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Abstract. Self-supervised monocular depth estimation methods suffer
occlusion fading, which is a result of a lack of supervision by the ground
truth pixels. A recent work introduced a post-processing method to
reduce occlusion fading; however, the results have a severe halo effect.
This work proposes a novel edge-guided post-processing method that
reduces occlusion fading for self-supervised monocular depth estimation.
We also introduce Atrous Spatial Pyramid Pooling with Forward-Path
(ASPPF) into the network to reduce computational costs and improve
inference performance. The proposed ASPPF-based network is lighter,
faster, and better than current depth estimation networks. Our light-
weight network only needs 7.6 million parameters and can achieve up
to 67 frames per second for 256 × 512 inputs using a single nVIDIA
GTX1080 GPU. The proposed network also outperforms the current
state-of-the-art methods on the KITTI benchmark. The ASPPF-based
network and edge-guided post-processing produces better results, both
quantitatively and qualitatively than the competitors.

Keywords: Monocular depth estimation · Atrous Spatial Pyramid Pool-
ing · Edge-Guided post-processing.

1 Introduction

Depth estimation is a fundamental problem with a long history in computer
vision, and it also serves as the cornerstone for many machine perception applica-
tions, such as 3D reconstruction, autonomous vehicles, industrial machine vision,
robotic interactions, etc. Unfortunately, successful research in depth estimation
is dependent on the availability of multiple observations in a target scene. The
constraint of the multiple observations can be overcome by using supervised
methods that are accelerated by deep learning [1]. These methods aim to directly
predict the pixel depth from a single image by learning the given a large amount
of ground truth depth data. Despite the promising results from monocular depth,
these methods suffer from the limitation of the quality and availability of ground
truth pixel depth. Hence, self-supervised approaches that learn depth information
from a single image have received increasing attention recently.
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Fig. 1: Comparison between the conventional post-processing (PP) [2] and the
proposed Edge-Guided post-processing (EG-PP) on KITTI dataset. Our method
can reserve the sharp edge of the detected object depth and avoid the halo effect.

In the task of monocular depth estimation, self-supervised approaches only
need supervision from stereo image pairs [2–4] or monocular video frames [5,
6]. In monocular depth estimation, the disparity is used as an intermediate
product for depth estimation which can be converted to reconstruct the images
with the inverse warping transform [7]. Recent works have introduced novel
objective functions, such as the left-right consistency [2], correlational consistency
[8], and adaptive global and local error [4]. Further, the high solution input
solution has also been evaluated by [9] and [6] to detect the fine objects in
images. Unfortunately, one major challenges with self-supervision is reducing
false detections by using a compact network. It was shown in [2] that the deeper
networks (e.g., Resnet50) can yield better depth estimates compared to a more
compact network (e.g., VGG14). However, very deep networks are inefficient for
real-time usage. Hence, a high performance light-weight network design for a
depth estimation network is needed for real-time systems.

There are only a few works that focus on optimization of the network structure
for self-supervision in real-time. Recently, a Light-Weight RefineNet was proposed
for joint semantic segmentation and depth estimation [10]. This method was
designed for supervision method. We have tested it and found out that its
performance is limited when applying to the self-supervision. When we studied
the multi-task network, we realized that the depth estimation and semantic
segmentation can share the same feature representation in the network. Based on
this finding, we argue that the semantic segmentation network structure can be
used in the depth estimation network. In this paper, we introduce Atrous Spatial
Pyramid Pooling (ASPP) module into our depth network from Deeplab semantic
segmentation network [11]. We add forward-paths into the ASPP module and
reduce the layers numbers of each Atrous convolutional layers to further optimize
the network structure. We successfully designed a Light-weight DispNet that
has only 20% size of the conventional depth network [2] but up to 55% faster in
prediction. The prediction time of the proposed model can achieve 68 frames per
second (15 msec per frame) using a single nVIDIA GTX1080 GPU.

