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Abstract. This paper proposes two models. The �rst one is designed
bottom-up, i.e., mostly based on DL and Je� Hawkins' temporal prin-
ciple. The second one tackles some aspects of intelligence, speci�cally
concerning the thinking process. It is designed top-down, i.e., mainly
based on cognition and communication.
Additionally, this paper not only exhibits top-down verse bottom-up ap-
proaches, but also presents the two edges of evolution: the DL model
considers the beginning state of learning, while the knowledge represen-
tation model considers the saturated/mature/�nal state of learning.
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1 INTRODUCTION

An AGI design should handle a large variety of scenarios and have many vital
features. Features such as: �exible, �uid, adaptive, and evolving.

We �rst propose a DL Model (DLM) originated mainly from the neural model
in [12]. Then, we propose a model for the important components of an AGI agent:
thinking and memory. It models the representation of elements in a memory,
and describes how the thinking process accesses them and manipulates them for
di�erent tasks. It also encourages �exibility and adaptivity.

It is evident in neuroscience and DL that knowledge has a hierarchical struc-
ture, though there is a controversy about which type is it. In DL and [12] it is a
hierarchy of features, while in [13] it is about the compositionality of objects. In
this paper, our DLM is mainly established on temporal hierarchy. Whereas our
knowledge representation model is based upon associative hierarchy, designated
for e�cient memory access.

Finally, both of our presented models are based on the System 1 and 2 prin-
ciple [6], on a neuro-symbolic combination by converting raw features into op-
erational concepts, and on the stimulus-response principle, since we believe that
one of AGI's characteristics is that knowledge is operational. In other words,
elements that are learned are either objects or their attributes or actions which
act upon them. This notion is presented in many papers on associative memory
or associative NNs, where an association is a response to a stimulus, which can
be either other stimuli [28] or a behavioral response (action) [15].

Please note the DLM, and especially the AKREM, are preliminary ideas.

Also, the DLM is constructed from common and well de�ned components, and

cited papers are given as suggestions to implement some of these components.
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2 The proposed DLM

Our DLM is inspired by the neural models and DLMs such as caption generation
[35] and Visual-Question-Answering [7]. As shown in Fig. 1(a), the idea is to
unwrap the percept-predict structure from the neural model [12] on the left,
into a discriminative-generative or an encoder-decoder structure on the right.

The proposed DLM is illustrated in Fig. 1(b). In this structure the data com-
ing from text and sensors is encoded. The text includes both information and
instructions. Finally, this data is encoded into some extracted features repre-
senting the whole situation, including what the model is requested to do, and
then up-sample it to the actuators (the decoding process).

(a) Percept-predict structure turns into a
discriminative-generative structure.

(b) Sensory data and text in
encoder-decoder structure.

Fig. 1. Sensory data, text and response in the proposed DLM.

Our DLM purpose is to be able to plan and respond to inputs according to
symbolic representation, which is derived from unstructured sensory data.

It is aimed to accomplish this by gradual learning in the following phases.
First, it learns to fuse multi-modal inputs, to establish basic semantic concepts.
Next, its objective is to learn two types of data: objects and their inter-relations.
Hence, it starts by learning basic elements/objects, and then continue with com-
posite objects and relations.

After this proper symbolic comprehension, it turns to learn how to respond
correctly within the common supervised learning approach. Only it does so
within several temporal resolutions: from fast to slow perception and response.

In the next section, we elaborate on these phases.
The gradual temporal representation and learning, implemented in the en-

coder and the decoder of our DLM, is based on the hierarchical temporal prin-
ciple proposed in Je� Hawkins' �rst book [12].

The proposed DLM, as any DLM, is not su�cient to serve as an AGI. Some
issues are addressed in "Issues with the proposed DLM" in Appendix 4.

2.1 Proposed DLM function

A more detailed implementation of the proposed DLM is discussed.
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The DLM has a hierarchical temporal structure, and it is mainly based on two
ideas: the joint learning of multi-modal input, and the learning of intermediate
tasks [8, 10, 14]. The latter is used to implement scene understanding within
di�erent time scales (short, mid, and long terms). For more details about these
and other aspects, see in Appendix 4.

The �rst idea is about extracting features separately from sensors and text,
then learning them together via joint embedding space [29]. Thus, the assump-
tion here is that these inputs are complementary. Since if they are trained to-
gether, then if one of them is missing, it is su�cient for recognition as if the
second one was there too. These fused features represent spatio-temporal infor-
mation for the short-term temporal resolution. In the next phase of learning,
these joint features are extracted further into longer time scales, by freezing �rst
the short-term RNN layers and activating mid-term layers only. The same goes
for the long-range layers afterward.

