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Abstract

Many exact Max-SAT solvers use a branch and bound algorithm, where the lower bound
is calculated with a combination of Max-SAT resolution and detection of disjoint incon-
sistent subformulas. We propose a propagation algorithm which improves the detection
of disjoint inconsistent subformulas compared to algorithms previously used in Max-SAT
solvers. We implemented this algorithm in our new solver akmaxsat and compared our
solver with three solvers using unit propagation and restricted failed literal detection; these
solvers are currently state-of-the-art on random Max-SAT instances. We also developed
a lazy deletion data structure for our solver which speeds up lower bound calculation on
instances with a high clauses-to-variables ratio. Our experiments show that our solver
runs faster than the previously best solvers on randomly generated instances with a high
clauses-to-variables ratio.

1 Introduction

The Max-SAT problem can be stated as follows: given a list of clauses C1, . . . , Cm, find an
assignment of Boolean values to the variables x1, . . . , xn which satisfies the maximum number
of clauses. The weighted Max-SAT problem is a generalization where each clause has a weight,
and the sum of the weights of the satisfied clauses has to be maximized. Equivalently one can
minimize the sum of the weights of the unsatisfied clauses, which is done in most Max-SAT
solvers.

It is well known that the Max-SAT problem is NP-hard, e. g. Max-Clique and Max-Cut
instances can be expressed as Max-SAT formulas. But Max-SAT has found applications in
fields such as bioinformatics [11], electronic markets [10], sports scheduling [9] and routing [12].
Therefore a lot of research has gone into developing Max-SAT solvers.

Many competitive exact Max-SAT solvers use a branch and bound algorithm which operates
on a binary tree, where each inner node corresponds to a partial assignment, and leaf nodes cor-
respond to complete assignments. At every node of the search tree, a lower bound is calculated
on the minimum number of unsatisfied clauses for any complete assignment which extends the
current partial assignment. If the lower bound is at least as big as the best solution found so
far, the subtree can be pruned, otherwise the partial assignment is extended by instantiating
another variable. The quality of the lower bound function is very important, as it determines
how much of the search tree can be pruned. One also has to consider, however, that there is a
tradeoff between the quality of the lower bound and the efficiency of the lower bound function.

The simplest lower bound function just calculates the number of clauses unsatisfied by
the current partial assignment. This can be improved by calculating an underestimation of
the number of clauses which will become unsatisfied by extending the partial assignment to a
complete assignment. Much progress has been made to compute good quality underestimations
efficiently [6, 4, 7, 3, 8]. In this paper we present a generalized version of the algorithm in [7]
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which improves the quality of the underestimations. This algorithm is implemented in our solver
akmaxsat which uses a lazy deletion data structure which speeds up lower bound calculation
on instances with a high clauses-to-variables ratio.

This paper is organized as follows: in Sect. 2 we start with definitions, then in Sect. 3 we
present our propagation algorithm, which improves detection of disjoint inconsistent subformu-
las. In Sect. 4 we describe the transformation rules which are used in our solver, and in Sect.
5 we describe the data structure of our solver. Finally, in Sect. 6 we show the results of exper-
iments with our Max-SAT solver and three state-of-the-art solvers on benchmark instances of
the Max-SAT evaluation 2009 and some randomly generated weighted Max-2-SAT instances.

2 Definitions

A CNF formula F is a conjunction of clauses consisting of literals from the set {x1, . . . , xn} ∪
{x1, . . . , xn}, where x1, . . . , xn are variables which can take either the value true or false. A
literal xi is true if the variable xi is false, and it is false otherwise. A clause C consists of a
disjunction of literals and is written as (l1 ∨ l2 ∨ · · · ∨ lk). We call a clause satisfied if at least
one of its literals is true, and we call it unsatisfied otherwise. An empty clause which contains
no literal is denoted by 2 and is defined to be unsatisfied.

