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Abstract 
The intensification of flood-related damages and fatalities is challenging Early 

Warning Systems (EWS) to always better perform in predicting flood levels allowing 
decision makers to take the most effective decisions for mitigating the impact of extreme 
events. EWS require hydrologic and hydraulic modelling that are usually affected by 
uncertainties that can be extremely significant in data scarce regions. This work presents 
the implementation and application of a Data Assimilation (DA) framework, based on 
the Ensemble Kalman Filter, integrating the hydraulic model FLO-2D and geospatial 
algorithms for data post-processing and mapping. The hydraulic model is forced by both 
flow gages and simulated flow data produced by a simplified GIS-based hydrologic 
modelling for flood wave analysis tailored for small ungauged basins. The hydraulic code 
is adapted to assimilate different observation data types: flow measurements taken along 
the channel, water level observations captured within the floodplain, such as water signs 
on vegetation and buildings pictures by human sensors, and inundation extents obtained 
by processing satellite images. This DA framework required the development of 
significant novelties for incorporating the 2D hydraulic model and for integrating the 
different types of measurements considering the heterogeneous specifications and 
uncertainty of the various assimilated data types. Advanced GIS algorithms are 
implemented for improving the real time flood mapping taking advantage of the 
distributed output provided by the 2D inundation model. Results show improved model 
performances in terms of water level simulations and reduced uncertainties. The 
integrated hydraulic and geospatial modelling allows to empower the water levels 
correction on the flood extension prediction. Additionally, the capability of using the 
different available observations, from satellite images to crowdsourced data, is promising 

Engineering
EPiC Series in Engineering

Volume 3, 2018, Pages 36–44

HIC 2018. 13th International
Conference on Hydroinformatics

G. La Loggia, G. Freni, V. Puleo and M. De Marchis (eds.), HIC 2018 (EPiC Series in Engineering, vol. 3),
pp. 36–44



for the development of a flexible and scalable flood EWS model overcoming the 
limitations of standard DA working generally with 1D hydraulic models and traditional 
sensors. 

1 Introduction 
The increasing impact and occurrence of extreme events together with the demographic expansion 

in riverine areas are causing the dramatic surge of flood-related damages and fatalities (Jongman et 
al.2014) . Early Warning systems (EWS) are useful tools for predicting the flood levels allowing timely 
and efficient decision making to manage water disasters and mitigate economic losses and disruptions 
in urban areas (Plate, 2002). However, hydrologic observations are not sufficient for EWS and 
hydrologic and hydraulic models are required. The complexity of integration of hydro-modelling tools 
with heterogeneous observations challenge EWS to consider and manage the significant modelling 
uncertainties. Data Assimilation (DA) methodologies allow to reduce this uncertainty by efficiently 
incorporating different simulated and observed data while updating the states, inputs or parameters of 
the core flood modelling algorithm. Usually DA methodologies for flood modelling are quite 
computationally intense, so that simplified 1D hydraulic models and lumped hydrologic information 
are usually adopted for their simplicity and reduced computational burden. Nevertheless, 1D models 
are characterized by significant limitations in the reproduction of the distributed flood wave dynamics. 
Moreover, DA methodologies generally implement measurements taken from fluvial stage stages and 
more recently also considering data gathered from satellite sensors (Krzhizhanovskaya et al., 2011). In 
this work, we explore and test the performances of a novel DA framework integrating a Quasi-2D 
hydraulic model for flood risk modelling and mapping assimilating the different available 
measurements considering both traditional single water stages, inundation extents from satellite images 
as well as distributed or crowdsourced observations taken within the entire floodplain domain. The 
Tiber river basin is selected as case study considering the 120 km river reach that flows upstream of the 
city of Rome for its strategic importance in the flood risk mitigation of the historical urbanized area as 
well as for the availability of traditional and informal crowdsourced hydrologic information gathered 
in most recent flood events.  

2 Material and methods 
2.1 Available data 

For the Tiber river case study (Figure 1), the following data were available: 

• In situ surveyed cross sections provided by Autorità di Bacino distrettuale dell’Appennino 
Centrale. 

