
EPiC Series in Computing
Volume 73, 2020, Pages 120–137

LPAR23. LPAR-23: 23rd International
Conference on Logic for Programming,
Artificial Intelligence and Reasoning

Rotation Based MSS/MCS Enumeration∗

Jaroslav Bend́ık and Ivana Černá

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbendik,cerna}@fi.muni.cz

Abstract

Given an unsatisfiable Boolean Formula F in CNF, i.e., a set of clauses, one is often
interested in identifying Maximal Satisfiable Subsets (MSSes) of F or, equivalently, the
complements of MSSes called Minimal Correction Subsets (MCSes). Since MSSes (MC-
Ses) find applications in many domains, e.g. diagnosis, ontologies debugging, or axiom
pinpointing, several MSS enumeration algorithms have been proposed. Unfortunately,
finding even a single MSS is often very hard since it naturally subsumes repeatedly solving
the satisfiability problem. Moreover, there can be up to exponentially many MSSes, thus
their complete enumeration is often practically intractable. Therefore, the algorithms tend
to identify as many MSSes as possible within a given time limit. In this work, we present
a novel MSS enumeration algorithm called RIME. Compared to existing algorithms, RIME
is much more frugal in the number of performed satisfiability checks which we witness via
an experimental comparison. Moreover, RIME is several times faster than existing tools.

1 Introduction

In many areas of computer science, we are given a Boolean formula F in a conjunctive normal
form (CNF), i.e., a set F = {f1, . . . , fn} of Boolean clauses, with the goal to decide the satisfi-
ability of F . If F is found to be unsatisfiable, one is often interested in identifying a maximal
satisfiable subset (MSS) of clauses of F . Equivalently, one can identify the complement of
a MSS called minimal correction subset (MCS) of F , i.e., a minimal set of clauses that need to
be removed from F to make it satisfiable.

The identification of MSSes (MCSes) finds many practical applications including, e.g., com-
putation of minimal models of CNF formulas and model based diagnosis [12], ontology debug-
ging or axiom pinpointing [1]. Another important application of MSSes emerges for example in
the context of the maximum satisfiability (MaxSAT) problem. In particular, the MSSes with
the largest cardinality are the exact solutions of MaxSAT, and MSSes with smaller cardinalities
can be used to at least efficiently approximate the solution of MaxSAT [27].

In general, the more MSSes (MCSes) are identified, the better insight into the unsatisfia-
bility of F is obtained. However, the complete MSS (MCS) enumeration is often practically

∗This research was supported by ERDF ”CyberSecurity, CyberCrime and Critical Information Infrastructures
Center of Excellence” (No. CZ.02.1.01/0.0/0.0/16 019/0000822).

E. Albert and L. Kovacs (eds.), LPAR23 (EPiC Series in Computing, vol. 73), pp. 120–137

Rotation Based MSS/MCS Enumeration Bend́ık and Černá

intractable, since there can be up to exponentially many MSSes w.r.t. the number of clauses in
F . Therefore, there have been proposed several algorithms that enumerate MSSes online, i.e.,
one by one, and can be terminated at any time (see, e.g., [5, 37, 26, 27, 31]).

Many of the online algorithms can be classified as seed-grow algorithms. A seed-grow algo-
rithm gradually explores individual subsets of F ; explored subsets are those whose satisfiability
is already determined by the algorithm and unexplored are the other ones. Each single MSS is
found in two steps. First, the algorithm identifies a seed S, i.e., a satisfiable unexplored subset.
Then, the seed S is grown into a MSS Smss of F such that S ⊆ Smss. The exact ways of
finding and growing the seeds differ for individual seed-grow algorithms. In general, all existing
seed-grow algorithms find a seed by repeatedly picking and checking an unexplored subset for
satisfiability (via a SAT solver) until a satisfiable subset is found. The growing is typically
based on checking several supersets of the seed for satisfiability until a MSS is found. The
efficiency of individual algorithms, i.e., the speed of the MSS enumeration, usually depends on
the total number of satisfiability checks performed during finding and growing the seeds. The
fewer satisfiability checks are performed to find each single MSS, the faster is the enumeration.

In this paper, we propose a novel seed-grow MSS enumeration algorithm called RIME. To
find seeds, RIME employs two novel techniques. One technique works on the same principle as
the existing seed-grow algorithms do: we repeatedly check unexplored subsets for satisfiability
until we find a seed. The novelty is in the selection of unexplored subsets; we use the intersection
of already explored MSSes of F to guide the search among unexplored subsets and we identify
seeds that are very close to MSSes (and thus can be easily grown). The other technique is
fundamentally different: we exploit the MSSes that are already explored to cheaply deduce that
some unexplored subsets are satisfiable, i.e., seeds, without using a SAT solver. Moreover, we
propose a novel growing procedure that greatly benefits from the information about already
explored subsets of F . In particular, we introduce a concept of conflict extension that allows
us to significantly enlarge seeds during growing. We experimentally compare RIME with 3
other contemporary MSS enumeration algorithms on a large collection of benchmarks. RIME
significantly outperforms its competitors on a majority of the benchmarks in the number of
identified MSSes within a given time limit. Remarkably, RIME needs to perform much fewer
calls to a SAT solver to identify individual MSSes than its competitors do. On average, RIME
performs just 1.18 satisfiability checks per MSS, and in case of many benchmarks, the number
of checks per MSS is even smaller than 1.

2 Preliminaries

A Boolean formula F = {f1, f2, . . . , fn} in a conjunctive normal form (CNF) is a set of Boolean
clauses over a set of Boolean variables Vars(F). A Boolean clause is a set {l1, l2, . . . , lk} of
literals. A literal is either a variable x ∈ Vars(F) or its negation ¬x. A truth assignment
π to the variables Vars(F) is a mapping Vars(F) → {>,⊥}. A clause f ∈ F is satisfied by
an assignment π iff π(l) = > for some l ∈ f or π(k) = ⊥ for some ¬k ∈ f . The formula F is
satisfied by π iff π satisfies every f ∈ F ; in such a case π is called a model of F . Finally, F is
satisfiable if it has a model; otherwise F is unsatisfiable.

Throughout the whole text, we write just formula instead of the full term Boolean formula
in CNF. Similarly, we write just clauses and variables. Moreover, in the whole text, we use
F to denote an unsatisfiable formula that we want to analyze. We use capital letters, e.g.,
C,N,K to denote subsets of F , small letters, e.g., f, fi, g, to denote clauses, and small letters,
e.g., x, x′, y, to denote variables. Given a set X, we write P(X) to denote the power-set of X,
and |X| to denote the cardinality of X.

121

Rotation Based MSS/MCS Enumeration Bend́ık and Černá

0000

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

(a)

0000

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

(b)

Figure 1: Fig. 1a: illustration of the power set of the set F of clauses from Example 1. We encode
individual subsets of F as bit-vectors; for example, the subset {f1, f3, f4} is written as 1011.
The subsets with a dashed border are the unsatisfiable subsets, and the others are satisfiable
subsets. The MUSes and MSSes are filled with a background color. Fig. 1b: illustration of the
explored and unexplored subsets from Example 2.

2.1 Maximal Satisfiability and Minimal Unsatisfiability

Definition 1 (MSS). A set N , N ⊆ F , is a maximal satisfiable subset (MSS) of F iff N is
satisfiable and for all f ∈ F \N the set N ∪ {f} is unsatisfiable.

Definition 2 (MCS). A set N , N ⊆ F , is a minimal correction subset (MCS) of F iff F \N
is a MSS of F .

Definition 3 (MUS). A set N , N ⊆ F , is a minimal unsatisfiable subset (MUS) of F iff N
is unsatisfiable and for all f ∈ N the set N \ {f} is satisfiable.