Another limitation of self-supervision is the stereo dis-occlusion effect. Self-
supervision relies on stereo image pairs to calibrate the estimation without the
ground truth data. This self-supervision method inherits the stereo dis-occlusion
effect from the objective function that uses stereo image pairs. Disparity ramps
happen in the stereo dis-occlusion area of the estimated disparity and largely
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downgrade the estimation quality both quantitatively and qualitatively. The
early researches in the occlusion detection used handcrafted the features to
proceed the machine learning algorithms [12]. Recently, learning-based methods
left-right symmetry [13, 14] have been proposed to estimate occlusions using the
convolutional network. Then a post-processing method has been proposed to
compensate the occlusion shading using a flip prediction alignment method [2],
the compensated output suffers severe halo effect as shown in Fig. 1(PP). None
of the current methods can fit the need of reducing the occlusion fading for a
self-supervised depth estimation task. To address the occluding fading issue, we
proposed an Edge-Guided post-processing (EG-PP) method to eliminate the
occluding fading and halo effects in inference stage shown in Fig. 1(EG-PP).
The proposed method effectively improves both the quantitative and qualitative
results and can be applied to all the other self-supervision-based methods.

The main contributions of this paper are as follows: (1) We propose a Light-
weight DispNet that is smaller, faster, and more accurate than the conventional
DispNet. We have also proved that the last few dense feature layers of the encoder
in DispNet are less efficient in extracting long-range features in our setting. (2)
We a propose a novel Edge-Guided post-processing method to improve the
performance. The occlusion fading is largely reduced with a minimized halo
effect after applying our method. We also experimentally show that EG-PP is
universal and can be applied to any other self-supervised method. (3) We evaluate
our approach compared to the state-of-the-art on the KITTI dataset [15]. We
fairly compare our model with priors using same conventional post-processing
method to demonstrate that our method has fundamentally improved the network
performance. (4) The proposed method is generalized to other unseen benchmark
datasets. We test our method with the Make3d dataset [16] compared with other
current state-of-the-arts quantitatively and qualitatively.

2 Methodology

Our model is inspired by the works of [11] and [2]. We first introduce the ASPP
module [11] into our network design and optimize the network structure from the
multiple conventional backbones. Then the objective function is directly adopted
from [2]. The proposed Edge-Guided post-processing is explained in the last
section.

2.1 Light-Weight Disparity Network

Many recent works designed their network by starting with DispNet [17], which
is an autoencoder-based architecture. The multi-scale features from DispNet
are exploited from the encoder, and the spatial resolution is recovered from
the decoder. The recovered multi-scale spatial resolutions are the estimated
disparities.

Since it was shown that depth estimation and semantic segmentation have
common feature representations, they can share the base-network to perform
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(a) Auto-Encoder (b) ASPP (c) ASPPF

Fig. 2: Light-Weight DispNet Structure, a) the proposed Auto-Encoder with
ASPP module, b) the conventional ASPP module, and c) the proposed ASPPF
module.

multi-task prediction [10]. Therefore, we use the network design concept of the
semantic segmentation task. In the segmentation network, an effective module -
Atrous Spatial Pyramid Pooling (ASPP) - was designed cascaded on top of the
original network to detect long-range information [18]. We follow this design rule
to modify the DispNet for depth estimation.

To further optimize our network, we analyzed the feature layers of the encoder,
and we found that the last few convolutional blocks have a minor contribution to
the estimation, especially after introducing the ASPP module shown in Fig. 2(b).
Based on this observation, we simplify the DispNet by using the ASPP module
to replace the last two convolutional blocks of the encoder. We also further use
the maxpool to replace the convolutional block before the ASPP module. This
design successfully reduces the network size of the network and produce a better
performance than DispNet. We name this structure a Light-Weight DispNet. The
proposed network structure is shown in Fig. 2(a). We here use [2] as a baseline
example. If DispNet uses VGG14 as the backbone, the network parameters are
about 31.6 million, and the inference time is about 19.11 msec. The corresponding
Light-Weight DispNet only need 8.1 million (74% less) with inference time 14.74
msec (22.9% less).

Nevertheless, we further improve the network structure of the conventional
ASPP module. Instead of using the Atrous Blocks in parallel, we add the forward-
path for each Atrous Blocks (ASPPF) from the previous one which has the smaller
dilation rate. The ASPPF can include more features from previous Atrous Block,
but the computational cost would increase. Hence, we further reduce half of
the number of the layers of each Atrous Block. A post convolutional block
is also added after the concatenation of all the Atrous Blocks. We name this
design as ASPP with Forward-Path (ASPPF) shown in Fig. 2(c). The proposed
ASPPF modules has smaller size than the conventional ASPP module and the
performance of the ASPPF design is better. The detailed analysis is elaborated
in the section of Ablation Study.
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2.2 Objective Function

We decide to adopt the objective function from [2] directly. There are several
reasons. The most important consideration is that the aim of the left-right
consistency function from [2] has demonstrated promising results among the
recent works. The successors only have minor modifications. Besides, we would
like to showcase that the proposed Light-Weight DispNet is substantially better
than the conventional DispNet using the same objective function.

