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Abstract. Enhancing data management and security in robotics is cru-
cial for ensuring reliable and efficient robotic operations. Effective data
management facilitates data auditing, which further improves system re-
liability and traceability. This paper explores the integration of SealFS, a
secure file system, into autonomous robotic systems. The primary prob-
lem addressed is the potential impact of SealFS on system performance,
particularly write latency, compared to traditional Ext4 file systems. The
methodology involves conducting latency tests in audio, video, and nav-
igation contexts, along with analyzing CPU usage, file size consistency,
and power efficiency.
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1 Introduction

Autonomous robots function in dynamic and frequently uncontrolled environ-
ments, rendering them vulnerable to a range of cybersecurity threats. Protecting
the integrity of crucial operational logs is essential to ensure the reliability of
forensic analysis[1]. Effective security measures must be implemented to mitigate
these risks, safeguarding not only the robots’ operational data but also ensuring
the overall reliability and safety of their functions.

The integration of off-the-self tools such as SealFS[2], a tamper-evident log-
ging solution, becomes a valuable asset. SealFS allows the system to maintain
an immutable record of its activities, detecting and preventing unauthorized al-
terations to crucial log files. Therefore, implementing SealFS on a robot running
ROS 2 (Robot Operating System 2) [3] could have several positive implications:

– Security Enhancement: By ensuring the integrity of log files, the system can
enhance the overall security of the robot’s operation. In a robotics context,
where the system may interact with physical environments and potentially
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sensitive data, maintaining tamper-evident logs can be crucial for forensic
analysis and identifying security breaches.

– Resource Considerations: ROS 2 systems typically run on resource-constrained
devices, especially in embedded or mobile robot applications. While the de-
scribed system aims for lightweight implementation, it’s essential to evaluate
its resource requirements (CPU, memory, storage) to ensure compatibility
with the robot’s hardware capabilities. The system’s impact on real-time
performance, especially in time-sensitive robotic tasks, should also be con-
sidered.

– Integration Complexity: Integrating a Linux kernel module like SealFS into
a robot running ROS 2 environment may introduce additional complexity to
the system architecture. Some robot manufacturer use their own kernels for
improving and guaranteeing robot performance. Besides, ROS 2 operates on
top of middleware for communication between components, and integrating
a file system-level security mechanism requires careful consideration of com-
patibility and potential conflicts with existing software stack components.

Implementing the described tamper-evident logging system on a robot with
ROS 2 has the potential to enhance security and reliability, but it requires care-
ful consideration of resource constraints, integration complexity, and physical
security considerations inherent to robotic environments. Current alternatives
such as the ones presented by Khasan[4] based on cryptographic file system
can be also implemented as a middleware layer to encrypt individual files or
directories using file system filter driver technology in the Windows kernel or a
low-level file system layer, operating beneath the real file system, providing en-
cryption for single- or multiple-disk partitions [5, 6]. However, this research faces
the unix-like approach[2], which is the most extended solution used by ROS de-
velopers. Thus, this paper performs an analysis and discusses the possibilities of
integration given its impacts.

1.1 Contribution

Measuring the impact of SealFS on a robot involves assessing various factors
related to its performance, security, and overall functionality. Given the context
of using SealFS in the domain of autonomous robots, the contributions are:

– Integration and deployment in real world robots: Integration and deployment
in real-world robots involve several critical steps. These include adapting the
system to the specific hardware and software configurations of the robots,
ensuring seamless interoperability with existing components, and conducting
extensive testing in real-world environments to validate performance and
reliability.

– Performance evaluation: It helps determine how well the system or compo-
nent performs under various conditions, ensuring that it operates efficiently
and meets the required standards. The evaluation can reveal performance
bottlenecks or limitations that may impede the system’s functionality, al-
lowing for targeted improvements.
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The remainder of this paper is organized as follows. Section 2 provides a
detailed review of SealFS, highlighting the previous empirical findings that un-
derpin our study and its integration in ROS middleware. Section 3 outlines the
hardware and software methods employed, including the research design and
data collection procedures. In Section 4, we present the results of our analysis,
offering a comprehensive examination of the data and its implications. Section
5 discusses the findings in the context of the existing literature, addressing po-
tential limitations and suggesting areas for future research. Finally, Section 6
concludes the paper by summarizing the main contributions and implications of
our study, and proposing practical applications of our findings.