• Lidar (1 meter resolution) covering  most of the floodplain area of the Tiber River provided 
by the National Cartographic Portal (Portale Cartografico Nazionale or PCN) by the Italian 
Ministry of Environment. 

• DEM (5 meters resolution) from Regione Lazio and Tinitaly 10 meter resolution from Istituto 
Nazionale di Geofisica e Vulcanologia (INGV) (Tarquini et al., 2007). 

• Rain and stage gages time series for historical flood events provided by Regione Lazio and 
Regione Umbria; Flow/stage rating tables  

Integrating a 2D Hydraulic Model and GIS Algorithms into a Data Assimilation ... A. Annis et al.

37



• Land use map from Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA) and 
soil types maps provided by Autorità di Bacino distrettuale dell’Appennino Centrale. 

 

 

2.2 Hydrologic modelling 
The hydrologic input for the hydraulic model is given by the available stage gages for the main river 
channel. Ungauged tributary basins are simulated using a parsimonious hydrological model following 
(Grimaldi et al., 2012; Nardi et al., 2018) and implemented in python environment. The rainfall-runoff 
model is based on the DEM-based geomorphic characterization of runoff production dynamics tailored 
for scarcely monitored river basins with specific regard to the WFIUH method (Mesa, & Mifflin, 1986) 
namely the instantaneous unit hydrograph (IUH) concept, estimated using the width function (WF). 
Specifically, for each time step, the IUH is given by the percentage of basin contributing to the basin 
outlet, starting from the distribution of the cell by cell flow velocities, determined considering the local 
slopes and the land uses, applying the NRCS method (NRCS, 1997) 

2.3 Hydraulic modelling 
The computational domain of the hydraulic model is identified using the DEM based hydro-

geomorphic floodplain zoning algorithm developed starting from Nardi et al., (2006). The hydraulic 
model, FLO-2D PRO (O'brien, 1993) is selected for the ability to route flood hydrographs along 
channels (1D model) or over unconfined surfaces (2D model) also simulating the channel-floodplain 
exchange using the continuity equation and the dynamic wave approximation to the momentum 
equation. The model has been calibrated considering four stage gages along the Tiber river and validated 
for three flood events in 2005, 2010 and 2012. The core Quasi-2D hydraulic modelling component is 
adapted for its implementation within the DA framework in order to gather and process input data 

Figure 1: Location map of the study basin 
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dynamically, as hot starts, and automatically produce corrected flood wave routing results for EWS 
applications. 

2.4 Data Assimilation model 
FLO-2D is used as forecast model for the implementation of the DA method. Specifically, the 

Ensemble Kalman Filter (EnkF) method  (Evensen , 2003) is applied.  
The EnKF model is a sequential DA method that estimates the model state based on the observations 

at each time step they are available. The method is based on ensemble generations with Montecarlo 
simulations: the forecast (a priori) state error covariance matrix is approximated propagating the 
ensemble of the model states 𝑥" using a forecast model and adding a random noise considering the 
uncertainties of the model error. 

The size of the ensemble is chosen adopting the methodology proposed by (Anderson, 2001). 
Following this approach, the ideal spread of the ensemble is reached with an ensemble size so that the 
Normalized RMSE Ratio (NRR) is close to 1 (See Anderson, 2001 for further details). 

2.4.1. Model error 
The model error 𝑤"  is estimated considering the uncertainties related by the input forcing  and the 

model parameters.  
The input inflow 𝑄%",'for the i-element of the ensemble at time t  given by the stage gages and the 

hydrologic model is expressed as suggested by Weerts & El Serafy (2006): 

𝑄%",' = 𝑄%" + 𝑁(0, 𝑅")    (1) 

Where 𝑄%" is the streamflow observation at time t, 𝑁(0,𝑅") is a noise term normally distributed 
with zero mean and a given variance (𝑅")at time t, expressed as: 

𝑅𝐼,𝑡 = 1𝛼 ∙ 𝑄𝑆𝑡5    (2) 

Where α is the coefficient of variation related to the uncertainty of the input. In case of flow retrieved 
from the rating curve tables related to the stage gages, α has been imposed equal to 0.12. For the 
hydrologic model, the validation analysis suggested to impose  α =0.3.  