The objective function is a weighted sum of three terms: appearance (Cap),
disparity smoothness (Cds), and left-right consistency (Ccor). The self-supervise
total loss is defined as following:

Cs = αap × Cap + αds × Cds + αlr × Ccor (1)

The weights (αap, αds, αlr) are determined before optimization and set as (1.0, 0.1, 1.0).
The definition of each term can be found in [2].

The stereo dis-occlusion effect is one limitation of self-supervision for monoc-
ular depth estimation. Stereo dis-occlusion creates disparity ramps (occlusion
fading) on both the left side of the image and the occluders. [2] proposed a post-
processing method to reduce this effect. This form of post-processing estimates
the disparity map dl and the flipped disparity map d′l, which are from input
image I and its horizontally flipped image I ′. Then the flipped disparity map d′l
is flipped back as a d′′l that aligns with dl but where the occlusion fading is on
the right of occluders as well as on the right side of the image. The final result is
an average of dl and d′′l , but assigning the first 2% on the left of the image using
dl and the last 2% on the right to the disparities from dl.

The post-processing uses a mirror to generate a well-aligned projected disparity
d′′l that has right-side occlusion fading. The average of dl and d′′l can reduce
the left-side occlusion fading because d′′l has correct left-side estimation results.
However, the right-side occlusion fading is also involved. This average process in
the post-processing causes the halo effect in the final results, as shown in PP of
Fig. 1. Instead of average, we propose an Edge-Guided weighted sum to suppress
the occlusion fading of both dl and d′′l in the combination to reduce the halo
effect, as shown in EG-PP of Fig 1.

2.3 Edge-Guided Post-Processing

The proposed Edge-Guided post-processing is depicted in Fig. 3. We follow the
design concept of [2] to compute dl and d′′l , but we add edge-aware weights
(w, w′′) in the final combination. Here we take w as an example to illustrate
the algorithm. A right-edge detector is designed to extract the regional-edge
confidence E. Instead of using Sobel detector, a wide-range horizontal gradient
filter (fgx) is used:

fgx =

1 ... 0 −1 ...
1 ... 0 −1 ...
1 ... 0 −1 ...


3×(2N)

/(3× (2N)) (2)
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Fig. 3: Edge-Guided Post Processing

where N is the detection radius, whose default value is set to 10. After the
convolution process (⊗) of dl and fgx, we add an offset (b) and a gain (a) on the
convolution result. Then a sigmoid function is applied:

El = sigmoid((dl ⊗ fgx − b) ∗ a) (3)

where El is the right regional-edge confidence. The offset b and gain a are set as
0.5 and 32 to maximize the El in the range [0, 1]. In this equation, the right edge
region has the confidence close to 1, while the left occlusion fading area has the
confidence close to 0. The confidence of the flat area keeps around 0.5. The E′′l is
obtained in the same way but using the horizontal flipped fgx as the left-edge
detector. The last step is to normalize El and E′′l to obtain w and w′′. Then the
final output d?l is a weighted sum of dl and d′′l :

w = El/(El + E′′l ), w′′ = E′′l /(El + E′′l ) (4)

d?l = wdl + w′′d′′l (5)

Normalization is required to prevent overlap detection between El and E′′l . It
ensures that the sum of w and w′′ is 1 for each pixel and the final output d?l has
no overhead compared to dl and d′′l . There are no learning parameters and the
computation cost is very low.

3 Experiments

Our benchmarks compare the performance of our approach to recent self-
supervised monocular depth estimation methods. We selected Godard et al.’s
work as our baseline and used the same benchmark configurations in [2]. We
evaluated our approach on multiple aspects of KITTI dataset (i.e., both quan-
titative and qualitative). The ablation study is first conducted to prove the
effectiveness of our approach using KITTI split. We then have a benchmark
with the current start-of-the-art on Eigen split. We showcase the improvement
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of optimized network with the ASPP module by comparing to the priors. For
fair comparison, we have all the methods with the conventional PP. In the last
section of each scenario, we add the results applying the proposed EG-PP to
demonstrate the effectiveness of EG-PP. We also generalized our method to other
popular unseen data – Make3d.

