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Abstract

This study focuses on enhancing the performance of the ResNet50 model on the Intel
dataset, a collection of images depicting diverse natural scenes under various environmen-
tal conditions. While ResNet50 has shown remarkable performance in image classification
tasks, its application to the Intel dataset reveals certain limitations in accurately discern-
ing subtle features within scenes. To address this, proposed architectural modifications
to ResNet50 aimed at capturing intricate features specific to the Intel dataset. Four dis-
tinct modifications are introduced, tailored to exploit different aspects of scene complexity
present in the dataset. Through extensive experimentation and evaluation, we demonstrate
the effectiveness of these modifications in improving the model’s classification accuracy on
the Intel dataset. the findings not only contribute to advancing deep learning method-
ologies for image analysis but also underscore the importance of tailored model design for
specific task domains.

Keywords — ResNet50, Architectural modifications, Spatial Pyramid Pooling,
Transfer learning, Scene classification, Neural networks

1 Introduction

The Intel dataset, a collection of images capturing various natural scenes under diverse environ-
mental conditions, presents a rich and challenging landscape for image classification tasks [1].
With over thousands of images spanning different categories such as forests, mountains, build-
ings, and rivers, this dataset reflects real-world scenarios where accurate scene classification
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is crucial for applications like autonomous navigation systems, environmental monitoring, and
urban planning [2]. However, the dataset’s complexity lies in its diverse scenes, varying lighting
conditions, and occlusions, which pose significant challenges for traditional classification algo-
rithms [3]. Understanding and effectively classifying scenes in this dataset not only advances
the field of computer vision but also has tangible implications for improving the performance
of automated systems operating in dynamic and unpredictable environments.

Despite the remarkable performance of the baseline ResNet50 model in various image clas-
sification tasks [4], its application to the Intel dataset reveals certain limitations, particularly in
accurately discerning subtle features within scenes under diverse conditions [5]. The motivation
behind incorporating additional layers into the ResNet50 architecture stems from the need to
enhance its capability to capture and leverage intricate features specific to the Intel dataset [6].
By introducing supplementary layers, we aim to enable the model to extract more nuanced rep-
resentations of scenes, thereby improving its ability to discriminate between different categories
and increasing overall classification accuracy.

The architectural modifications are designed to address specific challenges posed by the
Intel dataset, such as variability in lighting, texture, and scene composition [5], ultimately
enhancing the robustness and adaptability of the model to real-world scenarios. In this study,
we propose four distinct modifications to the ResNet50 architecture, each tailored to exploit
different aspects of scene complexity present in the Intel dataset [7].

To evaluate the performance of the modified architectures, we conducted extensive experi-
ments following a rigorous methodology [8]. We preprocessed the Intel dataset to standardize
image sizes, normalize pixel intensities, and augment data to increase diversity and robust-
ness [9]. The modified architectures were initialized with pre-trained weights from the baseline
ResNet50 model and fine-tuned on the training set using stochastic gradient descent with mo-
mentum [1]. We employed techniques such as learning rate scheduling, weight decay, and
dropout regularization to prevent overfitting and improve generalization [10]. Model perfor-
mance was evaluated on a separate test set using standard classification metrics such as accu-
racy, precision, recall, and F1-score, allowing for comprehensive assessment and comparison of
the different architectures [8].

The experimental results demonstrate the effectiveness of the proposed architectural modi-
fications in enhancing the performance of the ResNet50 model on the Intel dataset [6]. Across
various subsets and evaluation metrics, we observed consistent improvements in classification
accuracy compared to the baseline model [11]. Specifically, the architectures incorporating
attention mechanisms and feature fusion techniques achieved notable gains in discerning fine-
grained details and capturing contextual information, leading to significant enhancements in
scene classification accuracy [10]. Moreover, the spatial pyramid pooling modification proved
effective in accommodating variations in scene scale and composition, further boosting the
model’s robustness and adaptability [1]. These findings underscore the importance of architec-
tural design in addressing dataset-specific challenges and highlight the potential for improving
deep learning models’ performance through targeted modifications.

Extending the evaluation of architectural modifications to encompass a wider range of en-
vironmental conditions and scenarios would provide a more comprehensive understanding of
their robustness. Real-world environments are inherently dynamic and unpredictable, present-
ing challenges that may not be fully captured by existing evaluation protocols. By expanding
the scope of evaluation to include real-world deployment scenarios and considering factors such
as domain shift and adversarial attacks, we can better assess the practical utility and limitations
of modified architectures.
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The implications of the findings extend beyond the realm of scene classification, shedding
light on the importance of architectural design in adapting deep learning models to specific
datasets and tasks [3]. By systematically analyzing the impact of different architectural mod-
ifications on model performance, we provide valuable insights into the mechanisms underlying
effective feature representation and discrimination in complex visual environments [6]. While
this study focuses on the Intel dataset, the principles and methodologies outlined can be gen-
eralized to other image analysis tasks and datasets, leading to the development of more robust
and adaptive deep learning models [1]. However, it’s essential to acknowledge the limitations
of the study, including the potential trade-offs between model complexity and computational
efficiency, as well as the need for further validation on additional datasets and real-world ap-
plications [8]. Nonetheless, the research underscores the potential of architectural innovations
in advancing the state-of-the-art in computer vision and lays the groundwork for future inves-
tigations into tailored model design for specific task domains.