The uncertainty related to the model parameters is considered as follows: 

𝑝𝑠𝑖 = 𝑝𝑠 + 𝑈(−𝜀𝑃 ∙ 𝑝𝑠, +𝜀𝑃 ∙ 𝑝𝑠)   (3) 

Where 𝑝%' is the perturbed model parameter for the i-element of the ensemble, 𝑝%  is the model 
parameter and 𝜀= is the fractional parameter error. In this case, the channel roughness has been chosen 
as the perturbed parameter, with 𝑝% = 0.04 and 𝜀= = 	0.25. 

 

2.4.2. Implementation in 2D hydraulic modelling 
The state variable 𝑥"  is considered as the water depth in a specific point of the computational 

domain. In case the observation is a stage gage measurement, the spatial position of the state variable 
is located in the closest channel cell of the domain to the position of the stage gage. In case of an 
observation coming from a flood extension gathered from a satellite image, the EnKF method have to 
be applied to both the channel and the floodplain cells interested by the observation. In case of a 
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crowdsourced information, namely a photo from which gathering the water depth or a description of 
the depth from a user, the state variable can be located in the channel, but more likely in the floodplain, 
where people usually could come across a flood event. The forecast model is the hydraulic model 
engine, whose forcing term 𝐼" is the ensemble of the flow hydrographs and the parameters θ are mainly 
the channel and floodplain roughness. 
 

 

To assimilate stage gage measurements, the correction of the water depth is applied to the channel 
cell and to closest floodplain cells (Figure 2). The correction is also propagated upstream and 
downstream with a similar approach to Madsen & Skotner (2005)  adopting a gain function that assigns 
a percentage of the whole correction calculated by the EnKF proportional to the inverse of distance 
between the channel cell where the correction is applied and the channel cell where the observation is 
available.  

Furthermore, in order to simultaneously assimilate more than one stage gage observation, the 
portions of the channel (and its hydraulically connected floodplain) that is between two different stage 
observations, is updated considering both these observations using as weight the inverse of the distance 
of its connected channel cell from each stage gage cell.  

Each time step when observation measurements are available, the hydraulic simulation is stopped 
and the water levels and volume conservation outputs are saved in binary files. Then the EnKF is applied 
and the water depth corrections are inserted in the binary files.  

When the gain function is propagated upstream and the water level correction is positive, a 
counterslope of the water levels could occur, bringing the model to numerical instability. In order to 
avoid this, a further condition has been imposed: the absolute water level in the cell of the channel 
𝐻D(𝑥') cannot be lower than the following downstream channel 𝐻D(𝑥')cell, but, at least, should be the 
same. 

 
The assimilation of flow depths derived from a satellite image can be summarised in the following 

steps: 

Figure 2: Identification of the cells of the computational domain in case of assimilating observation from the 
channel or the floodplain 
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• Flood detection from satellite image. The Water index introduced by (Fisher et al., 2016) 
has been adopted for detecting the water extension of the November 2012 flood. 

• Comparison of the flood extent detected from the satellite image with the ensemble of flood 
extents given by the hydraulic model. This procedure requires refining the resolution of the 
water surface elevation layer provided by the hydraulic model using a geostatistical 
technique involving the use of a high resolution DEM. 

• Derivation of the water elevation profile along the channel from the satellite image starting 
from the ensemble of the water elevation profiles of the hydraulic model. 

 
In case of VGI observation in a floodplain cell or group of cells, the procedure identifies all closest 

channel cells related to the floodplain cells affected by observations. Than the correction is done to all 
the floodplain cells whose closest channel cells are the ones previously identified. 

The water depth updating given by the DA procedure is propagated downstream and upstream using 
the gain function introduced by Madsen & Skotner (2005). In case of simultaneous assimilation of 
different VGI data, the gain function can be applied assigning a weight to the water level correction in 
a cell proportional to the inverse of the distance between the cell and each observation. 