The second idea is generally about hierarchical learning of tasks [3, 11, 24],
whereby several layers of tasks are learned instead of the usual single output
layer of tasks. In temporal hierarchical learning, the current layer of tasks is
learned �rst, then later more complex tasks are learned in a new layer, based on
the previous tasks.

In our DLM, it is realized by intermediate tasks via RNNs. Using the �rst
idea, the features are extracted in di�erent time resolutions. These features are
the hidden and the output layers in RNN. However, to include intermediate tasks
for di�erent time resolutions, the encoder-decoder structure of RNN is used, as
in translation tasks. In other words, the intermediate tasks are connected to the
context signal(s) of the RNN, not to its hidden/output signal(s). A decoder is
attached to the context or to the encoder layer in the RNN. Thus, the interme-
diate tasks are the outputs of each of these decoders. See more in [24], and in
"Hierarchical Learning" in Appendix 4.

In conclusion, there are two ways to implement hierarchical temporal learn-
ing. Either via the �rst idea, thus to learn multi-modal data in joint embedding
space, at di�erent time scales. Or, via the second idea, where features are ex-
tracted hierarchically temporarily (via RNN output/hidden layers), and interme-
diate tasks are inserted into the temporal structure. Tasks assisting in forming
correct and more appropriate (guided) features, as in [3, 24, 27, 32]. Thus, af-
ter the recognition of spatio-temporal objects in the features extracted from the
two inputs, their relationships should be recognized too. Hence, the intermediate
tasks derive these relationships between objects. Some papers [20, 36] focus on
pairwise interactions between perceived objects in an image, e.g. via a 2D graph
matrix, whereas [21] models high-order interactions between arbitrary subgroups
of objects.

The full sketch of the proposed DLM is shown in Fig. 2. It is seen that
the decoder is also hierarchically-temporarily constructed, as a mirror image of
the perceptual encoder, with skip connections, whose function may be: copy,
normalization, or addition.
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Fig. 2. Hierarchy-temporal DLM.

3 Associative knowledge representation model (AKREM)

In this section, a model of AGI's knowledge representation is described. As ex-
plained in 3.3, it can utilize our general DLM, 2, as its base memory. This model
tries to encapsulate a few cognitive important elements: short-term memory
(STM), long-term memory (LTM), working memory (WM), and thinking. As
mentioned in the abstract, it is designed in a top-down fashion. Speci�cally, it
originates from our communication model.

3.1 Communication

Principles Our fundamental assumption about human-human communication
is that each person is a "black box". Thus, we do not have access to the actual in-
ner interpretation and representation of persons' knowledge. In other words, we
communicate externally, via objective tools (the language), but we have hidden
subjective perspectives or world models, constructed during a lifetime via di�er-
ent circumstances and experiences. This assumption is illustrated in Fig. 3(a),
where the inner representation of the same message varies among people.

Next, our communication model consists of several principles. (i) The sending
process is about converting an abstract message, such as a story or technical
procedure, into a sequence of words. Hence, this process is generative. It is
about decomposing a high-level idea into low-level concepts. Exactly opposite is
the receiving process. In it, the recipient tries to assemble the idea from the low-
level concepts, hence it is a discriminative process. These processes are visualized
in Fig. 3(a). (ii) These couple of processes can be viewed also temporarily. The
sender's thought is materialized fully when he begins his sentence(s). But to
fully capture his message, the recipient has to wait till the end of the message.
Hence, the end of the thought is the beginning of the message, while its start
is the ending of the message. (iii) Additionally, it is about context. Due to the
"black-box" assumption, to be maximally understood, the sender must start
in the most general context, or common ground, to �t the message to a wide
range of di�erent recipients, with a di�erent states of mind. And then gradually
lead the recipient to his speci�c message. Such a chronological process would
be optimal for delivering the message as accurately as possible. (iv) Finally, to
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make the message clearer, both communicators should hold the models of all the
relevant participants in the conversation (the recipient, the sender, their shared
common knowledge, and their self-models). For principles (ii)-(iv) see Fig. 3(b).

(a) Perception and communication (b) Models in communication

Fig. 3. Communication basics

Models in communication More generally, principle (iv) reveals that human-
AGI communication requires something more than merely a set of models. It
requires that the AGI itself hold human-like cognitive properties and capabilities,
so that humans and AGI agents would be synchronized during communication
and understand each other. Hence, the AGI should have characteristics such as
episodic memory, continual learning, abstraction, and generalization.