A hard clause is a clause which needs to be satisfied, whereas a soft clause specifies a
clause which may be unsatisfied by the optimal assignment. In the SAT problem, all clauses
are considered to be hard, whereas in the (weighted) Max-SAT problem we deal with only
soft clauses. Instances of the (weighted) partial Max-SAT problem contain both soft and hard
clauses, and we look for an assignment which satisfies all hard clauses and satisfies the maximum
number of the soft clauses (or the soft clauses of maximum total weight in case of weighted
formulas).

We define the size of a clause to be the number of literals it consists of. A clause of size 1
is called a unit clause. A CNF formula which consists only of clauses of size k is also called a
k-SAT formula, the corresponding Max-SAT problem Max-k-SAT.

An assignment assigns each variable in a formula a truth value, and a partial assignment
assigns truth values to a subset of the variables. A variable is instantiated by assigning it a
truth value. Instantiating a variable yields a simplified formula without literals which have been
assigned false, and without clauses which have become true. We denote by F [x] the resulting
simplified formula after setting variable x to true, and by F [x] the simplified formula after
setting x to false.

3 Generalized Unit Propagation

Our algorithm is a generalization of unit propagation and the restricted version of failed literal
detection which are currently used in Max-SAT solvers. Therefore we start by describing how
unit propagation and failed literal detection work.

Unit propagation is based on the observation, that a unit clause can only be satisfied if the
literal it consists of is set to true. In each step a unit literal l is selected and set to true, and
consequently l is set to false. The literal l can therefore be removed from the clauses where it
appears, possibly yielding new unit literals which can be used to continue this process. When an
empty clause is derived, an inconsistent subset can be reconstructed by identifying the clauses
which were used to derive the empty clause. Algorithm 1 shows a way how to do this.
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At the beginning of the algorithm, the inconsistent subformula F ′ consists of the clause which
has become empty during the unit propagation. In each step of the while loop it identifies if
the propagated literal l was needed to derive the empty clause. If l does not occur in any clause
in F ′, then the propagation of l did not help to derive the empty clause and therefore we do
not need to add the clause C to F ′.

Algorithm 1 ReconstructInconsistentSubformula

Require: stack S of clauses used for unit propagation
Ensure: inconsistent formula F ′

F ′ := pop(S) /* the top of the stack is the clause which has become empty */
while S is not empty do
C := pop(S)
let l be the literal which has been propagated based on C
if l occurs in a clause in F ′ then
F ′ := F ′ ∪ C

end if
end while
return F ′

Failed literal detection temporarily adds a unit literal l to the formula and then uses unit
propagation. If the empty clause can be derived, l is called a failed literal, and a subformula Fl

can be extracted which provides a resolution proof of l. If both l and l are failed literals, the
subformula Fl ∪ Fl forms an inconsistent subformula [7].

We can generalize this algorithm. The idea is, that after having detected a failed literal l,
we can add l to the formula and run unit propagation again. If this unit propagation does not
yield an empty clause, we try to find another failed literal (but now in the current, simplified
formula). This process can be extended until an empty clause is derived or no more failed
literal can be found. Note that the algorithm will terminate, because in each propagation step
the formula is simplified such that it does not contain the propagated literal or its negation
anymore. An important part of the algorithm is that we need to keep track which clauses have
been used to derive a unit literal.

In SAT-solvers like picosat similar algorithms are used, but they are even more general,
as they do not only learn unit clauses, but also clauses of size > 1. In fact, generalized
unit propagation could be seen as running a SAT-solver with unsatisfiable core detection, unit
propagation and failed literal detection, but with the restrictions to do no branches and to learn
only unit clauses. The failed literal detection proposed in [7] would mean a further restriction
to start with failed literal detection until a failed literal is found and then do unit propagation
starting with the complement of the failed literal until a conflict is found.

Algorithm 2 shows in pseudocode how the generalized unit propagation algorithm works.
Whenever we run out of unit literals, we try to find a failed literal l in the current formula
G. For each variable, we check if the literal with the larger weight is a failed literal, where the
weight is calculated as the number of clauses of size > 1 in which the literal occurs. We also
tried to check the literal with smaller weight, but this seems to produce bigger inconsistent
subformulas, which in turn leads to smaller lower bounds. The possible reason is that if we
check the literal with larger weight and it is a failed literal, propagating l reduces the size of
more clauses which in turn helps to derive an empty clause more quickly.

