)‖H2(Ω)+‖zt(t)‖L2(Ω)

)
+‖zt‖L2(0,T,L2(Γ))+‖ztt‖L2(0,T,(H2(Ω))′)

≤C
(
‖z̃0‖H+‖g‖L2(0,T ;L2(Γ))+‖ f‖L2(0,T ;L2(Ω)

)
,

(19)

Proof
Multiplying System (5) by zt and integrating over Q = Ω× [0, t], we obtain∫

Q

(
zttzt +∆

2zzt − f zt
)
dQ = 0.

Hence,

1
2

∫ t

0

d
dt

(
‖zt‖2

L2(Ω)+‖∆z‖2
L2(Ω)

)
dt +

∫
Σ

(1−µ)
[
B1z

∂

∂υ
zt −B2zzt

]
dΣ+

∫
Σ

(
kz2

t +hzzt +gzt
)
dΣ =

∫ t

0

∫
Ω

f ztdΩdt

Using Lemma 4.1 (see [3]), we obtain

1
2

∫ t

0

d
dt

(
‖zt‖2

L2(Ω)+‖∆z‖2
L2(Ω)

)
dt +(1−µ)

∫ t

0

∫
Ω

[
2zxyzxyt − zyyzxxt − zxxzyyt

]
dΩdt +

∫
Σ

(
kz2

t +hzzt +gzt
)
dΣ

=
∫ t

0

∫
Ω

f ztdΩdt

Therefore, we can obtain the following from (6):

1
2

∫ t

0

d
dt
‖zt‖2

L2(Ω)dt +
1
2

∫ t

0

d
dt

a(z,z)dt +
∫

Σ

(
kz2

t +hzzt +gzt
)
dΣ =

∫ t

0

∫
Ω

f ztdΩdt.
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We get

‖zt(t)‖2
L2(Ω)+a(z(t),z(t))+2

∫
Σ

(
kz2

t +hzzt +gzt
)
dΣ = ‖z1‖2

L2(Ω)+a(z0,z0)+2
∫ t

0

∫
Ω

f ztdΩdt

Applying the Young inequality, we obtain

‖zt‖2
L2(Ω)+a(z(t),z(t))+2k

∫
Σ

z2
t dΣ≤ ‖z1‖2

L2(Ω)+a(z0,z0)+M‖zt‖2
L2(Σ)+M‖z‖2

L2(Σ)+‖g‖
2
L2(Σ)+‖zt‖2

L2(Σ)+∫ t

0
‖ f‖2

L2(Ω)dt +
∫ t

0
‖zt‖2

L2(Ω)dt

Since dim Ω = 2, We know by Sobolev imbeddings that H1(Ω) ⊂ Lp(Γ) for any p > 1 (see Theorem
5.22 of [1]) and consequently

‖zt‖2
L2(Ω)+a(z(t),z(t))+(2k−M−1)

∫
Σ

z2
t dΣ≤ ‖z1‖2

L2(Ω)+a(z0,z0)+‖g‖2
L2(Σ)+M

∫ t

0
‖z‖2

H1(Ω)dt+∫ t

0
‖ f‖2

L2(Ω)dt +
∫ t

0
‖zt‖2

L2(Ω)dt

Using (7), we have

‖zt‖2
L2(Ω)+m‖z‖2

H2(Ω)+(2k−M−1)‖zt‖2
L2(Σ) ≤C‖z̃0‖2

H +‖g‖2
L2(0,T,L2(Γ))+‖ f‖2

L2(0,T,L2(Ω))+M
∫ t

0
‖z‖2

H2(Ω)dt+∫ t

0
‖zt‖2

L2(Ω)dt

Hence,

‖zt‖2
L2(Ω)+m‖z‖2

H2(Ω)+(2k−M−1)‖zt‖2
L2(Σ) ≤ ‖z̃0‖2

H +‖g‖2
L2(0,T,L2(Γ))+‖ f‖2

L2(0,T,L2(Ω))+C
∫ t

0
‖z̃‖2

H2(Ω)×L2(Ω)dt

(20)