Note that the minimality/maximality concept used here is a set minimality/maximality, not
minimum/maximum cardinality. Therefore, there can be MUSes/MSSes/MCSes with different
cardinalities. In general, there can be up to exponentially many MUSes, MSSes, and MCSes, of
F w.r.t. |F | (see the Sperner’s theorem [36]). We use AMUSF , AMSSF , and AMCSF to denote the
sets of all MUSes, MSSes, and MCSes of F , respectively. Moreover, we use UMUSF and UMCSF
to denote the union of all MUSes and all MCSes of F , respectively, and we use IMSSF to denote
the intersection of all MSSes of F .

Example 1. We demonstrate the concepts on a small example, illustrated in Figure 1a. Assume
that we are given a formula F = {f1 = {x1}, f2 = {¬x1}, f3 = {x2}, f4 = {¬x1,¬x2}}. The sets
of interests are the following: AMUSF = {{f1, f2}, {f1, f3, f4}}, AMSSF = {{f2, f3, f4}, {f1, f4},
{f1, f3}}, AMCSF = {{f1}, {f2, f3}, {f2, f4}}, UMUSF = UMCSF = F , and IMSSF = ∅.

There is a well-known relationship between AMUSF and AMCSF defined in terms of hitting
sets. Given a collection S of sets, a hitting set H for S is a set such that ∀S ∈ S. H ∩ S 6= ∅.
Especially, a hitting set is minimal if none of its proper subsets is a hitting set. Reiter [35] and
de Kleer and Williams [19] have shown that M ∈ AMUSF iff M is a minimal hitting set of AMCSF .
Dually, N ∈ AMCSF iff N is a minimal hitting set of AMUSF . Consequently, UMUSF = UMCSF .
Moreover, since N ∈ AMCSF iff F \N ∈ AMSSF , then IMSSF = F \ UMCSF = F \ UMUSF .

Definition 4 (conflicting clause). Let S be a satisfiable subset of F . A clause f ∈ F \ S is
conflicting for S iff S ∪ {f} is unsatisfiable.

Definition 5 (critical clause). Let U be an unsatisfiable subset of F . A clause f ∈ U is critical
for U iff U \ {f} is satisfiable.

122

Rotation Based MSS/MCS Enumeration Bend́ık and Černá

Note that if f is conflicting for S then f is conflicting for every satisfiable superset of S, and
especially for every MSS Smss ⊇ S. Furthermore, note that a set S is a MSS iff every f ∈ F \S
is conflicting for S. Dually, if f is critical for U then f is critical for every unsatisfiable subset
of U , and U is a MUS iff every f ∈ U is critical for U .

Another related concept are backbone literals of a set S ⊆ F , i.e., literals that have to be
satisfied by every model of S. There is an important connection between backbone literals and
conflicting clauses as stated in Observation 1.

Observation 1. If S is a satisfiable subset of F and a clause f ∈ F \S is conflicting for S then
every model of S has to falsify f . Consequently, the literals {¬l | l ∈ f} are backbone literals
of every S′, S′ ⊇ S.

Finally, we exploit capabilities of contemporary SAT solvers. Given a set N ⊆ F , a contem-
porary SAT solver is able to provide an unsat core of N when N is unsatisfiable, and a model
π of N when N is satisfiable. The unsat core is often small yet not necessarily a minimal un-
satisfiable subset of N . The model π, on the other hand, can be used to extend N into a larger
satisfiable subset of F . In particular, the model extension E of N w.r.t. π and F is the set
{f ∈ F |π(f) = 1}. Note that E is necessarily satisfiable (π is its model), and that E ⊇ N . The
extraction of models and unsat cores from a SAT solver usually comes with almost no overhead
compared to a standard satisfiability query.

2.2 Unexplored Subsets

Our MSS enumeration algorithm during its computation gradually determines satisfiability of
individual subsets of F . Explored subsets are those whose satisfiability has been already deter-
mined and unexplored subsets are the other ones. The algorithm maintains a set Unexplored

that contains all unexplored subsets. Initially, all proper subsets of F are unexplored, i.e.,
Unexplored = P(F) \ {F} (we assume that F is unsatisfiable). Eventually, our algorithm de-
termines satisfiability of every subset of F and, thus, Unexplored becomes empty. We further
classify unexplored subsets (i.e., elements of Unexplored) as follows:

Definition 6 (s-seed). A set N is an s-seed iff N is unexplored and satisfiable.

Definition 7 (u-seed). A set N is a u-seed iff N is unexplored and unsatisfiable.

Note that if a set S of clauses is satisfiable, then also all subsets of S are satisfiable. Thus,
when our algorithm removes a satisfiable S from Unexplored, it also removes all subsets of S
from Unexplored. Dually, when the algorithm removes an unsatisfiable U from Unexplored,
it also removes all supersets of U from Unexplored (since they are necessarily unsatisfiable).
Especially, our algorithm maintains the following invariant w.r.t. Unexplored:

Invariant 1. If a set S, S ⊆ F , is satisfiable and S 6∈ Unexplored, then for every N ⊆ S it
holds that N 6∈ Unexplored. Dually, if a set U , U ⊆ F , is unsatisfiable and U 6∈ Unexplored,
then for every M ⊇ U it holds that M 6∈ Unexplored.

Observation 2. If N is an s-seed, then every satisfiable superset of N is also an s-seed. Dually,
if M is a u-seed, then every unsatisfiable subset of M is also a u-seed.

Proof. Let N be an s-seed and S a satisfiable superset of N that is not an s-seed, i.e., S 6∈
Unexplored. Due to Invariant 1, N 6∈ Unexplored (contradiction). Dually for the u-seed M .

123

Rotation Based MSS/MCS Enumeration Bend́ık and Černá

Observation 3. If N is an s-seed such that for all f ∈ F \N the set N ∪{f} is explored, then
N is a MSS.

Proof. N is a MSS if for all f ∈ F \N the set N ∪ {f} is unsatisfiable (Definition 1). Assume
that there is f ∈ F \ N such that the set S = N ∪ {f} is satisfiable. Since S = N ∪ {f} is
explored then N has to be also explored (Invariant 1), which contradicts that N is an s-seed.

Example 2. We illustrate the concepts on the set of four clauses from Example 1: F =
{{x1}, {¬x1}, {x2}, {¬x1,¬x2}}. Fig. 1b shows a possible state of exploration of the power-set.
There are two explored unsatisfiable subsets (red with dashed border), seven explored satisfiable
subsets (green with solid border), three u-seeds (black with dashed border), and four s-seeds
(black with solid border).

Note that given an s-seed S, the set Unexplored allows us to determine that some clauses
from F \ S are conflicting for S. For instance, in Example 2, we can see that f2 is conflicting
for the s-seed S = {f1, f4} since S ∪ {f2} is explored and thus unsatisfiable. We say that f2 is
a minable conflicting for S. Similarly, given a u-seed U , we can collect some minable critical
clauses for U . Formally, we define it as follows.

Definition 8 (minable conflicting). Let S be an s-seed and f a conflicting clause for S. The
clause f is a minable conflicting clause for S if S ∪ {f} 6∈ Unexplored.

Definition 9 (minable critical). Let U be a u-seed and f a critical clause for U . The clause f
is a minable critical clause for U if U \ {f} 6∈ Unexplored.

The exact way we represent (store) and perform operations over the set Unexplored is
described in Section 4. For now, let us just note that we use a symbolic representation that
avoids explicitly storing every single unexplored subset.