If we succeed in finding a failed literal l, we push the subformula F ′l of F on the stack which
corresponds to the subformula in G providing a resolution proof of l, propagate l and continue
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Algorithm 2 GeneralizedUnitPropagation

Require: formula F on variables V
Ensure: inconsistent subformula F ′

S := ∅ /* is a stack of clause sets which have been used to propagate a literal */
G := F
stop := false
while stop = false do
while G contains a unit literal do

let C be a unit clause in G containing literal l
let C ′ be the clause in F corresponding to C
push(S, C ′), G := G[l]
if G contains an empty clause then

let Cempty be the clause in F corresponding to the empty clause in G
push(S, Cempty)
F ′ := ReconstructInconsistentSubformula(S)
return F ′

end if
end while
stop := true
for x ∈ V do
if weight(x) > weight(x) then
l := x

else
l := x

end if
if UnitPropagate(G ∪ l) yields inconsistent subformula Fl then

let F ′l be the subformula in F corresponding to Fl \ l in G
push(S, F ′l ), G := G[l]
stop := false
break

end if
end for

end while

with generalized unit propagation. In case that no failed literal can be found, we stop. Note
that unit propagation and failed literal detection as in [7] are special cases of our propagation
algorithm.

When the generalized unit propagation succeeds in finding an empty clause, we can re-
construct the inconsistent subformula with the same algorithm used for unit propagation, the
only difference is that the stack which is given as parameter to Algorithm 1 may contain sets
of clauses instead of just single clauses. After extracting an inconsistent subformula, we can
increase the lower bound by one (or by the minimum weight of clauses in F ′ in case of weighted
formulas). We continue the search for other inconsistent subformulas in the remaining formula
F \F ′. For weighted formulas, we determine the minimum clause weight of a clause in F ′ and
subtract this weight from the weight of each clause in F ′ before continuing with generalized
unit propagation.
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We will demonstrate our algorithm on the following CNF formula:

(x1 ∨ x2 ∨ x6) ∧ (x2 ∨ x6) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x5) ∧ (x1 ∨ x2 ∨ x5)

Since there is no unit literal, unit propagation will stop immediately. The failed literal detection
can only find the failed literal x1, and x1 can be resolved from the subformula (x1 ∨x3)∧ (x1 ∨
x4) ∧ (x3 ∨ x4). In the next step, x1 is propagated, yielding the formula

(x2 ∨ x6) ∧ (x2 ∨ x6) ∧ (x3 ∨ x4) ∧ (x2 ∨ x5) ∧ (x2 ∨ x5)

Another failed literal detection may find the failed literal x2 e. g., and x2 is propagated. The
formula now becomes x6 ∧ x6 ∧ (x3 ∨ x4). The following unit propagation quickly derives the
empty clause from x6 ∧ x6.

In our solver we implemented generalized unit propagation with a few additional opti-
mizations: we assign each variable a priority based on the product of the weights of the two
corresponding literals. We keep a list of variables which is initially sorted in non-increasing
order by priority. We search failed literals in the order of the list. After each successful run of
generalized unit propagation, we move the variables which correspond to failed literals detected
during the generalized unit propagation to the end of the list (keeping their relative order).
This makes sure that the next time generalized unit propagation is run, we will prefer variables
which were not used in the previous step.

Another optimization works as follows: after running a failed literal detection which yields
a failed literal l, we want to detect a literal as close to the conflict clause as possible whose
propagation alone leads to the conflict (named first unique implication point in [13]). Obviously,
such a unique implication point is a failed literal, too, and has a resolution proof which is a subset
of the one we have already extracted. To find a unique (not necessarily the first) implication
point, we use this efficient method: we determine the first literal l′ (first in propagation order)

which is propagated during failed literal detection for which l
′

occurs in more than one clause
in the inconsistent subformula Fl. This means after propagating l′, it is the first time we
could possibly have more than one literal on the propagation stack, and all clauses used for
propagation so far must have been binary. We select l′ as failed literal instead of l which allows
us to shorten the inconsistent subformula Fl accordingly by removing all binary clauses which
led to the propagation of l′.