Since 2k−M−1 > 0, we obtain

‖z̃‖2
H2(Ω)×L2(Ω) ≤C

(
‖g‖2

L2(0,T,L2(Γ))+‖ f‖2
L2(0,T,L2(Ω))+‖z̃0‖2

H

)
+

C
∫ t

0
‖z̃‖2

H2(Ω)×L2(Ω)dt

Using Gronowall’s inequality, we obtain

‖z̃‖2
H2(Ω)×L2(Ω) ≤C

(
‖g‖2

L2(0,T,L2(Γ))+‖ f‖2
L2(0,T,L2(Ω))+‖z̃0‖2

H

)
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Taking the supremum, this gives

sup
0≤t≤T

(
‖z(t)‖H2(Ω)+‖zt(t)‖L2(Ω)

)
≤C

(
‖g‖2

L2(0,T,L2(Γ))+‖ f‖2
L2(0,T,L2(Ω))+‖z̃0‖2

H

)
(21)

From (20) and (21), we can obtain

sup
0≤t≤T

(
‖z(t)‖H2(Ω)+‖zt(t)‖L2(Ω)

)
+‖zt‖L2(0,T,L2(Γ)) ≤C

(
‖z̃0‖H+‖g‖L2(0,T ;L2(Γ))+‖ f‖L2(0,T ;L2(Ω)

)
,

(22)

Now we prove the inequality

‖ztt‖L2(0,T,(H1(Ω))′) ≤C
(
‖z(0)‖H1(Ω)+‖zt(0)‖L2(Ω)+‖ f‖L2(0,T,L2(Ω))+‖g‖L2(0,T,L2(Γ))

)
. (23)

In view of (9), we infer that

for w ∈ H2(Ω), |〈ztt ,w〉| ≤ |a(z,w)|+ |b(z,w)|+ |
∫

Ω

f wdx|. (24)

Together with (7) and (8), we obtain

|a(z,w)|+ |b(z,w)| ≤ m2‖z‖H2(Ω)‖w‖H2(Ω)+ k‖zt‖L2(Γ)‖w‖L2(Γ)+M‖z‖L2(Γ)‖w‖L2(Γ)+‖g‖L2(Γ)‖w‖L2(∂Ω)

≤ m2‖z‖H2(Ω)‖w‖H2(Ω)+ k‖zt‖L2(Γ)‖w‖H1(Ω)+M‖z‖H1(Ω)‖w‖H1(Ω)+‖g‖L2(Γ)‖w‖H1(Ω)

≤
(

m2‖z‖H2(Ω)+ k‖zt‖L2(Γ)+M‖z‖H2(Ω)+‖g‖L2(Γ)

)
‖w‖H2(Ω)

≤C
(
‖z‖H2(Ω)+‖zt‖L2(Γ)+‖g‖L2(Γ)

)
‖w‖H2(Ω).

Where C is a constant. We can deduce the following,

|〈ztt ,w〉| ≤C
(
‖z‖H2(Ω)+‖zt‖L2(Γ)+‖g‖L2(Γ)+‖ f‖L2(Ω)

)
‖w‖H2(Ω),

From inequality (21) and (22), we can obtain

‖ztt‖L2(0,T,(H1(Ω))′) ≤C
(
‖z(0)‖H2(Ω)+‖zt(0)‖L2(Ω)+‖ f‖L2(0,T,L2(Ω))+‖g‖L2(0,T,L2(Γ))

)
.

10



�

Now we obtain existence of an optimal control.

Theorem 2
There exists an optimal control h∗ ∈U minimizing the objective functional J(h) for h ∈U.

Proof
Let hn ∈U be a minimizing sequence such that

lim
n→∞

J(hn) = inf
h∈U

J(h).