3 Algorithm

Our MSS enumeration algorithm, called RIME, is based on a schema that we call seed-grow
schema: to find each single MSS, we find an s-seed N and then we grow N into a MSS Nmss

of F such that N ⊆ Nmss ⊆ F . The seed-grow scheme has been already used by several MSS
enumeration algorithms, e.g., [26, 37, 14]. In general, contemporary seed-grow algorithms
identify an s-seed by iteratively picking and checking an unexplored subset for satisfiability, via
a SAT solver, until they find an s-seed. Individual seed-grow algorithms vary in which and how
many unexplored subsets are checked for satisfiability. Moreover, the algorithms vary in how
exactly they grow the s-seeds. We provide more details on contemporary seed-grow algorithms
and other MSS enumeration algorithms in Section 5.

RIME employs a novel growing procedure. Moreover, RIME alternates two novel techniques
for finding s-seeds. One technique works on the same principle as the contemporary algorithms
do: RIME repeatedly checks unexplored subsets for satisfiability until it finds an s-seed. The
novelty is in the choice of unexplored subsets to be checked. Briefly, RIME maintains a base
IF , IF ⊆ F , and a search-space X defined as X = Unexplored ∩ {N | IF ⊆ N ⊆ F}, i.e., X
consists of those unexplored subsets that contain the whole base. RIME searches for s-seeds
in the search-space X . The base is gradually updated in a way ensuring that s-seeds in the
search-space can be easily found and grown, and that we eventually find all MSSes.

The other technique for finding s-seeds, called MSS rotation, is fundamentally different: we
exploit the already explored MSSes to deduce that some unexplored subsets are satisfiable (i.e.,
s-seeds). The deduction is very cheap and does not involve a usage of a SAT solver. In the
following, we gradually provide a thorough description of all parts of RIME.

124

Rotation Based MSS/MCS Enumeration Bend́ık and Černá

Algorithm 1: RIME

1 Unexplored← P(F) \ {F}
2 IF ← F
3 while Unexplored 6= ∅ do
4 (IF , Unexplored)← refine(IF , Unexplored)
5 while Unexplored ∩ {N | IF ⊆ N ⊆ F} 6= ∅ do
6 N ← a minimal element of Unexplored ∩ {N | IF ⊆ N ⊆ F}
7 (sat?, E,K)← isSAT(N)

8 if sat? then
9 (Emss, Unexplored)← grow(E,Unexplored)

10 output Emss

11 Unexplored← Unexplored \ {X |X ⊆ Emss ∨X ⊇ Emss}
12 (IF , Unexplored)← rotate(Emss, IF , Unexplored)

13 else Unexplored← Unexplored \ {X |X ⊇ K}

3.1 Main Procedure

The main procedure of RIME is shown in Algorithm 1. Initially, the base IF is set to F and
Unexplored is set to P(F)\{F} (we assume that F is unsatisfiable). The rest of the algorithm
is formed by two nested while-loops. At the start of each iteration of the outer loop, the
algorithm updates the base IF via a procedure refine. Moreover, refine can possibly identify
some MSSes. Subsequently, in the nested loop, the algorithm finds all unexplored MSSes in
the search-space X = Unexplored ∩ {N | IF ⊆ N ⊆ F}. In particular, each iteration of the
nested loop starts by picking a minimal element N of X where minimal means that N ∈ X
and for all f ∈ N it holds that N \ {f} 6∈ X . Subsequently, N is processed by a procedure
isSAT that determines the satisfiability of N (via a SAT solver) and moreover identifies either
an unsat core K or a model extension E of N . If N is unsatisfiable, the algorithm removes
all supersets of the unsat core K from Unexplored (since they are all unsatisfiable). In the
other case, when N is satisfiable, the algorithm grows the model extension E into a MSS Emss

using a procedure grow. Moreover, the algorithm removes all subsets and all supersets of Emss

from Unexplored, since none of them can be another MSS. Then, RIME applies on Emss the
MSS Rotation technique (denoted by rotate) that tends to identify additional MSSes. The
MSS rotation can also reduce the set Unexplored and update the base IF . The inner loop
terminates once X = ∅. The outer loop terminates once Unexplored = ∅.

Detailed description of how the procedures refine, rotate, and grow work are provided in
Sections 3.2, 3.3 and 3.4, respectively. For now, let us state that in all the procedures we remove
elements from Unexplored only in two situations. First, every time RIME identifies a MSS, it
removes the MSS together with all subsets and all supersets of the MSS from Unexplored.
Second, RIME can remove an unsatisfiable U , U ⊆ F , together with all supersets of U from
Unexplored. Thus, no MSS can be removed from Unexplored without being explicitly identi-
fied. Furthermore, Observation 4 holds.

Observation 4. The outer loop of Algorithm 1 terminates iff all MSSes and all MUSes have
been explored.

Proof. ⇒: The outer loop terminates when all subsets of F are explored, and thus, especially,
all MSSes and MUSes are explored.

125

Rotation Based MSS/MCS Enumeration Bend́ık and Černá

⇐: Every satisfiable subset of F is a subset of a MSS of F and symmetrically, every unsatisfiable
subset of F is a superset of a MUS of F . In a conjuncture with Invariant 1, the set Unexplored
becomes empty once all MSSes and all MUSes become explored.

3.2 The Base and the Search-Space

Here we describe how we form and maintain the base IF and thus the search-space X =
Unexplored ∩ {N | IF ⊆ N ⊆ F}. To build a suitable base, we make use of the intersection
IMSSF of all MSSes of F . Imagine that we can cheaply compute IMSSF and that we set
IF to IMSSF . Since every MSS of F is a superset of IMSSF , the induced search-space X =
Unexplored ∩ {N | IMSSF ⊆ N ⊆ F} would contain all unexplored MSSes. Furthermore, if
|IMSSF | is relatively large w.r.t. the (average) size of MSSes, then s-seeds in such X are relatively
close to MSSes and thus should be easy to grow. Unfortunately, computing IMSSF is often
practically intractable in a reasonable time [28]. Thus, RIME maintains an over-approximation
of IMSSF as the base IF , i.e., IMSSF ⊆ IF ⊆ F . Initially, we set IF to F (Algorithm 1, line 2),
and in each call of the procedure refine (Algorithm 1, line 4), we reduce IF by removing at
least a single clause of IF \IMSSF from IF . Eventually, IF becomes IMSSF , and thus eventually
the search-space X will contain all so far unexplored MSSes.

The procedure refine(IiF , Unexplored
i) is based on the following three observations; we

use the superscript ”i” to distinguish the input values of IF and Unexplored.

Lemma 1. Whenever Algorithm 1 invokes the procedure refine, it holds that X = {N | IiF ⊆
N ⊆ F} ∩ Unexploredi = ∅.

Proof. At the first iteration of the outer loop, Unexploredi = P(F) \ {F} and IiF = F , thus
X = ∅. In other iterations, the claim follows from the condition of the inner loop.

Lemma 2. Let M be a MSS of F such that M ∈ Unexploredi. Then IMSSF ⊆ IiF ∩M (IiF .

Proof. From the pre-condition X = ∅ (Lemma 1), we have IiF \M 6= ∅, thus IiF ∩M (IiF .
Furthermore, since both IiF and M are supersets of IMSSF , we have IMSSF ⊆ IiF ∩M .

Lemma 3. Let M be a MUS of F such that M ∈ Unexploredi. Then IMSSF ⊆ IiF \M (IiF .

Proof. From the minimal hitting set duality between MUSes and MCSes, we know that for each
f ∈ M , there has to exist a MCS L such that f ∈ L and its complementing MSS L such that
f 6∈ L. Thus, we have that IMSSF ⊆ IiF \M . Furthermore, since M ∈ Unexploredi and from
the pre-condition X = ∅ (Lemma 1), we have IiF \M 6= ∅, thus IiF \M (IiF .