Furthermore, a more broad interpretation of principle (iv), suggest that hu-
mans are actually modeling everything. Although, we model each thing di�er-
ently - depending on our interaction with it. It applies to both di�erent people
(di�erent interactions) and di�erent groups of people. Similarly, it applies to each
object/animal or their groups. Interaction with human(s) is unique because it
creates a model by conversational interaction. This idea is illustrated in Fig. 4.
We probably have also self-modeling, i.e. expectations from us, in the oppo-
site direction of the interaction. In other words, how a person should behave in
di�erent groups, with di�erent people, and with di�erent animals and objects.
Moreover, we can model ourselves, while viewing ourselves externally (as if we
are another person), to learn and perhaps change our behavior.

Fig. 4. Human create models from interaction.
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Additionally, we perform a passive interaction, i.e. a simple observation. For
example, infants mimicking when observing other humans (e.g. parents/siblings).

All the above describes the theory of embodiment, expressed by the bound-
aries an agent creates between di�erent entities and between them and itself.

3.2 Detailed AKREM

Based on the communication principles above, AKREM is derived, expressing
how information is represented in a memory, and to serve as a basis for cognition.

Function Our AKREM is mainly originated from two aspects: (i) the phe-
nomenon of random bouncing from one thought to another; and (ii) the commu-
nicative hypothesis of converting an idea to low-level concepts and vice versa.
This model shows how information is represented. In the decoding of a message,
it is represented via the dynamic construction of hierarchical structures, simi-
larly to constructing syntactic trees of sentences in Natural Language Processing
(NLP). While in the encoding of a message, it is about descending a given hier-
archy, according to a chronological order, gathering lowest-level facts and thus
producing a sequence. A video demonstrating how a speci�c story is generating
an associative hierarchy, is in: "AKREM decoding" in [16].

It can be seen in the video, that when a new unrelated piece of knowledge
enters the input, the previous pieces are grouped in form of association(s). It
is a bit similar to the dynamic event detection [17], where a sequence is dis-
criminated into a set of events. As here, the task is accomplished by recognizing
similarities and dissimilarities in a sequence. Only the di�erence is, that there
is only event discrimination, while here it is about constructing a plot out of
the recognized events. Moreover, the DNN stores any new (frequent enough)
composite event, which results in combinatorial explosion issue, while here it
does not store any combination of events as a new event. In other words, unlike
dynamic event detection, which has to store and de�ne each new combination
of events, here the knowledge storage is separated into two types of memory:
concepts/procedural memories to store basic events, and episodic memory, to
store any new encountered combination of basic events, which is constructed
dynamically.

Hence, AKREM can be considered as an upgraded model of the dynamic
event detection model. The next paper extends this associative model even fur-
ther, into a model of models.

Next, we formalize this model as a general structure of some plot/message.
We can imagine �rst details about a scene are triggered one by one, and placed
in level 0 of the newly generated hierarchy. Next, another scene is introduced.
Each scene is represented by combining all its details in level 1. At the end of
chapter 1, a few scenes were gathered. After �nishing chapter 2, both chapters
are connected to be in level 2. And it can go on and on. See Fig 5(b).

In order to both generate a hierarchy from a sequence or vice versa, some kind
of order has to be stored, e.g. chronological/causal, in all the levels of the plot,
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see for example the temporal trail in Fig 5(a). But the direction in connections
can be extended further. It can represent di�erent types of connections, e.g. be-
tween the levels and between the hierarchies; abstraction/generalization; various
associative connections, e.g.: comparison, analogy, causality, and correlation.

It is seen that the lowest level (0) is the most general with the most objective
context, since the low-level concepts have so many associations, that they lose
almost entirely their speci�city. However, as one goes higher in the levels, the
more speci�c the context becomes, since it is constructed underneath a more
speci�c structure. Hence, the highest levels hold the essence of all levels below.
Thus, they possess the most accurate message.

The meaning of low-level concepts having the most associations is that they
are connected to a huge amount of such hierarchies in the memory, gathered so
far. The higher one goes in a hierarchy, the fewer associations it has with other
hierarchies, until one reaches the levels separating this hierarchy from the rest.

Note that how the grouping occurs was not speci�ed. For now, the grouping
can be considered as summarizing or �nding the essence of distinct items, but the
grouping can also be treated as �nding some common meaning or a purpose. See
for example in the video, that for every grouping one can ask the question "why"
regarding the meaning of the items in the group, whose answer is representing
the grouping.