2 Architecture

2.1 SealFS

The SealFS prototype originates from the wraps framework, which is a stackable
file system that allows multiple file systems to be ”stacked” on top of each other,
presenting a unified view to the user or other applications. SealFS has undergone
progressive refinements to align with kernel version 5.19.0-43, following its initial
deployment on versions 4.8.17 and 4.15.0 (referenced in the associated version
tags, with substantial bug resolutions incorporated until version 5.4.0-65). Serv-
ing as a Linux kernel module, SealFS establishes itself as a stackable file system
with a primary objective of authenticating written data, thereby ensuring the
creation of log entries that resist tampering. Operating within the paradigm of
a forward integrity model, SealFS robustly mitigates the potential for attackers
to fabricate logs predating privilege elevation.

Upon SealFS deployment atop an extant file system, comprehensive protec-
tion is extended to all files positioned beneath the designated mount point. This
system confines write operations exclusively to append-only, rigorously validat-
ing the integrity of data written to the underlying files managed by an alter-
native file system. The extant manifestation, SealFSv2, integrates the princi-
ples of ratcheting and storage-based log anti-tamper mechanisms. This inno-
vative approach introduces a degree of adaptability, allowing users to choose
between attaining a state of complete theoretical security akin to its predeces-
sor, SealFSv1, or adopting a partially linear degradation reminiscent of classi-
cal ratchet schemes. This flexibility empowers users to finely calibrate security
parameters, thereby effectively balancing security considerations with computa-
tional resource usage.

2.2 ROSSealFS

This component is a ROS 2 node dedicated to logging, designed to integrate
with SealFS seamlessly. This node enables the logging of data generated during
the robot’s operations. When paired with SealFS configuration, it establishes
tamper-evident log files, ensuring authentication for forward integrity.
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Fig. 1. Usage pipeline for SealFS and RosSealFS.

In this stage, the component is supplied with data from other robot topics
and general logs. The goal is to gather all information generated by regular
communications in ROS 2, as well as to incorporate standard logs found in
specific directories (such as .ros). Consequently, the files will be stored in the
designated folder prepared for deploying SealFS. Figure 1 illustrates the general
overview of the proposed approach.

3 Materials and Methods

This section provides an overview of integrating SealFS into an autonomous
robot. While this research focuses on two specific robots used by the authors in
recent years, the process can be adapted for any other robot.

3.1 Hardware Description

This research utilizes two commercially available robotic platforms, whose con-
figurations are presented in Table 1: the Summit XL from Robotnik Automation
and the TIAGo from PAL Robotics. These platforms are employed in both out-
door and indoor contexts to comprehensively evaluate their performance and
versatility:

– Summit XL: It offers a versatile and customizable outdoor platform [7] for
research, education and industrial applications in robotics, with its modular
design, mobility, sensor suite, and compatibility with ROS. Regarding energy
specifications, it features a nominal voltage of 56.5 V and a current ranging
from 1.5 A at rest to 4.4 A in motion, resulting in a power consumption of
84.75 W to 248.6 W.

– TIAGo : It is a versatile and customizable indoor robot platform [8] de-
signed to support research, education, and development in various domains
of robotics. It has manipulation capabilities, mobility, perception sensors,
HRI features, and ROS 2 compatibility. Concerning the battery, it boasts a
nominal energy of 720 Wh, a maximum discharge of 20 A, and a nominal
voltage of 19.2V for the computer.
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Table 1. Configuration of the robots including the hardware and software setups.