Moreover we use the optimization of [6] and process unit literals in the order that they were
encountered. We use generalized unit propagation at each node of the search tree, but we stop
looking for further inconsistent subformulas as soon as the lower bound exceeds the optimum
value found so far.

4 Max-SAT Resolution

Since lower bound computation takes much time, it is beneficial to transform the formula into
a solution-equivalent simpler formula. In [4] it is shown how the SAT resolution rule can be
extended to Max-SAT. The difference between SAT resolution and Max-SAT resolution is that
we cannot just add the resolvent of two clauses to the formula, we need to replace the original
clauses with the resolvent and some compensation clauses. Several Max-SAT resolution steps
can be aggregated to yield transformation rules for specific clause sets.

The WMaxSatz solver [5] uses transformation rules which can be implemented efficiently as
a byproduct of unit propagation or failed literal detection. This means that the transformation
rules can be applied at each node of the search tree. We use the same transformation rules in
our solver. In particular, these transformation rules are:
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1. l1 ∨ l2, l1 ∨ l2 =⇒ l1

2. l1, l1 ∨ l2, l2 ∨ l3, . . . , lk ∨ lk+1, lk+1 =⇒ 2, l1 ∨ l2, l2 ∨ l3, . . . , lk ∨ lk+1 (k ≥ 0)

3. l1 ∨ l2, l1 ∨ l3, l2 ∨ l3 =⇒ l1, l1 ∨ l2 ∨ l3, l1 ∨ l2 ∨ l3

4. l1, l1 ∨ l2, l2 ∨ l3, . . . , lk ∨ lk+1, lk ∨ lk+2, lk+1 ∨ lk+2 =⇒ 2, l1 ∨ l2, l2 ∨ l3, . . . , lk−1 ∨ lk, lk ∨
lk+1 ∨ lk+2, lk ∨ lk+1 ∨ lk+2 (k ≥ 1)

Since weighted clauses can be seen as aggregated unweighted clauses containing the same literals,
we calculate the minimum weight wmin of a clause on the left hand side of a transformation
rule, subtract wmin from the weight of all clauses on the left hand side, and each clause on the
right hand side gets the weight wmin.

5 The Lazy Deletion Data Structure

In the following paragraphs we describe the new lazy data structure that we use in our Max-
SAT solver. Each Max-SAT instance consists of a list of clauses (and for weighted Max-SAT
also of clause weights). First we analyze what kind of basic operations on the clauses we need:

1. Clause traversal: traverse all clauses in which literal l occurs.

2. Unit clause traversal: traverse all unit clauses.

3. Clause deletion: delete a clause (we want to keep only active clauses, which are not yet
satisfied by the current partial assignment).

4. Clause insertion: insert a clause (either a new one derived by Max-SAT resolution, or
reinsert old clauses when backtracking).

5. Assignment: assign a truth value to a variable.

6. Backtrack: undo the assignment of a truth value to the last variable instantiated.

We want to do all these operations efficiently from a theoretical and practical point of view, i.
e. in amortized constant time per clause. In order to reach this objective, we keep additional
data on top of the clauses: for each of the possible 2 · n literals we keep an array of pointers
to clauses of at least size two in which the literal occurs. In addition to that we keep an end
pointer to the last clause pointer in each array. Also we keep for each literal the sum of the
weights of the unit clauses consisting of that literal, and on top of that a linked list of literals
with positive unit clause weight.

To support deletion and insertion, for each array we keep a timestamp which indicates when
the array was traversed most recently. We store for each clause the literals it consists of, the
current size of the clause, the clause weight, a reference counter, a special flag, a deletion flag,
and a deletion timestamp. The reference counter indicates how many pointers to this clause
exist in the pointer arrays. The special flag is true if the clause should be deleted when there are
no more pointers referencing it, which can be checked with the reference counter. The delete
flag is true if and only if one of the following conditions is met: the clause should be deleted,
the weight of the clause is zero, the number of literals in the clause is less than two, or the
clause is satisfied by the current partial assignment.