In other words, every unexplored MSS or MUS allow us to reduce IF . Moreover, from
Observation 4, we know that there is at least one unexplored MSS or MUS when refine is
invoked. The procedure refine is shown in Algorithm 2. Each iteration of the algorithm starts
by picking a maximal unexplored subset, i.e., a set T ∈ Unexplored such that for each f ∈ F \T
it holds that T ∪ {f} 6∈ Unexplored. Then, T is checked for satisfiability via the procedure
isSAT. If T is unsatisfiable, isSAT returns an unsat core K of T . Subsequently, a procedure
shrink is used to find a MUS Kmus of K, Unexplored is reduced by removing all supersets of
Kmus from it, and IF is reduced to IF \ Kmus . In the other case, when T is satisfiable, it is
guaranteed that T is an MSS of F (Observation 3). The algorithm reduces IF to IF ∩ T , and
removes all subsets and all supersets of T from Unexplored. Subsequently, T is processed by the
procedure rotate that can identify additional MSSes and further reduce IF and Unexplored.
The algorithm terminates either when a first MUS is found or when Unexplored = ∅.

126

Rotation Based MSS/MCS Enumeration Bend́ık and Černá

Algorithm 2: refine(IF , Unexplored)

1 while Unexplored 6= ∅ do
2 T ← a maximal element of Unexplored
3 (sat?,K)← isSAT(T)
4 if sat? then
5 output T // T is a MSS

6 Unexplored← Unexplored \ {X |X ⊆ T ∨X ⊇ T}
7 IF ← IF ∩ T
8 (IF , Unexplored)← rotate(T, IF , Unexplored)

9 else
10 Kmus ← shrink(K, getMinableCriticals(K, Unexplored))
11 Unexplored← Unexplored \ {X |X ⊇ Kmus}
12 IF ← IF \Kmus

13 break

14 return (IF , Unexplored)

The procedure shrink that finds a MUS of K can be implemented via any single MUS
extraction algorithm, e.g., [3, 11, 8, 30]. Since contemporary single MUS extractors can largely
benefit from a prior knowledge of critical clauses, we also provide the extractor with the set of
clauses that are minable critical for K (denoted by getMinableCriticals in Algorithm 2).

Finally, we provide some additional insight. First, one might ask why we allow Algorithm 2
to identify multiple MSSes even though finding just a single MSS would be enough to reduce
IF . The reason is that each of these MSSes is identified using just a single satisfiability check,
i.e., very cheaply. Second, note that since RIME grows s-seeds that are supersets of IF , the fact
that we gradually reduce the size of IF implies that we gradually reduce the expected size of
the s-seeds. It is often the case that the larger an s-seed is, the easier it is to grow the s-seed
(see Section 3.4). Thus, gradually reducing IF to IMSSF give us more suitable (larger) s-seeds
than if we set IF to IMSSF immediately at the beginning of the computation.

3.3 MSS Rotation

Here we describe our MSS Rotation technique that, based on a MSS N of F , attempts to
identify additional unexplored MSSes. Moreover, it attempts to reduce the sets Unexplored

and IF . From the high-level view, MSS rotation follows the seed-grow scheme, i.e., it identifies
s-seeds and grows them to MSSes. The uniqueness of MSS rotation lies in the way it finds the
s-seeds. Instead of first picking an unexplored subset and then checking the unexplored subset
for satisfiability, MSS rotation first finds a satisfiable subset and then checks the subset for
being unexplored. Such an approach has two significant advantages. First, it is much easier to
check a subset for being unexplored than to find an unexplored subset (see Section 4). Second,
MSS rotation finds the satisfiable subset via a cheap deduction technique instead of employing
a SAT solver. The key deduction idea is summarized in Lemma 4.

Lemma 4. Let M be a MSS of F , f a clause such that f ∈ F \M , and l a literal of f . Then,
the set S = (M ∪ {f}) \ {g ∈M | ¬l ∈ g} is satisfiable.

Proof. Let π be a model of M and πl a truth assignment that originates from π by flipping the
assignment to the variable of l. Since π satisfies the whole M , then πl satisfies at least those

127

Rotation Based MSS/MCS Enumeration Bend́ık and Černá

Algorithm 3: rotate(N,IF ,Unexplored)

1 rotationQueue ← 〈N〉
2 while rotationQueue is not empty do
3 M ← rotationQueue.dequeue()
4 for f ∈ F \M do
5 for l ∈ f do
6 S ← (M ∪ {f}) \ {g ∈M | ¬l ∈ g}
7 if |M \ S| > threshold then continue
8 if S ∈ Unexplored then
9 (Smss, Unexplored)← grow(S, Unexplored)

10 output Smss

11 Unexplored← Unexplored \ {X |X ⊆ Smss ∨X ⊇ Smss}
12 IF ← IF ∩ Smss

13 rotationQueue.enqueue(Smss)

14 return (I, Unexplored)

clauses of M that does not contain ¬l. Moreover, since l ∈ f then πl satisfies also f .

The MSS rotation technique is shown in Algorithm 3. The algorithm maintains a queue
rotationQueue of MSSes. Initially, the queue contains the input MSS N . In each iteration, the
algorithm dequeues a MSS M from the queue and uses it to find new MSSes. In particular, for
each f ∈ F \M and each l ∈ f , the algorithm constructs a satisfiable set S based on Lemma 4
and checks if S is unexplored. If S is unexplored, then S is grown to a MSS Smss and the MSS
is used to reduce the sets Unexplored and IF . Moreover, Smss is added to the queue and thus
eventually used to possibly identify additional MSSes.

We employ one additional heuristic in the algorithm: instead of checking every S for being
an s-seed, we skip every S such that |M \ S| > threshold where threshold ≥ 1 (line 7 in the
algorithm). There are two motivations for this heuristic. First, the smaller S is, the more-likely
S is a subset of some already explored MSS, i.e., the more-likely is S explored. Second, it is
generally easier to grow larger s-seeds than smaller s-seeds, thus we tend to find larger s-seeds.
The most suitable value of threshold varies for different kinds of benchmarks; thus the value of
threshold can be specified by the user of our algorithm.

Model rotation There is a technique called model rotation [10] that is similar to MSS rota-
tion; in fact, we named the MSS rotation after the model rotation. Model rotation is used in
contemporary single MUS extraction tools (e.g., [11, 8, 3]) and it serves for identifying critical
clauses of a given unsatisfiable formula. In particular, let N be an unsatisfiable formula, f
a critical clause for N and π a model of N \ {f}. Model rotation rotates the model π into
a truth assignment πx by flipping an assignment to a single variable x ∈ Vars({f}). Clearly,
πx satisfies {f} (due to the variable x) and πx does not satisfy at least one clause g ∈ N since
N is unsatisfiable. If it is the case that there is exactly one such g then g is a critical clause
for N . Such a rotatation πx of π is constructed for every x ∈ Vars({f}) and each such πx can
potentially point out a different critical clause. Moreover, the model rotation can be recursively
applied on each newly identified critical clause.