Thus we presume that our thinking is purposeful. We assume that in ac-
tive/generative mode we have a purpose and we construct a hierarchy keeping
in mind the purpose the whole time (perhaps in a top-down fashion), while
in passive/receiving mode we construct the sender message from details, i.e.
bottom-up, reconstructing its purpose.

(a) Top view of the trajectory (b) Side view of the trajectory

Fig. 5. Associative thinking via associative trajectories

At other times, we can have a no-purpose thinking. It can be viewed as
a wandering between existing hierarchies, and randomly jumping from one to
another, at random levels within them. This is the �rst aspect mentioned above.

Characteristics Associative thinking occurs all the time in our opinion.
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For example, daily, where the hierarchy is constructed like a long narrative,
with some experience at the top of the narrative's trajectory, made out of all
separate events that occurred during this day. But it can also be attached to a
previous hierarchy of the previous day, and even the previous week/month/year.

We use associative thinking in most of our cognitive tasks: in
generating/perceiving a story/event/message, which is some (non-)linear plot
of details; and in planning/simulating/contemplating/problem solving, which is
also a series of possible actions and outcomes.

This AKREM is like a holographic memory, where the triggered neurons are
shown in Fig 5(b) on the yellow surface at the bottom. They belong to the DLM
presented in Fig. 1. Hence, this holographic memory is orthogonal to this DNN.
In other words, we can consider triggered neurons in this DNN, producing this
hierarchical dynamic structure.

We propose that the perception operation in AKREM would be similar to
the one in [6]. In it, perception occurs via system 1, a multi-agent system, where
agents compete parallelly with each other to decide which pattern is perceived
correctly from the senses, and hence also decide which response is suitable for
it. A similar idea is presented in [13], where this competition is via triggering
all relevant neurons, and then �ltering out all irrelevant ones as more clues are
coming from the senses. Irrelevant ones predict worse than others, hence we are
left eventually with the correct pattern. The process above describes recalling,
hence if no pattern is recognized, a new hierarchy/memory is generated.

Both in [12] and AKREM this perception idea is expressed by ascending
multiple triggered memorized hierarchies, and then descending for prediction or
veri�cation. Thus, �ltering all the non-relevant memories. When partial, cor-
rupted, or unorganized information is encountered, it can be validated not only
by descending, but also by moving in all the di�erent directions in the hierar-
chies. For example, in recalling a story from a scene, the agent has the freedom
to move back and forth temporarily in the hierarchies.

Associative thinking/approach is much more e�ective than context alone,
since context might consist of many details, while associations can reduce the
detail level and emphasize the abstract structure of the details. Additionally, this
allows for minimal communication and minimal resources in cognitive processes,
enabling very few items in the WM, e.g. 7±2 items.

It is important to note that AKREM is a data representation model, not
yet developed into a fully working NN model. Emerging hierarchies in the WM
can be implemented e.g. by some non-parametric method, such as via decision
trees, since their structure is dynamic. Moreover, the number of visitations of
each node and connection can be stored in these hierarchies, to distinguish this
way STM from LTM.

Additionally, AKREM is a mature model, i.e., it is in the state of adulthood,
which is the state reached after there has been some learning stabilization. Hence,
this model also lacks the evolution of memory till its mature state. Thus, it is
missing all the primary learning and adaptation. It could be ful�lled, for example,
via self-supervising learning of predicting the missing/next sensory inputs.
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Finally, this model has many implications, similarities with other techniques,
examples, and other considerations, which should be deeply discussed in a broader
paper. Additional notes (e.g. limitations and contribution): in Appendix 5.

3.3 Memories in AKREM

Besides having our associative hierarchical structures, as elements in some mem-
ory, we also should address the memory structure itself.

As in humans, systems 0,1 and 2 [25] should be realized here too. Systems
0 and 1 are expressed when the most frequent memory is used, in cases when
automatic or no-thinking tasks are performed. Whereas system 2 is expressed
by thinking, such as in problem solving, and it activates LTM and WM. A
partial AGI model, consisting of AKREM and some DLM as its basis would also
enable cases where the system is fully utilized, i.e. simultaneously thinking and
performing automatic tasks.