OS Kernel ROS Version RAM CPU Storage

TiAGO Ubuntu 20.04 5.10.0-rt Noetic 16 GB i7-7700 SATA 3.3 SSD

Summit Ubuntu 20.04 5.15.0-generic Noetic 32 GB i7-10700 NVMe 1.3 SSD

3.2 Experimental Description

To conduct the experimental phase, firstly, the different data streams obtained
from a robot have been identified, with two variables observed within this frame-
work: message size and frequency. Based on this observation, three data source
scenarios are proposed, largely framing the current paradigm:

– Text message streams with low and irregular frequencies and small content,
such as relevant system event logs.

– Data streams with high and regular frequency and small content, such as
measurements from a laser sensor.

– Data streams with high and regular frequency and large content, such as
RGB images from a camera.

Within the hardening framework in explainability methods, the most com-
mon scenario would be the first scenario of storing system logs, with the remain-
ing scenarios being feasible but impractical in a real-world setting due to the
challenges surrounding storage size on these mobile platforms.

The proposed methodology for practical experiments involves a systematic
approach to integrating and evaluating SealFS within autonomous robots. Under
these circumstances, it is possible to avoid the comparison between actuators
characteristics, which would be analyzed in a future work. Three scenarios are
proposed associated to three data flows that will be stored:

1. System logs will be stored during an autonomous navigation exercise using
Nav2.

2. Artificial messages of intermediate size will be generated and sent at a high
frequency through the middleware to simulate an auditory sensor, such as a
microphone.

3. Frames captured by the robot’s vision system will be stored independently.

These data flows will be stored in the file system of the robotic platform itself
using SealFS file system, employing the default parameters of nratchet = 5120
and size = 1000000. For each scenario, five experiments will be conducted, each
limited to a duration of 3 minutes, in order to obtain a sufficiently large data
sample for analysis.

To measure the power consumption of the module, a different machine than
the robotic platform will be utilized, as the battery does not provide a useful
interface for employing this tool. To obtain a measurement as close to the actual
one produced by the robot, adjustments have been made by modifying elements
(such as screen, wheels, etc.) between measurements.
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3.3 Metrics

To evaluate the integration of SealFS into the autonomous robots, we will analyze
several key metrics.

– Throughput: Speed at which the robot can write log data to the file system
with and without SealFS. This comparison will be necessary in order to
ensure that SealFS does not significantly degrade performance. This value
will be measured with iotop. This tool can produce the current write speeds
for processes.

– Latency: Time it takes for the system to process write operations with and
without SealFS. Lower latency is generally preferred. This value will be mea-
sured with ftrace[9]. With these tools, it is possible to extract the time it
takes to make the right call.

– CPU Usage: Impact of SealFS on the robot’s CPU usage during normal
operation and intensive logging scenarios. This value will be measured with
perf. This tool outputs the CPU usage of every process and thread.

– Power Efficiency: Robot’s power consumption, especially in scenarios where
the robot operates on battery power. This will be measured with Power-
top[10]. This tool can output a power consumption estimation for every
running process.

4 Results

Next, we will describe the obtained results from the integration and testing of
SealFS in the autonomous robots.

Table 2. Descriptive Statistics - Throughput in the proposed scenarios.

Audio bandwidth (kB/s) Video bandwidth (kB/s) Navigation bandwidth (kB/s)
summit ext4 summit sealfs tiago ext4 tiago sealfs summit ext4 summit sealfs tiago ext4 tiago sealfs summit ext4 summit sealfs tiago ext4 tiago sealfs