Denote zn = z(hn). By lemma 2.3 we have

sup
0≤t≤T

(
‖zn‖H2(Ω)+‖(zn)t‖L2(Ω)

)
+‖(zn)t‖L2(0,T,L2(Γ))+‖(zn)tt‖L2(0,T,(H2(Ω))′)

≤C
(
‖z(0)‖H2(Ω)+‖zt(0)‖L2(Ω)+‖g‖L2(0,T ;L2(Γ))+‖ f‖L2(0,T ;L2(Ω)

)
,

(25)

By weak compactness, there exists z∗ in C([0,T ],H2(Ω)) such that

zn ⇀ z∗ weakly* in L∞([0,T ],H2(Ω)),

∂ zn

∂ t
⇀

∂ z∗

∂ t
weakly* in L∞([0,T ],L2(Ω)),

∂ zn

∂ t
⇀

∂ z∗n
∂ t

weakly in L2(Γ),

∂ 2zn

∂ t2 ⇀
∂ 2z∗n
∂ t2 weakly in L2([0,T ],(H2(Ω))′),

hn ⇀ h∗ weakly in L2(Γ)

The mapping Φ : H2(Ω)−→Φ|Γ ∈ H3/2(Γ) is continuous. Then

zn −→ z∗ in H3/2(Γ)⊂ L2(Γ).

By the definition of a weak solution, we have

〈(zn)tt ,w〉+a(zn,w)+b(zn,w) =
∫

Ω

f wdΩ, for all w ∈ H2(Ω) (26)
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Since

zn −→ z∗ strongly in L2(Γ) (27)

hn ⇀ h∗ weakly in L2(Γ) (28)

then
hnzn −→ h∗z∗ in L2(Γ).

We may now pass to the limit as n−→ ∞ in the weak formulation of zn , we obtain

〈z∗tt ,w〉+a(z∗,w)+b(z∗,w) =
∫

Ω

f wdΩ, for all w ∈ H2(Ω) (29)

Where z∗ = z(h∗) is the solution of System (5) with control h∗. Since

J(h∗) =
1
2

∫ T

0
‖z∗(., t)− zd(.)‖2

L2(Ω)dt +
β

2

∫ T

0
‖h∗(., t)‖2

L2(Γ)dt. (30)

Using lower semi-continuity of L2 norm with respect to weak convergence, we have

J(h∗)≤ lim
n→∞

1
2

∫ T

0
‖zn(., t)− zd(.)‖2

L2(Ω)dt + lim
n→∞

inf
β

2

∫ T

0
‖hn(., t)‖2

L2(Γ)dt

≤ lim
n→∞

infJ(hn)

= inf
h∈U

J(h).

Hence h∗ is an optimal control solution of Problem (5).

�

3 Characterization of an Optimal Control

To obtain a characterization of an optimal control, we derive an optimality system differentiating
the objective functional J(h) with respect to the control h. We must first prove the appropriate differen-
tiability of the mapping

h−→ (z(h),zt(h)) = z̃(h)

12



Lemma 3.1
The mapping h∈U −→ z̃(h) =

(
z(u),zt(h)

)
∈C([0,T ];H2(Ω)×L2(Ω)) is differentiable in the following

sense:
zh+εu− zh

ε
⇀ ψ weakly* in L∞([0,T ];H),

as ε → 0, for any h satisfying h+ εu ∈U for ε small. Moreover ψ̃ = (ψ,ψt) is a weak solution of the
following system: 

ψtt +∆2ψ = 0 Q = Ω×]0,T [,
∆ψ +(1−µ)B1ψ = 0 Σ = Γ×]0,T [,
∂

∂υ
∆ψ +(1−µ)B2ψ = kψt +hψ +uz Σ = Γ×]0,T [,

ψ(.,0) = 0, ψt(.,0) = 0 Ω,

(31)

Proof
Let zε = z(h+ εu) and z = z(h), then (zε − z)/ε is a weak solution of

(
zε − z

ε

)
tt
+∆

2
(

zε − z
ε

)
= 0 Q = Ω×]0,T [,

∆

(
zε − z

ε

)
+(1−µ)B1

(
zε − z

ε

)
= 0 Σ = Γ×]0,T [,

∂

∂υ
∆

(
zε − z

ε

)
+(1−µ)B2

(
zε − z

ε

)
= k
(

zε − z
ε

)
t
+h
(

zε − z
ε

)
+uzε

Σ = Γ×]0,T [,(
zε − z

ε

)
(.,0) = 0,

(
zε − z

ε

)
t
(.,0) = 0 Ω,

(32)