We distinguish between temporary deletions and permanent deletions. In any case, when
a delete flag is set to true, we want to delete all clause pointers in the clause pointer arrays
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referencing the clause. To do a permanent deletion, we also want to delete the clause and
its corresponding data. This is needed for clauses added by a transformation rule when we
backtrack to a state before the application of the transformation rule, otherwise the memory
consumption would grow proportionally to the search tree size. But we do not want to delete
one of the original clauses permanently, since we have to restore them when we backtrack in the
search tree. To be able to restore clauses, we keep a stack of clause pointers to clauses which
have been deleted temporarily. We can then restore them in the reverse order of their deletion
time. We will now describe how the six operations are implemented in our data structure.

The clause traversal works as follows: we traverse the array of literal l which contains the
clause pointers to clauses where literal l occurs. When a clause pointer is encountered which
points to a clause with a delete flag set to true, we delete the clause pointer. If in addition
to that the special flag is true, we decrement the reference counter of the clause, and when it
reaches 0 in this step, we delete the clause. The deletion of the clause pointer can be done in
constant time, since we just replace the clause pointer with the last clause pointer in the array
and decrement the end pointer by one.

The unit clause traversal is easy: we traverse the linked list of literals with positive unit
clause weight.

For the clause deletion operation, we set the delete flag of the clause to true and store the
current timestamp as deletion timestamp. In case we want to do a permanent deletion, we also
set the special flag to true. Otherwise, we push the clause pointer on the stack of clauses which
have to be restored later on. The deletion of clause pointers from the arrays is then done lazily
during the traversal of the clause pointer arrays.

To insert a clause, we add a clause pointer to the clause pointer array of each literal which
occurs in the clause. If we insert a new clause, we also add the clause itself to the list of
clauses (together with the supporting data). Otherwise, we are inserting a clause which has
been deleted before, so we need to set the delete flag to false. Note that we have to avoid to
insert a clause pointer in an array if it is still there. This can happen if we restore a clause
which has been temporarily deleted, but the lazy deletion has not yet happened. If the traversal
timestamp of an array is smaller than the deletion timestamp of the clause, the clause pointer
must still be in the array, otherwise if the traversal timestamp is bigger, the clause pointer must
have been deleted, and we just add the clause pointer at the end of the array.

For the assignment operation, without loss of generality assume that literal l is set to true,
and l is set to false. We use the first operation to traverse all clauses which contain l and set
the delete flag of these clauses to true. We keep the clause pointers to the newly fulfilled clauses
in the clause pointer array of l, because these clauses have to be restored when we backtrack
later. Then we traverse all clauses which contain l, and for each clause we decrement the size
value of the clause. If the clause becomes a unit clause after the assignment, we set the delete
flag to true and add the weight of the clause to the unit weight of the corresponding literal.
If the unit weight was zero before, we also add the literal to the linked list of literals with a
positive unit weight. Again we can keep the clause pointers in the clause pointer array of l and
use them later to restore clauses which have become unit clauses in this step and therefore may
have been deleted from another clause pointer array.

The backtrack operation works in the opposite way: we traverse the clauses which had been
fulfilled (and thus possibly temporarily deleted) by the assignment and use the insert operation
to reinsert clause pointers into clause pointer arrays where needed. Then we traverse the clauses
containing the literal which had been set to false and increase the size value of the clauses. If
a clause was a unit clause consisting of a literal l, we subtract the weight of the clause from
the unit weight of l, and we use the insert operation to reinsert a clause pointer into the clause
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pointer array of l if needed. If the unit weight becomes zero, we remove l from the linked list
of literals with a positive unit weight.

To show that the insert operation is correct, we prove the following invariant:

Invariant 5.1. After each of the six operations, the clause pointer array of an unassigned
literal l consists of pointers to all clauses in the list of clauses which contain literal l and either
have a delete flag set to false, or the delete flag was set to true some time after the most recent
traversal of the array.

Proof. We can assume that the invariant holds before each operation. We prove the invariant
by analyzing the cases when it can become false.