2 Related Works

Recent research emphasizes the significance of remote sensing image scene classification, fueled
by deep neural networks’ robust feature learning capabilities. However, a comprehensive re-
view of deep learning methods in this context remains scarce. This article [1] fills this gap by
systematically surveying over 160 papers, addressing challenges and categorizing methods into
autoencoder-based, convolutional neural network-based, and generative adversarial network-
based approaches. Additionally, it highlights benchmark datasets and evaluates the perfor-
mance of representative algorithms across commonly used benchmarks. Finally, it outlines
promising avenues for future research in this rapidly evolving field.

In [2] the authors presents a comprehensive survey of recent advancements in scene classifi-
cation using deep learning, covering over 200 publications and addressing challenges, benchmark
datasets, taxonomy, and performance comparisons. It concludes with a list of promising re-
search opportunities, offering valuable insights for researchers in the field.

Several similar studies have tackled the difficulty of training deep neural networks by investi-
gating various architectural alterations and training methodologies. One significant technique is
the use of skip connections proposed by the authors [5], as seen in residual networks (ResNets),
which ease the vanishing gradient problem by allowing for the direct flow of information be-
tween layers. This breakthrough has cleared the path for training far deeper networks with
hundreds of layers while retaining good gradient flow. Furthermore, approaches such as batch
normalization, which normalizes activations within each mini-batch during training, and adap-
tive optimization algorithms like Adam have helped to stabilize and speed up deep network
training. Other research lines have focused on network initialization methods, regularization
strategies, and innovative activation functions to improve deep architecture training.

Recent works [5] highlight the complexity of neural networks, with deep architectures facil-
itating the expression of intricate functions. However, challenges such as vanishing gradients
hinder effective training, a limitation mitigated by the introduction of residual networks, which
enable deeper architectures.

In [5] authors proposed the scene classification tasks by introducing a novel categorization
approach. By re-categorizing the dataset into previously unexplored classifications (e.g., natural
scenes vs. real scenes), the proposed model’s adaptability and accuracy are further highlighted.

Several recent studies underscore the importance of remote sensing image scene classifica-
tion, leveraging the robust feature learning capabilities of deep neural networks. However, a
comprehensive review [6] focusing on recent advancements in deep learning methods for this
task is currently absent in literature. To address this gap, this paper conducts a systematic sur-
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vey encompassing over 160 research articles. It delves into the key challenges of remote sensing
image scene classification, categorizing surveyed methods into autoencoder-based, convolutional
neural network-based, and generative adversarial network-based approaches. Furthermore, it
introduces benchmark datasets commonly employed in this domain and provides a comprehen-
sive performance summary of more than two dozen representative algorithms. Lastly, it outlines
promising directions for future research in this rapidly evolving field.Significant research using
deep learning approaches has been carried out in the last several years [12, 13, 14, 15, 16, 17]

3 Material And Methods

3.1 Data Set

This study uses the Intel Image Classification dataset, obtained from Kaggle, as the foundation
for the research. This dataset has six unique classes: Forest, Glacier, Mountain, Sea, Buildings,
and Streets. Each class reflects a distinct category of nature or urban settings, adding to the
dataset’s diversity and depth.

By using the Intel dataset, hope to examine and assess the effectiveness of various deep
learning architectures in picture classification tasks. The dataset’s inclusion of varied scene
categories allows for a thorough examination of model performance in a variety of visual situ-
ations, ranging from natural landscapes to urban surroundings.

Furthermore, the dataset’s availability on Kaggle assures accessibility and repeatability,
allowing other academics and practitioners to check and extend the findings. Through thorough
testing and analysis of this well-curated dataset, wanted to provide useful insights to the larger
area of computer vision and deep learning research.