Using Lemma 2.3, we get

sup
0≤t≤T

(
(zε − z)(t)

ε
‖H2(Ω)+‖

zε
t − zt

ε
‖L2(Ω)

)
≤ C‖uzε‖L2([0,T ];L2(Γ))

≤ C‖u‖L∞(Ω) sup
0≤t≤T

‖zε‖L2(Γ)

≤ C‖u‖L∞(Ω) sup
0≤t≤T

‖zε‖H1(Ω)

≤ C‖u‖L∞(Ω) sup
0≤t≤T

‖zε‖H2(Ω)

≤ C0
(
‖z(0)‖H2(Ω)+‖zt(0)‖L2(Ω)

)
,

(33)
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where C0 is independent of ε .
With similar arguments to (33), we can deduce

‖ ∂ 2

∂ t2

(zε − z
ε

)
‖L2(0,T,(H2(Ω))′)≤C1

(
‖z(0)‖H2(Ω)+‖zt(0)‖L2(Ω)

)
,

and

‖ ∂

∂ t

(zε − z
ε

)
‖L2(0,T,(L2(Γ))≤C2

(
‖z(0)‖L2(Ω)+‖zt(0)‖L2(Ω)

)
.

where C1 and C2 are independent of ε . Hence, on a subsequence as ε −→ 0, we have:

zε − z
ε

⇀ ψ weakly* in L∞([0,T ];H).

In a similar way to the proof of Theorem (2), we can obtain that ψ is the weak solution of System (31).

�

Now, we derive our optimality system.

Proposition 1
Given an optimal control h∗ ∈U and the corresponding z̃h∗ = z̃(h∗) = (z,zt), there exists a weak solution
p̃ = (p, pt) in H to the adjoint problem:

ptt +∆2 p = zh∗− zd Q = Ω×]0,T [,
∆p+(1−µ)B1 p = 0 Σ = Γ×]0,T [,
∂

∂υ
∆p+(1−µ)B2 p =−kpt +h∗p Σ = Γ×]0,T [,

p(.,T ) = 0, pt(.,T ) = 0 Ω,

(34)

Furthermore h∗ ∈U satisfies

h∗(., t) = max

(
−M,min

( 1
β

z|Σ p|Σ ,M
))

.

Remark 3.1
If we set

q(x,y, t) = p(x,y,T − t),

w(x,y, t) = h(x,y,T − t),

f (x,y, t) = zh(x,y,T − t)− zd ,

14



then, the adjoint equation becomes
qtt +∆2q = f Q = Ω×]0,T [,
∆q+(1−µ)B1q = 0 Σ = Γ×]0,T [,
∂

∂υ
∆q+(1−µ)B2q = kqt +wq Σ = Γ×]0,T [,

q(.,0) = 0, qt(.,0) = 0 Ω,

(35)

Therefore, it admits a unique solution.

Proof
Let h ∈U be an optimal control and z̃ = z̃(h) be the corresponding optimal solution. Let h+ εu ∈U
for ε > 0 and z̃ε = z̃(h+ εu) be the corresponding weak solution of (5). We compute the directional
derivative of the cost functional J(h) with respect to h in the direction of u. Since J is supposed to attain
its minimum for h, we have

0≤ lim
ε→0+

J(h∗+ εu)− J(h∗)
ε

= lim
ε→0+

∫ T

0

1
2ε

(‖zε − zd‖2
L2(Ω)−‖zh∗− zd‖2

L2(Ω))dt +
β

2

∫
Σ

(2uh∗+ εu2)dΣ

= lim
ε→0+

∫
Q

(
zε − zh∗

ε

)(
zε + zh∗−2zd

2

)
dQ+

β

2

∫
Σ

(2uh∗+ εu2)dΣ

=
∫

Q
ψ(zh∗− zd)dQ+β

∫
Σ

h∗udΣ .

where ψ is a solution of System (31) corresponding to h∗.