In our Lemma 4, the set M ∪ {f} is unsatisfiable and {f} is critical for M , thus, we have a
similar starting point as in the case of model rotation (N = M ∪ {f}). However, MSS rotation

128

Rotation Based MSS/MCS Enumeration Bend́ık and Černá

Algorithm 4: simpleMSSExtraction(N)

1 C ← ∅
2 while F \ (N ∪ C) 6= ∅ do
3 f ← pick a clause from F \ (N ∪ C)
4 (sat?, E)← isSAT(N ∪ {f},

⋃
f∈C{¬l | l ∈ f})

5 if sat? then N ← E
6 else C ← C ∪ {f}
7 return N

does not take a model as an input. Moreover, model rotation attempts to identify a satisfiable
subset S of the input set N such that S = N \ {g} for some g ∈ N , i.e., |N \ S| = 1. On
the other hand, in MSS rotation, we seek for a satisfiable subset S of N = M ∪ {f} such that
|M \ S| ≤ threshold ≥ 1.

3.4 Grow

In this section, we describe the procedure grow that takes as an input an s-seed N and returns
an unexplored MSS Nmss of F such that N ⊆ Nmss. The procedure is based on a simple,
well-known, single MSS extraction algorithm. We first describe the base solution and then
introduce several novel improvements to the base solution.

Base Solution Recall that a set N is a MSS of F if every f ∈ F \N is conflicting for N . Also,
recall that if a clause f is conflicting for N , than the literals {¬l | l ∈ f} are backbone literals
for N . The base solution is shown in Algorithm 4. It maintains two sets: the input set N and
a set C of clauses that are known to be conflicting for N . Initially, C = ∅. In each iteration,
the algorithm picks a clause f ∈ F \ (N ∪ C) and checks if f is conflicting for N by checking
N ∪ {f} for satisfiability via the procedure isSAT. To speed up the satisfiability query, isSAT
takes as an input also the set

⋃
f∈C{¬l | l ∈ f} of backbone literals that can be obtained from

C (prior knowledge of backbone literals can be very beneficial for a SAT solver). If N ∪ {f}
is satisfiable, then isSAT returns a model extension E of N ∪ {f} and N is enlarged to E. In
the other case, when N ∪ {f} is unsatisfiable, the clause f is added to C. The computation
terminates once F \ (N ∪C) = ∅. The invariant of the algorithm is that N is satisfiable and all
clauses in C are conflicting for N . The algorithm performs up to |F \ N | satisfiability checks
(due to the use of model extensions, the number can be lower).

Algorithm 4 forms a basis of several contemporary single MSS extraction algorithms (see [27]).
These algorithms extensively exploit domain specific properties of the Boolean CNF domain
and are very efficient. Thus, instead of developing a custom MSS extractor, we might use as
a black-box subroutine one of the existing solutions. However, the single extractors are tailored
for finding only a single MSS and consequently do not (and cannot) fully exploit information
that we can obtain from the overall MSS enumeration algorithm. Thus, we propose our custom
single MSS extraction algorithm that works in a synergy with the overall MSS enumeration.

Key Observations Our approach is based mainly on two observations. First, we can use
Unexplored to collect minable conflicting clauses for an s-seed N . The second observation
concerns a concept of conflict extension that we define as follows.

Definition 10 (conflict extension). Let N be an s-seed, C a set of conflicting clauses for N ,
and backs =

⋃
f∈C{¬l | l ∈ f} the set of all backbone literals for N that can be obtained from C.

129

Rotation Based MSS/MCS Enumeration Bend́ık and Černá

Algorithm 5: enlarge(N,C, Unexplored)

1 while True do
2 E ← conflictExtension(N,C)
3 if E = N then return (N,C)
4 N ← E
5 C ′ ← getMinable(N, Unexplored)
6 if C = C ′ then return (N,C)
7 C ← C ′

The conflict extension of N w.r.t. F and C is the set E = N ∪{g ∈ F \N | backs ∩Lits(g) 6= ∅}
where Lits(g) are literals of the clause g.

Lemma 5. Let N be an s-seed, C a set of conflicting clauses for N , and E the conflict extension
of N w.r.t. F and C. Then E is an s-seed such that N ⊆ E.

Proof. Every model of N has to satisfy all the backbone literals backs and consequently also
every clause g ∈ F that contains at least one of the backbone literals, thus E is satisfiable.
Since N is an s-seed, E ⊇ N is an s-seed (Observation 2).

The ability to mine conflicting clauses and the concept of conflict extension can be very
powerful if we combine them together. In particular, assume that we are given an s-seed N
and the set C of clauses that are minable conflicting for N . We can use the conflict extension
to enlarge N based on C. In turns, there might arise additional minable conflicting clauses
for N , and so on until a fix-point is reached. We properly describe this functionality in the
procedure enlarge shown in Algorithm 5. The input of the algorithm is an s-seed N i, a set Ci

of conflicting clauses for N i, and the set Unexplored. The output of the procedure are sets No,
Co such that No is an s-seed, Co is a set of conflicting clauses for No, No ⊇ N i, and Co ⊇ Ci.
The algorithm works iteratively. In each iteration the algorithm computes the conflict extension
E of N based on C, and then enlarges N to E. Subsequently, the set C ′ of minable conflicting
clauses for (the enlarged) N is computed, and C is enlarged to C ′. The algorithm terminates
either once the model extension does not enlarge N anymore or once we are not able to collect
any new minable conflicting clauses.

Algorithm Our growing procedure is shown in Algorithm 6. It takes as an input an s-seed
N together with the set Unexplored, and it returns a reduced set Unexplored together with
an unexplored MSS Nmss of F such that N ⊆ Nmss.

The computation starts by collecting the set C of clauses that are minable conflicting for
N . Subsequently, the procedure enlarge (Algorithm 5) is used to enlarge both C and N . The
main part of the algorithm is formed by a while loop. In each iteration, the algorithm picks
a clause f ∈ F \ (N ∪C) and checks N ∪{f} for satisfiability via the procedure isSAT. To make
the check more efficient, we pass to isSAT the set

⋃
f∈C{¬l | l ∈ f} of backbone literals that can

be obtained from C. If N ∪{f} is satisfiable, then we obtain its model extension E and enlarge
N to E. Consequently, there might emerge additional minable conflicting clauses for N , thus
we re-collect them and add them to C. In the other case, when N ∪ {f} is unsatisfiable, we
obtain an unsat core K of N ∪{f} from the SAT solver and we remove all supersets of K from
Unexplored. Also, we add f to C since f is conflicting for N . At the end of the iteration, we
use the procedure enlarge to possibly further enlarge N and C.

130

Rotation Based MSS/MCS Enumeration Bend́ık and Černá

Algorithm 6: grow(N, Unexplored)

1 C ← getMinableConflicts(N, Unexplored)
2 N,C ← enlarge(N,C, Unexplored)
3 while F \ (N ∪ C) 6= ∅ do
4 f ← pick a clause from F \ (N ∪ C)
5 (sat?, E,K)← isSAT(N ∪ {f},

⋃
f∈C{¬l | l ∈ f})

6 if sat? then
7 N ← E
8 C ← C ∪ getMinableConflicts(N, Unexplored)
9 else

10 C ← C ∪ {f}
11 Unexplored← Unexplored \ {X |X ⊇ K}
12 N,C ← enlarge(N,C, Unexplored)

13 return (N, Unexplored)

Same as in the case of the base solution (Algorithm 4), the invariant of the algorithm is that
N is an s-seed, C is a set of conflicting clauses for N , and C∩N = ∅. The algorithm terminates
once C ∪N = F , thus the final N is an unexplored MSS of F . In the worst case, the algorithm
performs |F \ N | satisfiability checks, i.e., there is no asymptotic improvement over the base
solution. Yet, we have experimentally observed that the algorithm usually performs much fewer
satisfiability checks and in some cases even no checks at all (see Section 6). This is mainly due
to two reasons. First, RIME grows s-seeds that are usually very close to the resultant MSSes.
Second, the procedure enlarge can often significantly enlarge both N and C.