3.1 Datasets, Metrics and Implementation

We evaluate the performance of our method on the KITTI benchmark [15]. We
use two different test splits, KITTI and Eigen Split [1], of KITTI data to perform
the ablation study for our method and the benchmark compared with the existing
works. We follow the approach of [2] that uses 29k image pairs as the training set.
We train our models by 8 batches and 100 epochs on the KITTI data. Furthermore,
it has been shown by Godard et al. that pre-training with Cityscapes dataset
can improve the performance on KITTI benchmark [2,19]. We also include this
strategy in the benchmark. In the combinational training on Cityscapes and
KITTI dataset, we pre-train our models with an 8 batches and 50 epochs first on
Cityscapes dataset and then on KITTI dataset. We use the evaluation metrics
from Geiger et al. for depth estimation [15], which measures the error in meters
from the ground truth and the percentage of depth that is within a threshold from
the correct value. All of the reported error measurements represent the average
error. Our methods were implemented in Tensorflow 1.15 [20] using Python 3.7
under the Ubuntu environment with a single NVIDIA GTX 1080 GPU. All input
images are resized to 256× 512 from the original size of the training image.

In the benchmarks, we show the experimental results of VGGASPPF (VGG8
Backbone) models. The VGGASPP (VGG14/VGG8 Backbone) model is included
in the ablation study to show that the last three convolutional blocks are re-
dundant. The computation costs of each backbone are also summarized in the
Ablation section. We show that both our models have better performance than
competitors in the benchmark studies. The our code for these experiments are
publicly available [Github].

3.2 Results

Ablation Study In the ablation study, we analyze the quantitative performance
improvement and the computational costs of our various designs using KITTI split
on the KITTI dataset. For the quantitative performance improvement, we use
VGG14 of the prior work [2] as the baseline. We first apply PP and EG-PP on the
baseline to show the effectiveness of EG-PP. Then we start from VGGASPP with
VGG14 to check up the improvement and the optimized VGGASPP/VGGASPPF
with VGG8 are evaluated. Last, we include the results of pretrain C+K cases.

In the first section of Table 1, we show that the proposed EG-PP is effective
to not only our model but also the baseline method [2]. This is particularly
evident in terms of RMSE(log) and δ < 1.25, which are the most challenging
parts. In the remaining of the sections in Table 1, we can see that the proposed

https://github.com/kspeng/lw-eg-monodepth
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Approach Encoder ASPP PP EG-PP Train ARD SRD RMSE RMSE(log) δ < 1.25 δ < 1.252 δ < 1.253

Lower is better. Higher is better.
Baseline VGG14 K 0.1240 1.3880 6.125 0.217 0.841 0.936 0.975
Our ASPP VGG14 v K 0.1183 1.2671 6.070 0.209 0.848 0.941 0.977
Our ASPP VGG8 v K 0.1134 1.1636 5.734 0.201 0.853 0.945 0.979
Our ASPPF VGG8 v K 0.1112 1.1263 5.693 0.201 0.859 0.946 0.979
Our ASPPF w/ PP VGG8 v v K 0.1068 1.0033 5.460 0.193 0.861 0.949 0.981
Our ASPPF w/ EG-PP VGG8 v v K 0.1062 0.9924 5.365 0.188 0.864 0.952 0.983
Our ASPPF w/ EG-PP VGG8 v v C+K 0.0992 0.9196 5.035 0.175 0.883 0.961 0.986

Table 1: Quantitative results for different variants of our approach on the KITTI
Stereo 2015 test dataset. We use our prior [2] as our baseline is shown in the first
section. The training scenario is based on the KITTI training set (K), while the
last section shows the results which are pre-trained by Cityscapes training sets
(C+K). The best result in each subsection is shown in bold.

Approach Blocks Parameters Predict(ms/FPS)
Baseline VGG VGG14 31600072 19.11/52.32
Our VGGASPP VGG14 38941384 22.03/45.4
Our VGGASPP VGG8 8134344 14.74/67.83
Our VGGASPPF VGG8 7642440 14.5/68.97
Baseline VGG+PP VGG14 31600072 31.06/32.20
Our VGGASPPF+PP VGG8 7642440 21.93/45.6
Our VGGASPPF+EGPP VGG8 7642440 22.51/44.42

Table 2: Computational costs of different variants of our approach on the KITTI
training dataset. The units of training of prediction are msec(ms)(lower is better)
and frame per second(FPS) (Higher is better).

ASPP models have better performance than the baseline among all the met-
rics. The VGGASPP/VGG8 has an equivalent even better performance than
VGGASPP/VGG14, which shows that the last few convolutional blocks in the
VGG14 encoder are less effective when the ASPP module is applied. Last, VG-
GASPPF/VGG8 has better performance, although VGGASPP/VGG8 has a
smaller computational cost.