Substituting in the adjoint equation (34) for (zh∗− zd) from (34), we obtain

0 ≤
∫

Q
ψ(zh∗− zd)dQ+β

∫
Σ

h∗udΣ

=
∫

Q
ψ
(

ptt +∆
2 p
)
dQ+β

∫
Σ

h∗udΣ

=
∫ T

0

(
〈ψtt , p〉+

∫ T

0
a(ψ, p)dt−

∫
Γ

(kpt −hp)ψdx
)

dt +β

∫
Σ

h∗udΣ.

(36)

Multiplying System (31) by p and integrating over (0,T ), we have∫ T

0

(
〈ψtt , p〉+

∫ T

0
a(ψ, p)dt +

∫
Γ

(kψt +hψ)pdx
)

dt =−
∫

Σ

uzpdΣ.
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Integrating by parts gives∫ T

0

(
〈ψtt , p〉+

∫ T

0
a(ψ, p)dt−

∫
Γ

kptψdx+
∫

Γ

hpψdx
)

dt =−
∫

Σ

uzpdΣ.

It follows ∫ T

0
〈ψtt , p〉dt +

∫ T

0
a(ψ, p)dt =

∫
Γ

kptψdΓ−
∫

Γ

hpψdx−
∫

Σ

uzpdΣ. (37)

Then from (36) and (37), we obtain

0≤−
∫

Σ

uzpdΣ+β

∫
Σ

h∗udΣ. (38)

Taking u = max
(
−M,min

( 1
β

z|Σ p|Σ ,M
))
−h∗, then u(h∗− 1

β
z|Σ p|Σ) is negative and

(
max

(
−M,min

( 1
β

z|Γ p|Σ ,M
))
−h∗

)(
h∗− 1

β
z|Σ p|Σ

)
= 0

So,

if M ≤ 1
β

z|Σ p|Σ we have (M−h∗)(h∗− 1
β

z|Σ p|Σ) = 0, then (since h∗ ≤M),

h∗ = M,

if −M ≤ 1
β

z|Σ p|Σ ≤M, we have (
1
β

z|Σ p|Γ +h∗)(h∗− 1
β

z|Σ p|Σ) = 0 and then

h∗ =
1
β

z|Σ p|Σ ,

if −M ≥ 1
β

z|Σ p|Σ , we have (−M−h∗)(h∗− 1
β

z|Σ p|Σ) = 0 and then (since h∗ ≥−M)

h∗ =−M.

Finally, we conclude that

h∗ = max
(
−M,min

( 1
β

z|Σ p|Σ ,M
))

.

This completes the proof.

�
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4 Uniqueness of the Optimal Control

In this section, we formulate sufficient conditions for the uniqueness of the optimal control solution of
Problem (3).

Proposition 2 Suppose the solution of Systems (5) and (34) is bounded on Q. For T sufficiently small,
the solution of Problem (3) is unique.

Proof
Suppose we have two weak solutions corresponding to two optimal controls, h and h̄:

z̃ = (z,zt), ẑ = (z̄, z̄t)

We then have that z̃− ẑ satisfies the following equation
(z− z̄)tt +∆2(z− z̄) = 0 Q = Ω×]0,T [,
∆(z− z̄)+(1−µ)B1(z− z̄) = 0 Σ = Γ×]0,T [,
∂

∂υ
∆(z− z̄)+(1−µ)B2(z− z̄) = k(z− z̄)t +h(z− z̄)+(h− h̄)z̄ Σ = Γ×]0,T [,

(z− z̄)(.,0) = 0, (z− z̄)t(.,0) = 0 Ω,

(39)

Where we denote

h = max
(
−M,min

( 1
β

z|Σ p|Σ ,M
))

. (40)

and

h̄ = max
(
−M,min

( 1
β

z̄|Σ p̄|Σ ,M
))

. (41)

It can be shown by direct computation that

|h− h̄| ≤ 1
β

(
|p− p̄||z̄|+ |z− z̄||p|

)
. (42)

Applying Lemma (19) to System (39), we

sup
0≤t≤T

‖(z− z̄)(t)‖H2(Ω) ≤C‖(h− h̄)z̄‖L2(Σ) (43)

Therefore, from (42), we can deduce the following:

‖(h− h̄)z̄‖2
L2(Σ) =

∫
Σ

|h− h̄|2|z̄|2dΣ≤ 1
β 2

∫
Σ

(
|p− p̄||z̄|+ |z− z̄||p|

)2|z̄|2dΣ.