1. A clause is added: we use the insert operation, which makes sure that the invariant stays
true.

2. A delete flag changes from true to false: again, we apply the insert operation. Since we
know that the invariant holds before the execution of the insert operation, the decision
if a clause pointer should be added to an array is correct, so the array of each literal
occurring in the clause will contain a clause pointer to the clause after the application of
the insert operation.

3. The pointer array of a literal is traversed: we remove all clause pointers pointing to clauses
with a delete flag set to true, therefore the invariant will still hold.

This lazy deletion scheme is new to the best of our knowledge. The WMaxSatz solver, for
example, does not remove clause pointers from the arrays, it just skips clauses with a delete
flag during traversals of a clause pointer array. The advantage of our data structure is that
when the formula becomes smaller by assigning variables, the lower bound calculation takes
less time. We have some small overhead, however, therefore if each list of clause pointers is
already small in the beginning, we do not save time. But the performance gain from using our
data structure grows with the clauses-to-variables ratio of a formula.

6 Experimental Results

For the experiments in this section we used the version of our solver akmaxsat which we sub-
mitted to the 2010 Max-SAT evaluation. It is not optimized for unweighted formulas and
allows clause weights up to 263. We have tested our solver together with the WMaxSatz solver
[5], the IUT-BMB-Maxsatz solver (or IUT-BCMB-WMaxsatz solver for weighted instances; for
simplicity we will call these two solvers IUT-Maxsatz solver from now on) and the IncMaxSatz
(IncWMaxSatz) solver [8] on several sets of benchmark instances from the 2009 Max-SAT eval-
uation [2]. The other solvers were among the best solvers in the random categories of the 2009
Max-SAT evaluation.

In addition to the benchmark instances we randomly generated weighted Max-2-SAT in-
stances with 100 variables or 120 variables, respectively. The number of clauses was chosen
as 1200, 1300, 1400, 1500 or 1600, and we generated 10 random formulas of each type. Each
weight was chosen randomly between 1 and 10 (like the comparable random instances of the
2009 Max-SAT evaluation). These instances were used to show how the different solvers scale
on weighted Max-SAT formulas for increasing clauses-to-variables ratio. We also submitted
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Figure 1: Average runtime on 10 weighted Max-2-SAT formulas of each type
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Figure 2: Average search tree size on 10 weighted Max-2-SAT formulas of each type

these instances to the Max-SAT evaluation 2010 where they were used in the weighted random
category.

Like in the Max-SAT evaluation, we used a timeout of 30 minutes for each instance; if a
solver didn’t terminate within 30 minutes, we regarded the instance as unsolved. We evaluated
the number of solved instances and the average runtime on the solved instances for each solver.
We ran the experiments on a node of the bwGRiD [1] which provides two Intel Harpertown
quad-core CPUs with 2.83 Ghz and 8GB RAM each. The installed operating system was
Scientific Linux.

Figure 1 shows the average runtime of the Max-SAT solvers on our randomly generated
weighted Max-2-SAT instances. We can see that our solver akmaxsat outperforms the other
solvers on these instances, and that it scales better for increasing clauses-to-variables ratio. Our
solver is even 7.6 times faster on average than the second fastest solver IUT-Maxsatz on the
formulas with 100 variables and 1600 clauses.

In order to explain the advantage of our solver, we calculated the average number of nodes
in the search tree that each solver processes. Figure 2 shows the average search tree size of
the different solvers on our randomly generated weighted Max-2-SAT instances. Note that the
IncWMaxSatz solver does not print this information when processing an instance, therefore we
could not include it in the figure.
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Figure 3: Unweighted random category
Instance set akmaxsat IUT-Maxsatz WMaxSatz IncMaxSatz
highgirth/4SAT 1089.85 (17) 1003.89 (15) 963.26 (9) 504.05 (25)
highgirth/5SAT 0.23 (25) 0.23 (25) 0.36 (25) 0.13 (25)
max2sat/100v 10.41 (50) 8.61 (50) 24.52 (50) 47.75 (50)
max2sat/120v 75.96 (50) 64.65 (50) 183.54 (50) 274.78 (47)
max2sat/140v 252.33 (49) 236.19 (50) 424.54 (48) 690.35 (38)
max3sat/60v 60.12 (50) 77.47 (50) 126.92 (50) 64.04 (50)
max3sat/70v 226.34 (50) 286.02 (50) 412.78 (49) 242.29 (50)
max3sat/80v 185.50 (50) 213.60 (50) 282.30 (49) 178.59 (50)