In Table 2, we examine the computational costs of both our methods and the
baseline. We included the VGG14 baseline to check the improvement rate. The
results applying the post-processing are also included. The predictions happen in
around 14.7ms/68FPS of the proposed VGGASPP/VGG8 model and 14.5ms/69
FPS of the proposed VGGASPPF/VGG8 model. Our VGGASPPF/VGG8 has
only 24.2% of parameters but is 31.8% faster in the prediction compared to
VGG14 model of the baseline. When the post-processing method is applied, the
model’s input becomes a batch of two images (left and flipped left images) and
the prediction efficiency drops to around 22ms/45.6FPS of VGGASPPF/VGG8.
When the proposed Edge-Guided post-processing is applied to the proposed
VGGASPPF/VGG8 model, there is only 2.5% loss in computation time.

State-of-the-art comparison In the benchmark, we include the post-processing
in the comparison. We only include VGGASPPF/VGG8 in the evaluation. From
the training aspect of view, there are K only and C+K cases. An exceptional
case is that [6] has ImageNet [21] as the pre-train dataset. Another special case
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Approach Train Test PP ARD SRD RMSE RMSE(log) δ < 1.25 δ < 1.252 δ < 1.253

Lower is better. Higher is better.
Monodepth [2] K E - 80m Y 0.1480 1.3440 5.927 0.247 0.803 0.922 0.964
Fei et al. [22] K E - 80m Y 0.1390 1.2110 5.702 0.239 0.816 0.928 0.966
Monodepth2 [6] K E - 80m Y 0.1300 1.1440 5.485 0.232 0.831 0.932 0.968
Wong et al. [4] K E - 80m Y 0.1264 0.9935 5.282 0.222 0.831 0.939 0.973
Ours K E - 80m Y+ 0.1072 0.9079 4.877 0.202 0.862 0.945 0.975
Monodepth [2] C+K E - 80m Y 0.1140 0.8980 4.935 0.206 0.861 0.949 0.976
Fei et al. [22] C+K E - 80m Y 0.1120 0.8360 4.8920 0.204 0.862 0.950 0.977
Monodepth2 [6] I+K E - 80m Y 0.1090 0.873 4.960 0.209 0.864 0.948 0.975
Ours C+K E - 80m Y+ 0.1015 0.7966 4.633 0.193 0.876 0.953 0.979
Monodepth2 [6] (1024×320) I+K E - 80m Y 0.1070 0.8490 4.764 0.201 0.874 0.953 0.977
Ours (1024×320) C+K E - 80m Y+ 0.0999 0.7665 4.455 0.189 0.881 0.956 0.980
Monodepth [2] K E - 50m Y 0.1400 0.9760 4.471 0.232 0.818 0.931 0.969
Fei et al. [22] K E - 50m Y 0.1320 0.8910 4.3120 0.225 0.831 0.936 0.970
Wong et al. [4] K E - 50m Y 0.1202 0.7432 4.022 0.209 0.845 0.946 0.976
Ours K E - 50m Y+ 0.1009 0.6480 3.656 0.190 0.875 0.952 0.979
Monodepth [2] C+K E - 50m Y 0.1080 0.6570 3.729 0.194 0.873 0.954 0.979
Fei et al. [22] C+K E - 50m Y 0.1060 0.6150 3.697 0.192 0.874 0.956 0.980
Ours C+K E - 50m Y+ 0.0959 0.5853 3.486 0.181 0.887 0.958 0.981

Table 3: This table shows the additional benchmark specifically compared with
recent methods. All the results use the crop defined by Garg et al. [3]. In the PP
column, Y means using the conventional PP, while Y+ means using the proposed
EG-PP. The results which are pre-trained with Cityscapes (C) or ImageNet
(I) are evaluated as well. The high resolution results are also included for the
comparison with [6].

is the high resolution input case of [9] and [6]. We also implement the same
resolution input on our model. In test cases, we use Eigen-split with full and
near distance under Garg et al. crop shown in Table 3 [3]. Our results with
conventional post-processing are still better than the recent priors. When we
apply EG-PP, our results become significantly better, and only the last accuracy
term is slightly behind.