17



It follows ∫
Σ

|h− h̄|2|z̄|2dΣ≤ 2
β 2

∫
Σ

(
|p− p̄|2|z̄|2 + |z− z̄|2|p|2

)
|z̄|2dΣ,

≤ 2
β 2

∫
Σ

|p− p̄|2|z̄|4 + |z− z̄|2|p|2|z̄|2dΣ,

≤ 2
β 2

∫
Σ

|p− p̄|2|z̄|4dΣ+
1

β 2

∫
Σ

(
|z− z̄|2|z̄|4 + |z− z̄|2|p|4

)
dΣ,

By using Holder’s inequality, we obtain

∫
Σ

|h− h̄|2|z̄|2dΣ≤ 2
β 2

∫ T

0

(∫
Γ

|p− p̄|4dΓ

)1/2(∫
Γ

|z̄|8dΓ

)1/2

dt

+
1

β 2

∫ T

0

(∫
Γ

|z− z̄|4dΓ

)1/2(∫
Γ

|z̄|8dΓ

)1/2

dt

+
1

β 2

∫ T

0

(∫
Γ

|p|8dΓ

)1/2(∫
Γ

|z− z̄|4dΓ

)1/2

dt.

We get ∫
Σ

|h− h̄|2|z̄|2dΣ≤ 2
β 2

∫ T

0
||p− p̄||2L4(Γ)||z̄||

4
L8(Γ)dt

+
1

β 2

∫ T

0
||z− z̄||2L4(Γ)||z̄||

4
L8(Γ)dt

+
1

β 2

∫ T

0
||p||4L8(Γ)||z− z̄||2L4(Γ)dt.

18



We use Holder’s inequality, we have

∫
Σ

|h− h̄|2|z̄|2dΣ≤ 2
β 2

[∫ T

0
||p− p̄||4L4(Γ)dt

]1/2[∫ T

0
||z̄||8L8(Γ)dt

]1/2

+
1

β 2

[∫ T

0
||z− z̄||4L4(Γ)dt

]1/2[∫ T

0
||z̄||8L8(Γ)dt

]1/2

+
1

β 2

[∫ T

0
||p||8L8(Γ)dt

]1/2[∫ T

0
||z− z̄||4L4(Γ)dt

]1/2

.

Since ∫ T

0
||p− p̄||4L4(Γ)dt ≤ T sup

0≤t≤T
‖p− p̄‖4

L4(Γ),
∫ T

0
||z− z̄||4L4(Γ)dt ≤ T sup

0≤t≤T
‖z− z̄‖4

L4(Γ)

∫ T

0
||p||8L8(Γ)dt ≤ T sup

0≤t≤T
‖p‖8

L8(Γ),
∫ T

0
||z̄||8L8(Γ)dt ≤ T sup

0≤t≤T
‖z̄‖8

L8(Γ)

We obtain ∫
Σ

|h− h̄|2|z̄|2dΣ≤ 2
β 2 T sup

0≤t≤T
‖p− p̄‖2

L4(Γ) sup
0≤t≤T

‖z̄‖4
L8(Γ)

+
1

β 2 T sup
0≤t≤T

‖z− z̄‖2
L4(Γ) sup

0≤t≤T
‖z̄‖4

L8(Γ)

+
1

β 2 T sup
0≤t≤T

‖z− z̄‖2
L4(Γ) sup

0≤t≤T
‖p‖4

L8(Γ).

By using Sobolev imbeddings (see [1])

H1(Ω) ↪→ Lp(Γ) for any p > 1,
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We get ∫
Σ

|h− h̄|2|z̄|2dΣ≤ 2
β 2 T sup

0≤t≤T
‖p− p̄‖2

H1(Ω) sup
0≤t≤T

‖z̄‖4
H1(Ω)

+
1

β 2 T sup
0≤t≤T

‖z− z̄‖2
H1(Ω) sup

0≤t≤T
‖z̄‖4

H1(Ω)

+
1

β 2 T sup
0≤t≤T

‖z− z̄‖2
H1(Ω) sup

0≤t≤T
‖p‖4

H1(Ω).