3.2 Model Architecture and Training

Employed a transfer learning approach utilizing the ResNet50 architecture as the base model
for the image classification task. The pre-trained ResNet50 model was obtained from a widely
used deep-learning library. Adapted ResNet50 architectures utilize pooling layers for easier
feature extraction and complexity management, enhancing performance in scene categorization
tasks on the Intel dataset. Softmax activation in the output layer transforms raw scores into
class probabilities, crucial for multi-class scene classification. To tailor the model for specific
task, removed the original output layers and appended additional layers to create three distinct
models for comparative analysis.
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3.2.1 Proposed Model 1 Architecture

Fig.1 Proposed Model 1

The first proposed model (Fig. 1) comprises additional layers after the base model. Added
1 convolutional layer, 3 dense layers, and 1 output layer. Specifically, added 1 convolutional
layer with 64 filters of size (3, 3), followed by ReLU activation and max-pooling. Additionally,
included 3 dense layers with 1024, 512, and 256 units, respectively, each followed by ReLU
activation. The output layer consists of 6 nodes with softmax activation to match the six-class
classification problem.

3.2.2 Proposed Model 2 Architecture

Fig.2 Proposed Model 2

The second proposed model (Fig. 2) features a unique set of added layers, including 1 convolu-
tional layer, 3 dense layers, and 3 dropout layers. Specifically, added 1 convolutional layer with
64 filters of size (3, 3), followed by LeakyReLU activation and max-pooling. Following this,
included 3 dense layers with 1024, 512, and 256 units, respectively, each followed by LeakyReLU
activation. Additionally, 3 dropout layers with a dropout rate of 0.5 were inserted for regu-
larization. The final layer utilizes softmax activation to produce class predictions for the six
target classes.
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3.2.3 Proposed Model 3 Architecture

Fig.3 Proposed Model 3

For the third proposed model (Fig. 3), a residual connection was integrated following the Con-
volution layers atop ResNet50, after the removal of the output layer. The model comprises of
convolutional layers with LeakyReLU activation and max-pooling, as well as residual connec-
tions to facilitate gradient flow during training. Specifically, added 3 convolutional layers with
64 filters of size (3, 3) each, followed by LeakyReLU activation and max-pooling. Addition-
ally, a residual connection was established after the second convolutional layer. Subsequently,
included 2 convolutional layers with 128 filters of size (3, 3) each are added by LeakyReLU
activation. The network concludes with a global average pooling layer and 2 dense layers, with
150 and 6 units, respectively, utilizing softmax activation for multi-class classification.

4 Experimental and Result Analysis

4.1 Training Procedure

All proposed models were trained using a suitable optimization algorithm, such as stochastic
gradient descent (SGD), and compiled with categorical cross-entropy loss. Applied L2 regular-
ization to mitigate overfitting. The dataset was split into training and validation sets for model
training and a testing set, and hyperparameters were fine-tuned to achieve optimal performance.

4.2 Hardware and Software

An Intel i7 core CPU (2.8 GHz) with 16GB RAM was used for the testing. Version 2.15.0 of
the TensorFlow deep learning framework and Version 2.15.0 of Keras were utilized in the code
implementation to construct the models. To ensure smooth integration and reproducibility of
the studies, extra libraries were used for data manipulation and evaluation metrics computation,
such as Scikit-learn version 1.2.2 and Matplotlib version 3.7.1.

4.3 Loss Graph Analysis

The analysis of the loss graph for the ResNet50 model and its derivatives provides valuable
information about their training behavior and ability to generalize. All proposed models were
trained for 25 epochs, and early stopping criteria were used to prevent overfitting. This criterion
stops the training when the testing loss starts to plateau or increase, ensuring that the models
do not memorize the training data excessively.
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Fig.4 Proposed Model 1 Fig.5 Proposed Model 2

Fig.6 Proposed Model 3

The Proposed Model 1 (Fig. 4) finished 25 epochs with no overfitting. It consistently per-
formed well during training, using all epochs effectively to improve generalization. Meanwhile,
Model 2 (Fig. 5) stopped after just 12 epochs. The early stopping criteria kicked in, likely due to
diminishing returns or overfitting risk. Still, The Proposed Model 2 (Fig. 5) performed remark-
ably well despite the shorter training time. It used the available epochs efficiently, generalizing
the task effectively.

The Proposed Model 3 (Fig. 6) stopped training after 15 epochs because it met the early
stopping criteria. The model’s performance probably didn’t improve anymore or started getting
worse, so training stopped. This prevented overfitting to the training data. Even though The
Proposed Model 3 (Figure. 6) trained for less time than The Proposed Model 1 (Figure. 4), it
could still generalize well. The early stopping mechanism kept the model from overfitting while
letting it learn relevant features. Early stopping is important for achieving optimal performance.
It balances model complexity and generalization ability.
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4.4 Results

Table 1: COMPARISON OF TRAINING AND TESTING ACCURACY FOR VARIOUS
MODELS

Training And Testing Accuracy
S.No Models Training Testing
1 ResNet50 93.19 89.89
2 Proposed Model1 92.09 90.89
3 Proposed Model2 99.11 92.33
4 Proposed Model3 92.29 92.52

The observed training and testing accuracies of the ResNet50 model (Table. 1) and its deriva-
tives, the proposed Model 1 (Fig. 4), proposed Model 2 (Fig. 5), and proposed Model 3 (Fig. 6),
reveal intriguing insights into their comparative performance. Notably, the baseline ResNet50
achieved a commendable training accuracy of 93% but exhibited a comparatively lower testing
accuracy of 89.98%.