Valid 896 896 886 872 890 895 880 860 331 332 360 359
Missing 0 0 0 0 0 0 0 0 0 0 0 0
Mode 119.870 119.870 138.310 138.750 7662.150 7565.330 10670.080 10711.040 7.720 7.720 7.540 7.520
Mean 118.101 120.306 135.645 136.896 9719.360 9307.038 10691.642 10419.843 11.649 11.690 7.840 8.266
Std. Deviation 3.555 5.053 6.283 6.806 1017.225 1226.905 907.653 795.380 3.932 3.976 1.385 2.459
Minimum 93.730 91.740 122.100 120.700 7506.720 7274.770 7680.000 7772.160 3.840 3.830 3.690 3.730
Maximum 127.720 135.470 147.020 154.220 10334.540 10378.170 13137.920 13178.880 19.310 15.490 11.330 15.150
25th percentile 115.960 116.010 128.043 131.037 10102.090 7749.100 10434.560 10096.640 7.720 7.720 7.500 7.500
50th percentile 119.760 119.790 138.510 138.805 10210.390 10094.500 10670.080 10659.840 11.580 15.320 7.520 7.520
75th percentile 119.890 123.630 139.420 142.433 10274.325 10317.040 10792.960 10762.240 15.440 15.440 7.540 7.540
Sum 105818.320 107793.970 120181.610 119373.720 8.650× 10+6 8.330× 10+6 9.409× 10+6 8.961× 10+6 3855.690 3881.110 2822.520 2967.650

The analysis of throughput data across different bandwidth categories pro-
vides valuable insights into the performance of SealFS in comparison to Ext4
on two distinct robotic platforms: Summit and Tiago. In the audio bandwidth
category, SealFS demonstrates a slight improvement in mean throughput for
both robots compared to Ext4. However, this enhancement is accompanied by
an increase in variability, suggesting potential trade-offs between performance
and consistency. For video bandwidth, SealFS exhibits mixed results, with lower
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mean throughput observed for Summit but higher for Tiago compared to Ext4.
Notably, SealFS introduces greater variability in performance, particularly evi-
dent in Summit. In the navigation bandwidth category, SealFS generally presents
marginal improvements in mean throughput for both robots, with comparable
variability to Ext4. These findings underscore the nuanced impact of SealFS in-
tegration on data throughput across diverse operational contexts, highlighting
the need for careful consideration of trade-offs between performance enhance-
ments and stability in autonomous robotic systems. Table 2 shows the results
for three scenarios.

Next, we will describe the obtained results from the integration and testing
of SealFS in the autonomous robots.

Table 3. Descriptive Statistics - Latency in Audio test

time (µs)
summit ext4 write summit sealfs write tiago ext4 write tiago sealfs write

Valid 19450 18627 17040 16496
Mode 18.166 66.664 11.115 36.643
Mean 17.589 71.513 15.277 71.506
Std. Deviation 3.982 5.430 8.008 32.827
Minimum 9.001 58.409 8.003 26.227
Maximum 45.337 149.267 277.732 293.878
25th percentile 15.418 68.346 11.135 41.079
50th percentile 17.562 70.803 13.479 74.326
75th percentile 19.543 73.463 17.543 89.801
Sum 342100.189 1.332× 10+6 260311.746 1.180× 10+6

The latency data across the three tests, namely Audio, Video, and Navi-
gation, provides a comprehensive insight into the performance of SealFS and
Ext4 file systems in various operational contexts within autonomous robotics.
In the Audio test, both Summit and Tiago robots exhibit a notable increase in
write latency with SealFS integration compared to Ext4. The mean write la-
tency for Summit is 17.589µs with Ext4 and 71.513µs with SealFS, indicating a
substantial increase in latency with SealFS integration. This trend is consistent
across the mode, median, and 75th percentile measurements.SealFS also exhibits
higher variability in write latency, with a larger standard deviation (32.827µs)
compared to Ext4 (8.008µs). This increase in latency is consistent across all
measured parameters, indicating a significant impact on data processing speed
(Table3).

Similarly, in the Video test (Table 4), SealFS integration results in a sub-
stantial rise in write latency for both Summit and Tiago robots. The variability
in write latency is particularly pronounced, suggesting potential challenges in
maintaining consistent performance levels, especially in video-intensive tasks.
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However, the Navigation test (Table 5 presents a more nuanced picture,
with SealFS demonstrating higher write latency compared to Ext4 in Tiago,
while showing comparable performance to Ext4 in Summit. This disparity un-
derscores the importance of evaluating the performance impact of SealFS inte-
gration across different robotic tasks, as the implications may vary depending
on the specific operational requirements and hardware configurations.