4 Operations Over Unexplored Subsets

To maintain the set Unexplored, we adopt a symbolic representation that was first used in the
algorithm MARCO [25, 32] and subsequently adopted by many other MSS or MUS enumeration
algorithms (e.g., [3, 14, 31, 17]). Given a formula F = {f1, . . . , fn}, we introduce a set A =
{a1, . . . , an} of Boolean variables. Note that each truth assignment to A one-to-one-maps to
a subset of F . To represent Unexplored, we maintain a pair of Boolean formulas, map+ and
map−, over A such that each model of the conjunction map+ ∧ map− one-to-one-maps to an
element of Unexplored. The formulas are maintained as follows:

• To represent Unexplored = P(F), we set the formulas to map+ = map− = >.

• To remove a set N ⊆ F and all of its subsets from Unexplored, we add to map+ the
clause

∨
fi 6∈N ai.

• Dually, to remove a set N ⊆ F and all of its supersets from Unexplored, we add to map−

the clause
∨

fi∈N ¬ai.

To get an arbitrary element of Unexplored, we can ask a SAT solver for a model of map+∧
map−. However, in RIME, we work with two specific types of unexplored subsets. First, in
Algorithm 2, we require a maximal element of Unexplored, i.e., a set T ∈ Unexplored such
that for every f ∈ F \ T it holds that T ∪ {f} 6∈ Unexplored. To get such T , we ask a SAT
solver for a maximal model of map+ ∧ map−. Second, in Algorithm 1, we require a minimal
element N of X = Unexplored ∩ {N | IF ⊆ N ⊆ F}, i.e., a set N ∈ X such that for every

131

Rotation Based MSS/MCS Enumeration Bend́ık and Černá

f ∈ N it holds that N \ {f} 6∈ X . To get such N , we instruct the SAT solver to fix the values
of the variables {xi | fi ∈ IF } to > and ask it for a minimal model of map+ ∧map−.

One of the contemporary SAT solvers that allows the user to fix values of some variables and
can provide minimal and maximal models is miniSAT [20] (the minimal/maximal models are
enforced by setting the default values (polarity) of variables to false/true). In our implemen-
tation, we employ miniSAT in an incremental manner, i.e., we incrementally build the formula
map+ ∧map− and we let miniSAT to internally simplify the formula whenever possible.

As for collecting minable conflicting clauses, recall that given an s-seed T and a clause
f ∈ F \ T , the clause f is minable conflicting for T iff T ∪ {f} 6∈ Unexplored. Speaking in
terms of our symbolic representation, f is minable conflicting for T iff T ∪ {f} does not satisfy
map+ ∧map−. To collect the set C of all minable conflicting clauses for T , we check for every
f ∈ F \ T whether T ∪ {f} satisfies map+ ∧ map−. To perform such checks efficiently, we
exploit one more observation. In particular, observe that the information contained in map+

is irrelevant for mining conflicting clauses. Intuitively, map+ contains only positive literals and
thus requires a presence of clauses. Since T satisfies map+ (T ∈ Unexplored), then T ∪ {f}
necessarily also satisfies map+. Consequently, T ∪{f} ∈ Unexplored iff T ∪{f} satisfies map−.

Finally, collecting minable critical clauses for a u-seed is a dual problem to collecting minable
conflicting clauses for an s-seed, thus we handle it in the dual manner.

5 Related Work

Whenever a MSS enumeration algorithm searches for a MSS N , it needs to deal with two tasks:
(1) it has to guarantee that N is indeed a MSS, and (2) it has to guarantee that N is so far
unexplored MSS. Based on these tasks, we can divide existing algorithms into two categories.

Algorithms from one category deal with the two tasks separately and are based on the seed-
grow scheme. The algorithms start by finding an s-seed, i.e., with task (2), and then they grow
the s-seed into a MSS, i.e., perform the task (1). Perhaps the most famous contemporary seed-
grow algorithm is MARCO [26]. To find an s-seed, MARCO is repeatedly picking and checking
for satisfiability (via a SAT solver) a minimal unexplored subset until an s-seed is found. Since
satisfiable subsets of F are naturally more concentrated among the smaller subsets, MARCO
often needs only few satisfiability checks to find the s-seed. However, s-seeds found among
minimal unexplored subsets are usually very small and thus potentially hard to grow. As for
the growing itself, the authors of MARCO in their paper state that any existing (or even future)
single MSS extractor can be used to implement the growing. In fact, one can incorporate the
growing procedure that we presented in this paper into MARCO. The most important difference
between MARCO and RIME is thus in the way the algorithms find the s-seeds. There are also
some earlier algorithms, e.g., DAA [5] and PDDS [37], that search for s-seeds among minimal
unexplored subsets, however, the algorithms use an inefficient representation of the unexplored
subsets. Whereas MARCO uses the symbolic formula map+ ∧map−, DAA and PDDS use a less
efficient representation based on minimal hitting sets.

Algorithms from the other group deal with the tasks (1) and (2) simultaneously. Similarly
as MARCO and RIME, the algorithms use a variation of the formula map+ ∧ map− to carry
information about unexplored subsets. However, instead of using the formula in a separate
manner, they combine map+ ∧ map− with the formula F into a single Boolean formula G.
Consequently, the task of checking whether a subset N of F is both satisfiable and unexplored,
i.e., an s-seed, can be done via a single SAT solver query. To find each single MSS, the algorithms
perform several such queries, and every time a new MSS is found, the formula G is modified
to exclude the MSS from further computation. To the best of our knowledge, the current

132

Rotation Based MSS/MCS Enumeration Bend́ık and Černá

state-of-the-art MSS enumerators from this category are MCSLS [27] and FLINT [31].
There have been proposed several single MSS extraction algorithms, e.g., [21, 2, 23, 29], that

can be often used as a subroutine of MSS enumeration algorithms, and several techniques [33,
34] for caching results of SAT queries that naturally emerge during single or multiple MSS
extraction. Finally, there are many tools for MUS enumeration (e.g., [3, 4, 14, 31, 17, 18, 16]).
Due to the minimal hitting set duality between MUSes and MCSes [35, 19], many of existing
MUS enumeration algorithms can be in some extent dualized for a MSS enumeration.

6 Experimental Evaluation

We implemented RIME in C++ with a help of miniSAT [20] as a SAT solver and a single
MUS extractor muser2 [11] to perform the shrinking in Algorithm 2. Our tool is publicly
available at https://github.com/jar-ben/rime. Here we provide results of our experimental
evaluation. Besides evaluating RIME, we also provide a comparison with three contemporary
MSS enumeration tools: MARCO1 [26], MCSLS2 [27], and FLINT3 [31].

We focus on three criteria in the comparison: (1) the number of identified MSSes within
a given time limit, (2) the median time to identify individual MSSes, and (3) the median number
of performed satisfiability checks to identify individual MSSes.

We used a collection of 383 unsatisfiable CNF benchmarks that were taken from the SAT
Competition4. The benchmarks range in their size from 70 to 16 million clauses and use from
26 to 4.4 million variables. All experiments were run using a time limit of 3600 seconds and
computed on an AMD EPYC 7371 16-Core Processor, 1 TB memory machine running Debian
Linux 4.19.67-2. The value of threshold in Algorithm 3 was set to 10. Complete results of the
evaluation are available at: https://www.fi.muni.cz/~xbendik/research/rime.

6.1 Number of Identified MSSes

Due to possibly exponentially many MSSes in a benchmark, the complete MSS enumeration
is generally intractable. Moreover, even producing a single MSS can be intractable for hard
instances. Only in case of 31 benchmarks all the algorithms finished the computation. In case
of 6 benchmarks no algorithm found even a single MSS within the time limit.