Figure 4: Unweighted crafted category
Instance set akmaxsat IUT-Maxsatz WMaxSatz IncMaxSatz
MAXCUT/DIMACS MOD 32.25 (52) 52.09 (52) 95.47 (52) 37.75 (52)
MAXCUT/SPINGLASS 7.20 (3) 6.55 (3) 3.08 (3) 14.70 (3)
bipartite/maxcut-140-630-0.7 130.87 (50) 117.23 (50) 266.19 (49) 235.78 (50)
bipartite/maxcut-140-630-0.8 100.62 (50) 86.61 (50) 233.91 (50) 170.21 (50)

Figure 5: Weighted random category
Instance set akmaxsat IUT-Maxsatz WMaxSatz IncWMaxsatz
wmax2sat/hi 1.42 (40) 2.41 (40) 3.08 (40) 2.66 (40)
wmax2sat/lo 0.14 (40) 0.13 (40) 0.17 (40) 0.07 (40)
wmax3sat/hi 60.06 (40) 155.13 (40) 161.11 (40) 100.62 (40)
wmax3sat/lo 1.25 (40) 2.02 (40) 2.17 (40) 1.16 (40)

Figure 6: Weighted crafted category
Instance set akmaxsat IUT-Maxsatz WMaxSatz IncWMaxsatz
KeXu/frb 175.11 (14) 12.60 (9) 12.49 (9) 63.16 (14)
RAMSEY 7.74 (36) 21.64 (36) 10.09 (36) 4.08 (36)
WMAXCUT/DIMACS MOD 41.16 (60) 77.28 (57) 77.48 (57) 114.19 (59)
WMAXCUT/SPINGLASS 8.90 (4) 26.84 (4) 27.69 (4) 17.80 (4)

Figure 7: Partial random category
Instance set akmaxsat IUT-Maxsatz WMaxSatz IncWMaxsatz
pmax2sat/hi 5.07 (30) 9.08 (30) 10.50 (30) 64.10 (30)
pmax2sat/me 2.77 (30) 8.15 (30) 4.52 (30) 15.01 (30)
pmax2sat/lo 0.63 (30) 0.45 (30) 0.50 (30) 0.99 (30)
pmax3sat/hi 66.10 (30) 58.30 (30) 60.57 (30) 107.03 (30)
pmax3sat/lo 0.68 (30) 0.34 (30) 0.38 (30) 0.33 (30)
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Figure 8: Partial crafted category
Instance set akmaxsat IUT-Maxsatz WMaxSatz IncWMaxsatz
MAXCLIQUE/RANDOM 4.36 (96) 72.68 (84) 69.89 (84) 1.78 (96)
MAXCLIQUE/STRUCTURED 113.59 (36) 138.13 (19) 113.63 (25) 101.80 (37)
MAXONE/3SAT 0.98 (80) 123.32 (79) 129.69 (79) 0.25 (80)
MAXONE/STRUCTURED 207.73 (37) 70.84 (58) 71.24 (58) 120.99 (56)
PSEUDO/miplib 392.25 (3) 0.06 (2) 0.05 (2) 0.03 (2)
frb 483.62 (5) 0.00 (0) 0.00 (0) 176.60 (5)
min-enc/kbtree 150.71 (19) 202.15 (20) 199.16 (20) 495.46 (10)

Figure 9: Weighted partial random category
Instance set akmaxsat IUT-Maxsatz WMaxSatz IncWMaxsatz
wpmax2sat/hi 14.96 (30) 29.77 (30) 35.17 (30) 156.47 (30)
wpmax2sat/me 7.09 (30) 37.32 (30) 10.78 (30) 31.85 (30)
wpmax2sat/lo 1.46 (30) 1.06 (30) 1.18 (30) 1.39 (30)
wpmax3sat/hi 64.91 (30) 69.73 (30) 71.75 (30) 55.06 (30)
wpmax3sat/lo 0.55 (30) 0.36 (30) 0.44 (30) 0.23 (30)