We can assume that simple sensory perception is using base memory, similar
to system 0 automatic system (no thinking), see Fig. 10. Then it provokes LTM
concepts or events, �uploading� them to the WM (or STM), see Fig. 6(a). During
a sleeping period, the system somehow decides what to consolidate into LTM
and what not, due to unimportance or similar memories that already exist there.
LTM and WM do not have direct contact with the sensors and executions,
perhaps since this is abstract thinking, in which the thinking, depending on some
externally-driven task, is moving in purposeful trajectories/hierarchies, mostly
regardless of the inputs.

We assume that humans have permanent associative wandering in LTM,
producing some �nal or intermediate results that are updated inWM. Di�erently,
the wandering in AGI must have some purpose. Hence there are some external
instructions inserted in this process, guiding it. See Fig. 6(a).

We believe that humans solve any situation/problem this way, i.e. by jump-
ing associatively from element to element with some guiding will, searching for
something, meanwhile gathering some intermediate insights, to eventually re-
solve with some response (good/no/bad solution).

Alternatively, we can regard the base memories, to be simply a part of the
LTM. Hence, they represent the most frequent (nearly automatic) part of it.
Thus, the least frequently used memory is at the bottom, while the most used
memory is at a higher level, while WM serves as the currently used memory, and
is located on top of this LTM unit. See Fig. 6(b).

Finally, an additional aspect of generalization is addressed in Appendix 6.
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4 Appendix - proposed DLM

4.1 Additional overview

In the following we present di�erent aspects of the proposed DLM.

Multi-modal fusion There is evidence of this multi-modal fusion in the liter-
ature about image captioning or video recognition tasks. For example, a visual
input is encoded into spatio-temporal space, and sentences describing the visual
input are encoded into a continuous vector space. Then, the goal is to mini-
mize the distance of the outputs of a deep visual model and a compositional
language model in a joint space, and eventually to update these two models
jointly [9,29,36]. We use this method in our proposed DLM, as discussed in 2.1.

Neuro-Symbolic perspective The joint space learning aims to produce sym-
bolic representation. This idea is not new, in combining DL with symbolism, and
referred to as the Neuro-Symbolic framework. It is expressed in many studies,
e.g. Logical Neural Networks (LNNs) [26], the Neuro-Symbolic Concept Learner
for Visual-Question-Answering tasks [22], and ZeroC [34] implementing compo-
sition of concepts.

DLM's components The inner components of the proposed DLM are replace-
able, and can be implemented via appropriate DNNs. Sensory input can be
handled by e.g. CNN, DBN, and SAE. Text input can be handled by e.g. Trans-
formers, RNNs or their variants: LSTM or GRU. The Sensors-and-Text and the
�nal decoder can also be implemented via sequence-based RNN, as in [1]. Be-
cause based on [12], the grasping of a situation is gradual in time. It takes time
to �gure out the stable situation, and it takes time to follow up on some desired
plan. A plan is realized by a sequence of actions, such as in [30], where a robotic-
complex-action is transformed, transferred, and then used for the control of base
actions. The response, depicted in Fig. 1(b), can be either a physical operation
or a sequence of words (e.g. an answer to a question).

Hierarchical temporal structure The hierarchical temporal structure of our
DLM can be implemented via di�erent clock rates, as suggested in [14]. Another
way is via sliding/shifted LSTM blocks as in [8], used to extract di�erent time-
scaled features. And another way is via dilated casual convolution, as in [10].
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Gradual Learning The gradual learning we implement in our DLM also exist
in literature in di�erent forms. For example, in [4] gradual learning is proposed
from a simple level to a complex level, either manually (expert-guided) or auto-
matically (scoring each sample by its training loss). However, this loss is highly
dependent on the models and their hyper-parameters. Hence, di�erent learning
takes place: from fewer categories or output tasks (local) to more categories
(global).

Hierarchical Learning If we consider the hierarchical structure to be built as
layers of features and tasks, see for example Fig. 7(a), then hierarchical learning
can be done in the encoder as described in [3], e.g. in DNN or CNN. Also, features
can be between tasks, as in [3].

But if our intention by "teaching" is matching words or phrases for the visual
input, as in image captioning, a stationary type of learning, using the encoder-
decoder structure, then we can separate tasks in di�erent levels in the decoder,
as illustrated in Fig. 7(b).

First, the model consists of visionary and semantic feature extractors, and
we train on all tasks of group 1. Then we add another unit of semantic feature
extractor to train on the composite tasks of group 1, which is group 2. And thus
go on in the same manner.