In contrast, the models derived from ResNet50, namely the proposed Models 1 (Fig. 4), 2
(Fig. 5) and 3 (Fig. 5) showcase improvements in both training and testing accuracies. The pro-
posed Model 1 (Fig. 4), with training and testing accuracies of 92.09% and 90.98%, respectively,
demonstrates a notable reduction in the overfitting gap observed in the baseline ResNet50. The
proposed Model 2 (Fig. 5) exhibits remarkable performance, achieving a training accuracy
of 99.11% and a testing accuracy of 92.33%. This result indicates that the additional layers
introduced in proposed Model 2 (Fig. 5) contribute significantly to enhancing the model’s gener-
alization capabilities, leading to improved performance on unseen data. Similarly, the proposed
Model 3 (Fig. 6), with a training accuracy of 92.52% and a testing accuracy of 92.29%, rein-
forces the trend of enhanced generalization across the derivative models. Overall, the consistent
trend of improved testing accuracies in proposed Models 1 (Fig. 4), 2 (Fig. 5), and 3 (Fig. 6)
compared to the baseline ResNet50 suggests that the introduced modifications contribute pos-
itively to the models’ ability to generalize to new data. The investigation aimed at enhancing
the performance of ResNet50 on the Intel dataset by adding supplementary layers resulted in
the development of four distinct model architectures. These modifications are aimed to improve
classification accuracy and robustness on a dataset comprising various natural scenes captured
under diverse conditions.

Comparative analysis revealed insights into the performance of the baseline ResNet50 and
its derivatives. While the baseline model achieved commendable training accuracy, it exhibited
comparatively lower testing accuracy. However, the modified architectures showed improve-
ments in both training and testing accuracies. Particularly, Proposed Model 2 (Fig. 5), which
incorporated additional layers, demonstrated remarkable performance, indicating significant
enhancement in generalization capabilities.

Furthermore, the study provided insights valuable for the research community. It demon-
strated the practicality and effectiveness of transfer learning with ResNet50, offering guidance
on architectural modifications for specific tasks. The reduction in overfitting and improved
testing accuracies across the derived models highlighted the positive impact of introduced mod-
ifications on generalization to unseen data. The inclusion of a residual network architecture in
Proposed Model 3 (Fig. 6) underscored the potential benefits of advanced architectural con-
cepts, facilitating better gradient flow during training and resulting in enhanced generalization
capabilities.
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Overall, the research contributes to advancing deep learning for image classification by
exploring novel architectural variations and evaluating their impact on model performance.
These insights lay a foundation for further investigation and innovation in transfer learning and
neural network architecture design.

5 Conclusion

This study explores transfer learning techniques and architectural modifications in deep learning
models, focusing on image classification tasks. Demonstrated the practicality of employing
transfer learning with the ResNet50 architecture, offering a robust means of adapting pre-
trained models to specific tasks. Through systematic modifications to the base architecture,
conducted a comparative analysis of different architectural variations, shedding light on their
impact on model performance.

Additionally, the evaluation of training and testing accuracies reveals insights into the gen-
eralization capabilities of derived models compared to the baseline ResNet50. The observed
reduction in overfitting and improved testing accuracies suggest the introduced modifications
positively contribute to generalization. Furthermore, the detailed description of architectural
variations provides a blueprint for designing tailored neural network architectures. The inclu-
sion of a residual network architecture highlights the potential benefits of advanced architectural
concepts, contributing to the advancement of deep learning for image classification.

6 Future Works

The study emphasizes the significance of exploring alternative transfer learning techniques and
architectures beyond ResNet50 for image classification tasks. While ResNet50 is utilized in this
research, future investigations could delve into diverse methodologies to ascertain their efficacy.

Moreover, deep learning models proficiency is intrinsically linked to the richness and diversity
of training data. Thus, forthcoming endeavors could prioritize enlarging the Intel dataset or
integrating supplementary datasets encompassing various scenes and environmental conditions.
This augmentation would fortify the models capacity to generalize effectively across an extensive
array of real-world scenarios.

Furthermore, there is potential for enhanced model performance through continued exper-
imentation with architectural modifications, surpassing those delineated in the present study.
These endeavors hold promise for refining the efficacy and versatility of deep learning models
in image classification tasks.
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