Figure 2 provides 3 scatter plots that pairwise compare RIME with its competitors on indi-
vidual benchmarks. Each point in the plot represents the result achieved by the two compared
algorithms on one particular benchmark; one algorithm determines the position on the vertical
axis and the other one the position on the horizontal axis. There are two types of points: (1) red
points show the number of identified MSSes within first 600 seconds and (2) blue points show
the number of identified MSSes within 3600 seconds. We provide results achieved within 600
and 3600 seconds to demonstrate how stable is the efficiency of the algorithms with increasing
time limit. Note that the plots are in a log-scale and hence cannot show points with a zero
coordinate. Therefore, we lifted the points with a 0 coordinate to the 1st coordinate, i.e., the
points that are exactly on the x-axis or on the y-axis show benchmarks where one of the algo-
rithms found either only a single MSS or no MSS at all. Moreover, note that each scatter plot
contains three additional pairs of numbers that are above/right of/in the top-right corner of
the plot; these numbers represent the number of points that are above/below/on the diagonal,

1https://sun.iwu.edu/~mliffito/marco/
2The tool was kindly provided to us by its authors
3The tool was kindly provided to us by its authors
4http://www.satcompetition.org/

133

https://github.com/jar-ben/rime
https://www.fi.muni.cz/~xbendik/research/rime
https://sun.iwu.edu/~mliffito/marco/
http://www.satcompetition.org/

Rotation Based MSS/MCS Enumeration Bend́ık and Černá

100

101

102

103

104

105

106

107

108

100 101 102 103 104 105 106 107 108

122,121

206,219

55,43

#
 M

SS
es

 F
LI

N
T

MSSes RIME

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

48,39

287,301

48,43

#
 M

SS
es

 M
AR

CO
MSSes RIME

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

91,94
241,246

51,43

#
 M

SS
es

 M
CS

LS

MSSes RIME

Figure 2: Scatter plots comparing the number of identified MSSes within 600 seconds (red
points) and within 3600 seconds (blue points).

ranked 1st ranked 2nd ranked 3rd ranked 4th average ranking
RIME 208 | 227 117 | 86 30 | 42 28 | 28 1.68 | 1.66
FLINT 145 | 138 50 | 57 87 | 97 101 | 91 2.38 | 2.37
MCSLS 107 | 103 164 | 174 100 | 86 12 | 20 2.04 | 2.06
MARCO 48 | 46 35 | 26 120 | 122 180 | 189 3.13 | 3.19

Table 1: Overall rankings of evaluated algorithms after 600 and 3600 seconds.

respectively. The first number of a pair corresponds to the red points, and the second number
to the blue points. For example, after 3600 seconds, RIME found more/less/equal number of
MSS than FLINT in case of 219/121/43 benchmarks, respectively.

Besides the pair-wise comparison of the algorithms, we also provide an overall ranking of the
algorithms on individual benchmarks. In particular, assume that for a benchmark B both RIME
and FLINT found 100 MSSes, MCSLS found 80 MSSes, and MARCO found 50 MSSes. In such
a case, RIME and FLINT share the 1st (best) rank for B , FLINT is 3rd, and MARCO is on the
4th position. Table 1 shows a summary of this ranking. In particular, for each algorithm, the
table shows the average ranking of the algorithm w.r.t. all benchmarks, and also the number
of benchmarks where the algorithm ranks as 1st, 2nd, 3rd, and 4th, respective. In each cell of
the table, we show a pair A|B of numbers that correspond to the ranking after 600 seconds (A)
and after 3600 seconds (B).

6.2 Time and Checks per MSS

Here, we examine the number of elapsed seconds and the number of performed satisfiability
checks to identify each subsequent MSS. These numbers naturally differ for individual bench-
marks, thus we focus on median values. The plot in Figure 3a shows the median number of
elapsed seconds required to identify the first 10000 MSSes. A point with coordinates (x, y)
states that the median of elapsed seconds to output the first x MSSes is y. We used only 116
benchmarks to compute the medians since only in those benchmarks all the algorithms found
at least 10000 MSSes. The figure shows that all the algorithms produce individual MSSes in
a relatively steady rate. The median amount of elapsed time to find the 10000th MSS by RIME,
MCSLS, FLINT, and MARCO was 101, 290, 434, and 1062 seconds, respectively.

MSS enumeration naturally subsumes checking subsets of the input Boolean formula for

134

Rotation Based MSS/MCS Enumeration Bend́ık and Černá

 0

 200

 400

 600

 800

 1000

0 2000 4000 6000 8000 10000

nu
m

be
r

of
 e

la
ps

ed
 s

ec
on

ds

number of identified MSSes

RIME
MARCO
MCSLS
FLINT

(a) time per MSS

 0

 20000

 40000

 60000

 80000

 100000

0 2000 4000 6000 8000 10000

nu
m

be
r

pe
rf

or
m

ed
 s

at
. c

he
ck

s

number of identified MSSes

RIME
MARCO
MCSLS

(b) sat. checks per MSS

Figure 3: The median number of elapsed seconds (Fig. 3a) and the median number of performed
sat. checks (Fig. 3b) to output the first 10000 MSSes.

satisfiability. Based on our experience, performing these checks is the most expensive part
of a MSS enumeration algorithm. In Figure 3b, we show the median number of satisfiability
checks performed to identify the first 10000 MSSes (computed from the 116 benchmarks).
Unfortunately, we were unable to measure the number of checks for FLINT since its authors
provided us only with a binary version of the tool that does not provide this information. We can
see that the median number of performed checks to output the 10000th MSS by RIME, MCSLS,
and MARCO was 11836, 57813, and 101464, respectively. Thus, to find each single MSS, RIME,
MCSLS, and MARCO performed on average around 1.18, 5.8, and 10.15 satisfiability checks.

Remarkably, in case of 60 benchmarks, RIME performed fewer satisfiability checks than what
was the number of identified MSSes. This was achieved mainly due to our novel techniques of
conflict extension and MSS rotation. On average w.r.t. all the 383 benchmarks, RIME identified
88 percent of all s-seeds via the MSS rotation, i.e., without a single satifiability check. Moreover,
in case of 11 percent of all grows, RIME did not perform even a single satifiability check. We
conclude that it is the frugality of RIME w.r.t. the number of performed satisfiability checks
what allowed it to so substantially outperform all of its competitors. RIME found significantly
more MSSes than its competitors on a majority of benchmarks; the difference was often several
orders of magnitude. Moreover, in terms of median values, RIME is three times faster than its
closest competitor MCSLS, four times faster than FLINT, and ten times faster than MARCO.

7 Summary and Future Work

We presented a seed-grow based MSS enumeration algorithm called RIME. Compared to other
seed-grow algorithms, RIME can often identify and grow s-seeds without performing any satis-
fiability checks. Remarkably, on average, RIME performs just 1.18 checks per MSS, and in case
of many benchmarks, the number is even lower than 1. Our experimental evaluation showed
that RIME is several times faster than contemporary MSS enumeration tools.

In future work, we plan to closely examine and possibly adopt preprocessing [9, 6] and
caching [33, 34] techniques that were proposed in the context of MSS/MCS or MUS extrac-
tion. Another direction is to examine whether our MSS/MCS enumeration techniques can be
somehow applied in the context of MUS enumeration. Finally, we plan to examine if the novel
techniques used in RIME can be lifted to other constraint domains, e.g., SMT or LTL, where
MSSes, MCSes or MUSes also find an application (see, e.g.,[7, 24, 22, 13, 15]).