(a) The output of each layer
may be features or tasks

(b) Hierarchical learning in visual captioning

Fig. 7. Hierarchical learning

Spatial embedding prior to Spatial-temporal embedding Although we
implement spatial-temporal joint embedding as our basic and �rst phase, it is
possible also to check the option of adding joint embedding space for spatial
information only, prior to the spatio-temporal short-term joint embedding, as it
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is done for example with static visual images and simple textual objects [19].
This embedding enables the learning of static compositionality of objects, while
later, the inclusion of temporal dimension enables temporal compositionality
learning.

3D incremental learning version of the model Lastly, until now we have
discussed gradual learning in the encoder of our DLM, after which we �nish with
supervised learning for the �nal response, via the decoder. Nevertheless, we can
perform gradual learning also in the decoder. First we teach the encoder-decoder
fast tasks with immediate execution. Next, we �x these �rst layers and teach the
mid-term layers, and continue with the same fashion. This resembles the biology-
based approach, in which after repeating some task, it becomes automatic for
us such that our mind is free from concentrating on it, and now we can deal
with other tasks while performing these low-level tasks. Similarly is here: after
accomplishing the low-level tasks at a high level of performance, we are free to
learn new tasks. This gradual learning can also introduce a working memory or
thinking in higher available layers, where the inputs are very slow/stable, and
allow the DLM to solve di�cult tasks. This idea can be visualized more clearly
in 3D, see in [16] or in Fig. 8.
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(a) 3D view of Fig. 2 (b) Fast stimuli-response layer

(c) Slow stimuli-response layer

(d) Slower stimuli-response layer

(e) Slowest stimuli-response layer

Fig. 8. 3D incremental learning version of the model in 2.1.
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Here we see an example of our hierarchical-temporal DLM, implemented in
a tra�c signal control problem. We utilize the text inputs as a command input
channel.

In Fig. 8(b) we see fast commands. The input is the command and the state
of the network. For example: minimum delay in the signalized junctions, with
the scenario of a breakdown, or another command of avoiding queue spillbacks,
in a regular network state.

In Fig. 8(c), a slower commands for this moment are mainly preference com-
mands. For example to prefer some region in a regular network situation, or not
to prefer some region cause it's in a breakdown or under construction works.
How it is related to the lower-layers which are already-trained and nearly-�xed?
First, it allows recognizing some long-term patterns, such as of forming conges-
tion or the e�ects of an accident somewhere, then, acting with some manner that
changes the action space for the fast tasks in lower layers. Meaning, that when
lower tasks were alone, they had the largest freedom or the least constraints on
their actions, such as full range over green times. But when higher tasks are op-
erating, they decide upon a more restrictive actions available for the lower task
executions. We also have skip connections for the lower level to allow it continue
operating almost independently. Speci�cally the connection that fast tasks had
in previous slide.

Next layers, see Fig. 8(d,e), operate in the same fashion. We can imagine
it might even be used for thinking, or solving di�cult tasks, that are to be
transformed to the more �ne solvers in the lower layers. How is it possible?
Because the inputs to these layers are very slow/stable, so these layers don't
need to process the fast tasks, thus they are left to deal with the other tasks
given in the text input.

Training illustration We can illustrate how training occurs in the encoder via
the second idea: visual data and equivalent or/and complementary textual data
about objects and actions are merged in a joint space, see Fig. 9(a).

Then it traverses to one of the operating (short/mid/long-ranged) RNNs,
to accomplish the task of predicting the scene, i.e. of the correct relationship
between objects and actions in it, for example via graph representation (scene
graph). It can be seen in Fig. 9(b-c).

Finally, a supervised learning is performed in the full DLM, speci�cally in
the di�erent layers of the encoder-decoder in the DLM, see Fig. 9(d-f).

Full DLM training phases are in "DLM training" in [16] or in Fig. 9.
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(a) Joint embedding learning

(b) Short-term encoding tasks

(c) Long-term encoding tasks

(d) Short-term decoding tasks (e) Mid-term decoding tasks

(f) Long-term decoding tasks

Fig. 9. Full training illustration.
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4.2 Additional suggestions for the proposed DLM

In the following we present di�erent suggestions for the proposed DLM.
We should include a memory [33], either implicitly in the learning NN com-

ponents themselves, or explicitly as additional components in the model, with a
di�erent type of memories, e.g. sensory, conceptual, and procedural memories.

Moreover, we could have a memory suited for the fusion of sensors with text,
which should hold di�erent temporarily categorized concepts. I.e. fast changing
concepts and slow changing concepts, and all in between.

This system is compositional, and the modules in it are potentially learned
separately. Hence, new objects/actions can be introduced by retraining the rel-
evant modules.