We can see that our solver has a significantly smaller search tree size on weighted Max-2-SAT
instances compared to the other solvers. Since we use the same branching and transformation
rules in our solver as the WMaxSatz solver, the smaller search tree size must be caused by the
generalized unit propagation algorithm, which seems to produce lower bounds of better quality
which allow to prune more nodes of the search tree. We believe that our data structure plays
an important role in the speed gain of our solver, too: although our lower bound calculation
is computationally more expensive, the ratio of the search tree size of our solver to that of the
other solvers is about the same as the ratio of the runtimes. It seems that for formulas with a
sufficiently high clauses-to-variables ratio our data structure leads to speed gains which balance
the additional time spent for lower bound calculation.

Figures 3 to 9 show the results of the solvers on several benchmark instance sets of the 2009
Max-SAT evaluation. For each instance set and each solver, we show in parentheses the number
of solved instances and the average runtime on the solved instances in seconds. The data of the
best performing solver for each instance set is printed in bold. We compare the performance of
the solvers first by number of instances solved, in case of ties we compare the average runtimes
on the solved instances. Since our solver does expensive lower bound calculations at each
node of the search tree, it is not suitable for industrial instances and crafted instances with
big formulas. Therefore we did not include the industrial categories and the weighted partial
crafted category. Also we did not list instance sets where none of the tested solvers was able to
solve any instance (for example the instance set JobShop of the partial crafted category).

Our solver performs quite well for the categories that we tested. Of the 37 total instance
sets, it is the best performing solver among the tested solvers for 12 instance sets, and the
second best performing solver for 16 instance sets.

In the partial crafted category there exists two instance sets (pseudo/miplib and MAX-
ONE/STRUCTURED) where pm2 and SAT4J-Maxsat performed best in the Max-SAT eval-
uation 2009. Although pm2 was also the best solver in the evaluation for instance sets MAX-
ONE/3SAT and frb, the IncWMaxsatz solver is much faster in our tests for these instances, so
although we don’t have exact comparison of runtimes we can be quite sure that IncWMaxsatz
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is really faster. For the instance sets MAXONE/STRUCTURED and pseudo/miplib we didn’t
highlight any of the tested solvers by printing its data in bold. The complete results can be
found at www.uni-ulm.de/in/theo/mitarbeiter/kuegel.

The results of the Max-SAT evaluation 2010 support our own test results and show that
akmaxsat can outperform state-of-the-art solvers. We submitted two versions of our solver
to the evaluation: akmaxsat (the version which was used for the tests shown in this paper)
and a version named akmaxsat ls which does local search in the beginning to find an initial
upper bound on the solution. akmaxsat ls was the best solver in the unweighted random, the
weighted (partial) random and the weighted (partial) crafted categories, and akmaxsat was
the second-best solver for the weighted (partial) random and the weighted (partial) crafted
categories.

The results of the evaluation also show that our solver is not competitive for industrial
instances. Since industrial instances usually consist of big formulas with a low clauses-to-
variables ratio, our lower bound calculation is too expensive, and the data structure is not
helpful. An interesting question is if it is possible to use the branch and bound method also
successfully on industrial instances. To the best of our knowledge, there is currently no branch
and bound solver which is competitive with the best solvers on industrial instances; the most
promising approach seems to be to use incremental lower bound calculations like in IncMaxSatz.

7 Conclusions

We have developed a propagation algorithm which can be used to improve the lower bound
calculation of branch and bound Max-SAT solvers. We implemented it in our own Max-SAT
solver and showed experimentally that it leads to a significant reduction of the number of nodes
of the search tree that need to be traversed. We also presented evidence that our solver scales
better than the other tested solvers for increasing clauses-to-variables ratio. We are confident
that our propagation algorithm and the lazy deletion data structure can also improve other
exact Max-SAT solvers.
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