135

Rotation Based MSS/MCS Enumeration Bend́ık and Černá

References

[1] M. Fareed Arif, Carlos Menćıa, and João Marques-Silva. Efficient axiom pinpointing with
EL2MCS. In KI, volume 9324 of Lecture Notes in Computer Science, pages 225–233. Springer,
2015.

[2] Fahiem Bacchus, Jessica Davies, Maria Tsimpoukelli, and George Katsirelos. Relaxation search:
A simple way of managing optional clauses. In AAAI, pages 835–841. AAAI Press, 2014.

[3] Fahiem Bacchus and George Katsirelos. Using minimal correction sets to more efficiently compute
minimal unsatisfiable sets. In CAV (2), volume 9207 of LNCS, pages 70–86. Springer, 2015.

[4] Fahiem Bacchus and George Katsirelos. Finding a collection of MUSes incrementally. In CPAIOR,
volume 9676 of LNCS, pages 35–44. Springer, 2016.

[5] James Bailey and Peter J. Stuckey. Discovery of minimal unsatisfiable subsets of constraints using
hitting set dualization. In PADL, pages 174–186. Springer, 2005.

[6] Valeriy Balabanov and Alexander Ivrii. Speeding up MUS extraction with preprocessing and
chunking. In SAT, volume 9340 of Lecture Notes in Computer Science, pages 17–32. Springer,
2015.

[7] Jǐŕı Barnat, Petr Bauch, Nikola Beneš, Luboš Brim, Jan Beran, and Tomáš Kratochv́ıla. Analysing
sanity of requirements for avionics systems. FAoC, pages 1–19, 2016.

[8] Anton Belov, Marijn Heule, and João Marques-Silva. MUS extraction using clausal proofs. In
SAT, volume 8561 of LNCS, pages 48–57. Springer, 2014.

[9] Anton Belov, Matti Järvisalo, and João Marques-Silva. Formula preprocessing in MUS extraction.
In TACAS, volume 7795 of Lecture Notes in Computer Science, pages 108–123. Springer, 2013.

[10] Anton Belov and João Marques-Silva. Accelerating MUS extraction with recursive model rotation.
In FMCAD, pages 37–40. FMCAD Inc., 2011.

[11] Anton Belov and João Marques-Silva. MUSer2: An efficient MUS extractor. JSAT, 8:123–128,
2012.

[12] Rachel Ben-Eliyahu and Rina Dechter. On computing minimal models. In AAAI, pages 2–8. AAAI
Press / The MIT Press, 1993.

[13] Jaroslav Bend́ık. Consistency checking in requirements analysis. In ISSTA, pages 408–411. ACM,
2017.

[14] Jaroslav Bend́ık, Nikola Beneš, Ivana Černá, and Jǐŕı Barnat. Tunable online MUS/MSS enumer-
ation. In FSTTCS, volume 65 of LIPIcs, pages 50:1–50:13. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016.

[15] Jaroslav Bend́ık and Ivana Černá. Evaluation of domain agnostic approaches for enumeration of
minimal unsatisfiable subsets. In LPAR, volume 57 of EPiC Series in Computing, pages 131–142.
EasyChair, 2018.

[16] Jaroslav Bend́ık and Ivana Černá. MUST: Minimal unsatisfiable subsets enumeration tool. In
TACAS, pages 135–152. Springer, 2020.

[17] Jaroslav Bend́ık, Ivana Černá, and Nikola Beneš. Recursive online enumeration of all minimal
unsatisfiable subsets. In ATVA, volume 11138 of LNCS, pages 143–159. Springer, 2018.

[18] Jaroslav Bend́ık, Elaheh Ghassabani, Michael W. Whalen, and Ivana Černá. Online enumeration
of all minimal inductive validity cores. In SEFM, volume 10886 of LNCS, pages 189–204. Springer,
2018.

[19] Johan de Kleer and Brian C. Williams. Diagnosing multiple faults. Artif. Intell., 32(1):97–130,
1987.

[20] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In SAT, volume 2919 of LNCS, pages
502–518. Springer, 2003.

[21] Alexander Felfernig, Monika Schubert, and Christoph Zehentner. An efficient diagnosis algorithm
for inconsistent constraint sets. AI EDAM, 26(1):53–62, 2012.

136

Rotation Based MSS/MCS Enumeration Bend́ık and Černá

[22] Elaheh Ghassabani, Andrew Gacek, Michael W. Whalen, Mats Per Erik Heimdahl, and Lucas G.
Wagner. Proof-based coverage metrics for formal verification. In ASE, pages 194–199. IEEE
Computer Society, 2017.

[23] Éric Grégoire, Jean-Marie Lagniez, and Bertrand Mazure. An experimentally efficient method for
(mss, comss) partitioning. In AAAI, pages 2666–2673. AAAI Press, 2014.

[24] Ofer Guthmann, Ofer Strichman, and Anna Trostanetski. Minimal unsatisfiable core extraction
for SMT. In FMCAD, pages 57–64. IEEE, 2016.

[25] Mark H. Liffiton and Ammar Malik. Enumerating infeasibility: Finding multiple MUSes quickly.
In CPAIOR, volume 7874 of LNCS, pages 160–175. Springer, 2013.

[26] Mark H. Liffiton, Alessandro Previti, Ammar Malik, and João Marques-Silva. Fast, flexible MUS
enumeration. Constraints, 21(2):223–250, 2016.

[27] João Marques-Silva, Federico Heras, Mikolás Janota, Alessandro Previti, and Anton Belov. On
computing minimal correction subsets. In IJCAI, pages 615–622. IJCAI/AAAI, 2013.

[28] Carlos Menćıa, Oliver Kullmann, Alexey Ignatiev, and João Marques-Silva. On computing the
union of muses. In SAT, volume 11628 of Lecture Notes in Computer Science, pages 211–221.
Springer, 2019.

[29] Carlos Menćıa, Alessandro Previti, and João Marques-Silva. Literal-based MCS extraction. In
IJCAI, pages 1973–1979. AAAI Press, 2015.

[30] Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. Accelerated deletion-based extraction of
minimal unsatisfiable cores. JSAT, 9:27–51, 2014.

[31] Nina Narodytska, Nikolaj Bjørner, Maria-Cristina Marinescu, and Mooly Sagiv. Core-guided
minimal correction set and core enumeration. In IJCAI, pages 1353–1361. ijcai.org, 2018.

[32] Alessandro Previti and João Marques-Silva. Partial MUS enumeration. In AAAI. AAAI Press,
2013.

[33] Alessandro Previti, Carlos Menćıa, Matti Järvisalo, and João Marques-Silva. Improving MCS
enumeration via caching. In SAT, volume 10491 of Lecture Notes in Computer Science, pages
184–194. Springer, 2017.

[34] Alessandro Previti, Carlos Menćıa, Matti Järvisalo, and João Marques-Silva. Premise set caching
for enumerating minimal correction subsets. In AAAI, pages 6633–6640. AAAI Press, 2018.

[35] Raymond Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):57–95, 1987.

[36] Emanuel Sperner. Ein satz über untermengen einer endlichen menge. Mathematische Zeitschrift,
27(1):544–548, 1928.

[37] Roni Tzvi Stern, Meir Kalech, Alexander Feldman, and Gregory M. Provan. Exploring the duality
in conflict-directed model-based diagnosis. In AAAI. AAAI Press, 2012.

137

	Introduction
	Preliminaries
	Maximal Satisfiability and Minimal Unsatisfiability
	Unexplored Subsets

	Algorithm
	Main Procedure
	The Base and the Search-Space
	MSS Rotation
	Grow

	Operations Over Unexplored Subsets
	Related Work
	Experimental Evaluation
	Number of Identified MSSes
	Time and Checks per MSS

	Summary and Future Work