The improved performance of our method is not only quantitative, but also
qualitative. The results are shown in Fig. 4. Our results have a much better
ability to reproduce clear object shapes and edges in any size, especially the
signs and trunks in the test images. The halo effects around objects (e.g., cars,
signs, trunks,etc.) are largely reduced using the proposed EG-PP. In the visual
evaluation, we provide more accurate and visually appealing images to viewers.

Edge-Guided Post-process Generalization The proposed EG-PP method
is universal to be applied to any self-supervision depth estimation methods. We
have prepared the experiment results of [2], [4], and ours with non-PP, PP, and
proposed EG-PP in Table 4. The performance of the quantitative results are
improved for both of the two methods except the ARD and SRD terms of [2]
and [4]. Thus, this result shows that the proposed EG-PP method can be applied
to other self-supervision methods to improve the performance.
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Fig. 4: Benchmark of qualitative results on KITTI dataset Eigen Split. We
compare Ours with the priors - Monodepth [2], Monodepth2 [6], and Wong et
al. [4]. Our VGGASPPF has applied the proposed Edge-Guided post-processing.
Our results can capture much more clear object shapes, such as signs, cars, and
trunks than priors. The halo effects are also effectively reduced in our results.

Approach Train PP ARD SRD RMSE RMSE(log) δ < 1.25 δ < 1.252 δ < 1.253

Lower is better. Higher is better.
Monodepth [2] K N 0.1240 1.3880 6.125 0.217 0.841 0.936 0.975
Monodepth [2] K Y 0.1170 1.1773 5.811 0.206 0.847 0.942 0.977
Monodepth [2] K Y+ 0.1170 1.1873 5.766 0.204 0.850 0.944 0.978
Wong et al. [4] K N 0.1112 1.1350 5.682 0.202 0.854 0.946 0.979
Wong et al. [4] K Y 0.1058 0.9811 5.424 0.193 0.857 0.949 0.981
Wong et al. [4] K Y+ 0.1074 1.0394 5.417 0.191 0.861 0.950 0.982
Ours K N 0.1112 1.1263 5.693 0.201 0.859 0.946 0.979
Ours K Y 0.1068 1.0033 5.460 0.193 0.861 0.949 0.981
Ours K Y+ 0.1062 0.9924 5.365 0.188 0.864 0.952 0.983

Table 4: Quantitative results for proposed Edge-Guided Post-Processing method
on the KITTI Stereo 2015 test dataset. The PP means using post-processing.
N is no PP, Y is the conventional PP proposed by [2], and Y+ is the proposed
Edge-Guided PP. The best performance of each metric in each section is bolded.
The proposed Edge-Guided PP can effectively improve the performance especially
the most challenging accuracy metric δ < 1.25.

Dataset Generalization We further apply our method to another unseen
dataset to verify the ability of the generalization. We follow the idea of [2] and [6]
to evaluate Make3d dataset [16]. We use the same setting as these two priors
that Cityscapes Dataset only trains our model, and we only consider less than
70 meters depth in evaluation. We also used the same evaluation code from [2]
to generate the final results. The quantitative results are shown in Table 5.
We have shown that our model has better results using stereo supervision. On
the other hand, Fig. 5 shows the qualitative results. We compare our results
to monodepth [2] and monodepth2 [6], where monodepth2 [6] is supervised by
the monocular sequence. Our model provides better visual performance than
monodepth [2] in clarity and competitive compared to monodepth2 [6].
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Approach abs_rel sq_rel rmse rmse_log
Monodepth [2] 0.544 10.94 11.76 0.193
Fei et al. [22] 0.458 8.681 12.335 0.164
Wong et al. [4] 0.427 8.183 11.781 0.156
Ours 0.365 5.073 8.135 0.174

Table 5: Quantitative results on Make3d.

Fig. 5: Qualitative results of Make3d Dataset. We compare our method with
monodepth [2] and monodepth2 [6]. The results of two references come from the
source papers and codes.

4 Conclusion

We proposed a Light-weight DispNet and a novel Edge-Guided post-processing
method to improve a self-supervised monocular depth estimator’s performance.
Our primary contribution is that the proposed Light-weight DispNet demonstrates
the inherent capability to capture long-range features to estimate better the
depth map with a much smaller network structure than the current commonly
used DispNet. Another contribution of this work is that the Edge-Guided post-
processing can resolve most occlusion fading effect of self-supervision methods.
It can effectively reduce the halo effect that comes from the conventional post-
processing to yield the object shape. The proposed EdgeGuided post-processing
is suitable for all the self-supervised monocular depth estimators.
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