It follows ∫
Σ

|h− h̄|2|z̄|2dΣ≤ 2
β 2 T sup

0≤t≤T
‖p− p̄‖2

H2(Ω) sup
0≤t≤T

‖z̄‖4
H2(Ω)

+
1

β 2 T sup
0≤t≤T

‖z− z̄‖2
H2(Ω) sup

0≤t≤T
‖z̄‖4

H2(Ω)

+
1

β 2 T sup
0≤t≤T

‖z− z̄‖2
H2(Ω) sup

0≤t≤T
‖p‖4

H2(Ω).

Since p, z, p̄ and z̄ are bounded in H2(Ω), assuming that they are all bounded by a constant C1 we obtain∫
Σ

|h− h̄|2|z̄|2dΣ≤C1T
β 2

(
sup

0≤t≤T
‖p− p̄‖2

H2(Ω)+ sup
0≤t≤T

‖z− z̄‖2
H2(Ω)

)
. (44)

Combining (43) and (44), we deduce that

sup
0≤t≤T

‖z− z̄‖2
H2(Ω) ≤

C2T
β 2

(
sup

0≤t≤T
‖p− p̄‖2

H2(Ω)+ sup
0≤t≤T

‖z− z̄‖2
H2(Ω)

)
. (45)

On the other hand, p̂ = p− p̄ is the solution of the following system
(p− p̄)tt +∆2(p− p̄) = z− z̄ Q = Ω×]0,T [,
∆(p− p̄)+(1−µ)B1(p− p̄) = 0 Σ = Γ×]0,T [,
∂

∂υ
∆(p− p̄)+(1−µ)B2(p− p̄) =−k(p− p̄)t +h(p− p̄)+(h− h̄)p̄ Σ = Γ×]0,T [,

(p− p̄)(.,T ) = 0, (p− p̄)t(.,T ) = 0 Ω,

(46)
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Using (19), we get

sup
0≤t≤T

‖(p− p̄)(t)‖2
H2(Ω) ≤C

(
‖(z− z̄)(t)‖2

L2(Q)+‖(h− h̄)p̄‖2
L2(Σ)

)
. (47)

In a similar way, to estimate ‖(h− h̄)z̄‖2
L2(Σ)

, we obtain

‖(h− h̄)p̄‖2
L2(Σ) ≤

C3T
β 2

(
sup

0≤t≤T
‖p− p̄‖2

H2(Ω)+ sup
0≤t≤T

‖z− z̄‖2
H2(Ω)

)
. (48)

Hence, from (47) and (48), we have

sup
0≤t≤T

‖(p− p̄)(t)‖2
H2(Ω) ≤ T

(
C+

C4

β 2

)(
sup

0≤t≤T
‖p− p̄‖2

H2(Ω)+ sup
0≤t≤T

‖z− z̄‖2
H2(Ω)

)
. (49)

Combining (49) and (45), we infer

sup
0≤t≤T

‖z− z̄‖2
H2(Ω)+ sup

0≤t≤T
‖p− p̄‖2

H2(Ω) ≤ T
(
C+

C5

β 2

)(
sup

0≤t≤T
‖p− p̄‖2

H2(Ω)+ sup
0≤t≤T

‖z− z̄‖2
H2(Ω)

)
.

If we choose T small such that T
(
C+

C5

β 2

)
< 1, then we obtain

sup
0≤t≤T

‖z− z̄‖2
H2(Ω)+ sup

0≤t≤T
‖p− p̄‖2

H2(Ω) ≤ 0.

Which gives the uniqueness.

�

Conclusion 1 Optimal control of a class of Kirchhoff plate equation is considered in bounded bilinear
boundary controls. Existence of an optimal control is proved and characterized by optimality conditions.
A sufficient condition for uniqueness of the optimal control is given. We notice that questions are still
open, for instance the case of optimal control of Kirchhoff equation with unbounded bilinear boundary
controls.
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