A few additional aspects are presented for the proposed model. First, initially
we thought to have a single channel for both informative text, describing the cur-
rent situation, and instructional text, asking the system to perform something.
But we �gured we should separate these channels, due to several reasons: (i)
When our text input is a command, then the NN is trained by using executions
as outputs. However, there is no output to yield from a descriptive text. (ii) Of-
ten both channels are needed simultaneously: a descriptive one, such as coming
from the user or some online source, and a commanding one. Furthermore, we
presume that a commanding input represents our system's objective, and this
objective has to be supplied consistently.

The second aspect is about a full-model training phase. After training on
intermediate tasks to produce more representative features, we train the DLM
on its actual output: the response (actions or answers). In this phase, we perform
only feature extraction and disregard the intermediate tasks, since their function
is needed no more.

4.3 Issues with the proposed DLM

In the following are some issues the proposed DLM has:

* The separation of di�erent temporal scales into three discrete layers both
in the encoder and the decoder are arti�cial, while it actually should be
continuous.

* The issue of catastrophic learning exists here due to our batch learning setup.
It means that we cannot go back to previous phases to add or update new
concepts or relations, without ruining the whole system (or the other tasks).

* The DLM propose learning both simple and complex objects and their rela-
tions. There are DL studies that try to tackle the problem of modularity and
compositionality of concepts [34], though there is still an issue to implement
this. Hence, it is not straightforward that we can train the DLM to represent
conceptual memories as depicted in Fig. 10.
Similarly, the decoder in our DLM is a simple mapping from latent space
to actions. But procedural memory, as it is perceived in AGI, requires sym-
bolic representation and sequential processing, such as in RL. An additional
constraint is causality in this representation.



Hierarchical temporal DNN and Associative knowledge representation 19

Although our DLM aims to generate symbolic representation in the encoder,
and then continue processing it in the decoder, it is still not guaranteed
for the features above to be realized. Nevertheless, sequential processing or
planning is designed in the hierarchical temporal structure of the decoder. It
supposes to be hierarchical planning, starting from slow higher levels utpo
the fastest lowest levels.

* AGI should re�ect logic, reasoning, planning, and other constructions [18].
However, the proposed DLM, in its current state, does not possess these
functions, though it allows for timeless processing at its higher levels. It is
where the processing is so slow, that we almost disregard the inputs/outputs.
Moreover, DL is limited in various AGI necessary capabilities, such as adap-
tation and generalization (especially to out-of-distribution) learning speed,
knowledge transfer, reliability in reasoning tasks, and more.
Additionally, learning in its wider view, is not only algorithmic, but is also
rule-based and can be uni�ed with reasoning. It also has many other forms,
such as: reinforcement, imitation, and instruction.

* The proposed DLM is an open-loop system, trained via supervised learning,
i.e. it has no feedback from the environment, which is a signi�cant limi-
tation, especially when interacting with the environment. Though it could
simply close the loop and provide some reward, thus transferring it to a Re-
inforcement Learning (RL) regime, which has a better potential to achieving
AGI. This vision is supported both in the AGI community [2] and in the DL
community [23].

Fig. 10. Di�erent memory representations in the proposed DLM.

Some of these issues can be dealt with by several optional solutions. But it
will not be addressed here.

5 Appendix - Notes about AKREM

Additional notes about AKREM are presented in the following.
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5.1 Relation to NLP/NLU

Two comments in related to Natural Language Processing (NLP) or Natural
Language Understanding (NLU).

Firstly, as one can see, AKREM is an alternative to Noam Chomsky's formal
language [5], speci�cally the language parsing. On the other hand, it is similar
to the meaning-based parsing in [31], by also bypassing the need for semantics
to be founded upon syntax parsing, i.e. upon Parts-Of-Speech (POS).

Secondly, AKREM's story-like modeling of sequential 1D input demonstrates
the de�ciency of RNNs and LSTMs and the success of transformers. It illustrates
how we construct a full model from a sequential input, considering all the se-
quence (attention), not only the last parts of it or its summary (RNN/LSTM).

5.2 Retrieval

It is a very comfortable representation for a multi-use retrieval, i.e. its structure
allows for retrieving either the whole story sequentially or parts of it by demand.

It could be either purposeless retrieval, usual reminding, or it could be pur-
poseful one, e.g. when having a problem to solve, such as answering a question(s).

For example, in the video in [link], if one asks "What was David doing in
his room?", the agent starts at some point in the hierarchy, and moves along its
highest level, to �nd the most relevant node, then after �nding one, descends to
search similarly in the lower level, and so on.