Table 4. Descriptive Statistics - Latency in Video Test

time (µ s)
summit ext4 write summit sealfs write tiago ext4 write tiago sealfs write

Valid 2733 3272 3902 4240
Mode 1387.584 14853.500 1035.439 10518.330
Mean 1513.815 15520.996 1318.313 11412.904
Std. Deviation 547.953 723.789 1235.535 1106.017
Minimum 1363.485 14603.020 625.503 9701.663
Maximum 6531.803 22898.950 16741.160 20321.590
25th percentile 1404.792 15059.908 1081.766 10805.368
50th percentile 1421.612 15325.030 1146.722 11169.010
75th percentile 1451.222 15488.157 1232.809 11692.485
Sum 4.137× 10+6 5.078× 10+7 5.144× 10+6 4.839× 10+7

Table 5. Descriptive Statistics - Latency in Navigation Test

time (µs)
summit sealfs write tiago sealfs write

Valid 327 346
Missing 0 0
Mode 94.353 75.937
Mean 93.356 90.867
Std. Deviation 11.862 18.511
Minimum 72.875 67.443
Maximum 148.174 159.787
25th percentile 86.987 77.046
50th percentile 90.028 82.279
75th percentile 96.704 105.529
Sum 30527.356 31439.834

Besides it also analyzed various parameters associated with SealFS integra-
tion and impact within autonomous robotic systems.

– CPU Usage: Through perf monitoring, a consistent CPU usage of 0.6% has
been observed across different scenarios, indicating stability in CPU usage.
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Table 6. Descriptive Statistics for Power Consumption

Usage (µs) Pw Estimate (µW)
[sealfs] [sealfs]

Valid 8 8
Missing 0 0
Mode 2.400 171.000
Mean 4.025 364.375
Std. Deviation 0.870 125.518
Minimum 2.400 171.000
Maximum 5.200 501.000
25th percentile 3.700 285.000
50th percentile 4.050 396.000
75th percentile 4.575 456.250
Sum 32.200 2915.000

– Power Efficiency: The SealFS process demonstrates an estimated average
power consumption of 3.1 mW under scenarios with high message transmis-
sion frequencies. Additionally, the tool estimates PC power consumption at
3.2W, indicating energy-efficient operation. Table6 overviews overall data.

Upon analyzing the performance between the evaluated robots, it becomes ev-
ident that the performance of the TiAGo robot surpasses that of the Summit
model. Furthermore, a significant similarity in the behaviors and trends of the
file system evaluated on both platforms is observed.

5 Discussion

Based on the results obtained, several key conclusions have been identified. In
environments where disk stress is low, the tool’s impact is negligible. The inte-
gration of SealFS results in a notable increase in write latency for both Summit
and Tiago robots compared to Ext4. SealFS introduces higher variability in write
latency, potentially impacting the predictability and responsiveness of robotic
operations. Thus, SealFS’s impact on latency warrants further consideration in
real-time robotic applications. However, in high-load scenarios, although there
is an increase in latency, this added time is measured in microseconds and does
not present any significant issues for real-world deployment.

The tool does not result in any significant increase in CPU usage, suggesting
that it operates efficiently without imposing additional processing burdens on
the system. Additionally, there is no detectable increase in file size when using
the tool, indicating that it does not add any overhead in terms of storage require-
ments. Furthermore, the tool incurs minimal additional energy consumption in
percentage and nominal terms. This slight increase in energy usage is minor and
unlikely to significantly impact overall system performance or efficiency.



10 Alejandro et al.

6 Conclusions

In summary, the tool integration onboard of robots demonstrates minimal impact
on system performance and resource usage under various conditions, with some
minor considerations for functionality and energy consumption. Further work
could focus on addressing the limitation related to folder creation to enhance
organizational capabilities. Additionally, exploring optimization opportunities to
reduce even the minor latency and energy consumption observed could further
improve the tool’s efficiency and user experience.
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