However, it can be a much more complex trajectory. For example, when being
asked "What did David do after his mom called him?", it �rst searches for the
point when mom called him, so that it can look for what he did afterward. I.e.,
it is a multi-hop type of trajectory. It can go up and down as much as needed.

5.3 Motivation

Based on the retrieval function presented above, we present our original moti-
vation for AGI research.

As coming from an optimal control �eld originally, we encountered an inef-
�cient optimization over datasets. It means, that every new task is compelled
to rerun a given or a new optimization algorithm. Even when moving to the AI
�eld, speci�cally DL, it stays the same problem, though extended a little bit.

For example, multi-tasking allows for multiple tasks in one learning pe-
riod/shot, but the tasks must be pre-de�ned. Similarly in meta-learning, where
the tasks are grouped into training and testing sets.

Di�erently, language models in NLP try to address this issue, especially
transformer-based ones which use prompting as input. In this case, we can insert
the question with the data, to "attack" this data from di�erent directions, to
test comprehension.

The main motivation is that the AGI agent should learn the data e�ciently,
at a level of "understanding", such that the learned data is learned in a most-
usable manner, i.e. to be used for di�erent tasks, especially for tasks that were
not learned in the given data context.
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We can imagine it like a student in an English lesson. He is reading a story,
and then performing a comprehension test afterward. This test should both
examine the understanding of the story-only facts, but also in a wider context,
such as a part of previous knowledge and common sense.

This motivation, hopefully, presents AKREM in a di�erent light, where a
multi-usable retrieval should supply the need for the ultimate understanding of
a story/message.

5.4 Limitations

The current version of AKREM obviously has various limitations, speci�cally
from the practical implementation perspective, since it is a preliminary idea.

Here are some of these limitations:

* AKREM is not representing cognitive processes, like learning and adapting.
However, this representation facilitates functions like memory generation and
retrieval, perception (recognition), reasoning, planning, knowledge transfer
(e.g. via analogy), causality, and more.

* Representation by itself does not provide the means to derive it. Meaning,
how the grouping and separation occur in the hierarchy is a subject for
discussion, and is not being formalized yet. Similarly, there is no mechanism
for retrieval in stored hierarchies.

* AKREM representing instances of events/entities, i.e. it does not allow for
abstraction into general classes. The next paper includes this feature in its
model.

5.5 Contribution

It is a raw idea, and lacks the accurate mathematical formulation and the ex-
perimental evidence for proof of concept.

However, it suggests a novel representation approach, based on associative
thinking, thus proposing a compact representation of context. It supports hu-
man natural (and not structured) communication, thus addressing also memory
generation and retrieval. Accordingly, it deals with memory organization, i.e. of
LTM and WM.

It also tries to facilitate as many di�erent cognitive aspects as possible. As-
pects such as perception (recognition), reasoning, planning, knowledge transfer
(e.g. via analogy), causality, and more.

Finally, it inspires further discussion and revision of current NLP paradigms,
such as POS parsing. Especially, in case it will become a practical interest, a
serious discussion should be conducted about realizing will and purposefulness
in language representation.
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6 Appendix - Generalization in AGI

Generalization interestingly can occur by somehow abstracting out di�erent con-
texts and grouping the commonalities. For example, when one sees dogs in di�er-
ent circumstances, and for each one of them he is being told that it is a dog, then
he connects all these events together, to learn some operational characterization:
they have attributes like fur, small bodies, and their unique behavior. Similarly,
we learn math by abstracting out the speci�cs of the many examples we learn,
left out eventually with an exact algorithm for doing math. Furthermore, in any
skill and action, we can generalize beyond some speci�c object, to perform the
same series of actions over other objects as well. This is referred to as analogy
or transfer of knowledge.

Hence, humans prefer a rule-based approach, since it encapsulates many sce-
narios, instead of low-level speci�c examples, as in DL. This may explain why
we are drawn naturally to the rule-based approach (since it is actually the result
of abstraction).

If we combine this AGI characteristic with our need to model everything we
interact with (see 3.1), we come up with one possible insight. We need some sort
of consistent reorganization of previous data, to turn it into abstract models,
on which we can perform predictions. Anything else, which is not modeled, is
not assigned for prediction. Models are the most e�cient knowledge represen-
tation, since beyond prediction they can also simulate di�erent scenarios, e.g.
answering questions, understanding di�erent aspects of a concept, and applying
counterfactuals.

Note: the discussion above is a promo for the next paper, about a model of

models.
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