2.4.3. Implementation in 2D hydraulic modelling 
The perturbation 𝑣" to be assigned to the observation ensemble is strongly dependent on the nature 

of the observation. In case of observations gathered from stage gages, the water depth for the i-element 
of the ensemble at time t is given by:  

𝑊𝐷HI"I,",' = 𝑊𝐷I"I,""JKL + 𝑁10,𝑅I"I,'5    (4) 

Where 𝑊𝐷I"I,""JKL is the observed water level by the static sensor (StS) at time t, 𝑁10,𝑅I"I,',"5  is a 
noise term normally distributed with zero mean and a given variance (𝑅I"I,',") at time t expressed as: 

𝑅I"I,'," = 1𝛼I"I,' ∙ 𝑊𝐷I"I,""JKL5    (5) 

𝛼I"I,'  is the coefficient of variation related to the uncertainty in the water level measurement, 
assumed equal to 0.02. 

The procedure for extracting the hydraulic profile from the satellite image is affected by a series of 
errors that have to be taken in to account when applied in a DA framework and here listed: 

• Error in the water detection from satellite imagery (errOP): this error is due to 1) the water 
detection technique 𝑒𝑟𝑟ST,IU  that could overestimate and underestimate the water 
extension; 2) the resolution 𝑒𝑟𝑟JL%,IU of the satellite image. 

• Error of the water surface extraction from the WSE of the hydraulic model (errVW): This is 
due to the vertical error of the DEM with which the interpolated water surface elevation is 
intersected.  

• Error of the profile derivation from the ensemble of the hydraulic models (errXV). 

• The observation errors related to VGI are given by the composition of three different 
factors:  

• Location error: given by the error in the geolocalization of the human sensor. 
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• Timing error: this can be the lag time between the information acquisition and the posting 
time or the error of the time directly indicated by the user during the content generation.  

• Water depth estimation error, usually deduced by a subjective perspective without the 
verification of an instrumental measure 

 

3 Results 
The November 2012 flood event is selected as test case. The case study is characterized by the 
assimilation of single (Static Sensors or StS; Crowdsourced data also known as Volunteered Geographic 
Information or VGI) and distributed measurements (water extension from Satellite Image or SI).  
Figure 3 shows performance indexes (Nash-Sutcliffe Efficiency-NSE, Pearson correlation – R, and Bias 
expressed as the ration between the sum of the simulated and the observed water levels) of the 
simulations implementing the proposed DA as respect to no-updated simulations derived using only the 
flood wave propagation model. 

 
 
 

The assimilation of the StS is performed considering the first 50 hours hypothesizing a failure of 
the monitoring equipment. This worst case scenario is developed in order to test the effect of 
assimilating intermittent measurements that generally characterized SI and the VGI data of real events. 
Performances of the simulations, calculated considering the stage measurements as true observations, 
generally improve in case of updated simulations. However, the R coefficient results slightly lower in 

Figure 3: Performance indexes in case of no-updated and updated simulation considering the assimilation of 
three types of observations. Event: November 2012 
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case of DA application, because the intermittent observations assimilated by the model caused local 
increases of the mean water levels, modifying the natural curvature of the water levels time series. 

 
 

 
The assimilation of each measurement generates a narrowing of the ensemble spread that persists 

for 8 hours after the correction. The 2D simulation allows to calculate also the potential reduction of 
the flood extension uncertainty along the floodplain domain as shown in Figure 4. 

4 Conclusions 
The presented Data Assimilation framework includes the use of a Quasi-2D hydraulic model for 

improving the flood modelling and mapping for a fully dynamic and spatially distributed representation 
of floodplain inundation processes. The use of 2D models seems a promising way for improving the 
performances and mitigating the uncertainties of EWS for flood risk management consider that standard 
DA flood models currently rely on simplified 1D models,. Nevertheless, recent researchers usually 
consider only measurements from StS neglecting the availability and usefulness novel observation data 
such as water extensions taken from SI and Crowdsourced data (VGI). This approach tries to overcome 
these limitations incorporating into the DA any available measurement from both traditional and 
informal human-sensed information. Results confirm the potential capacity of the presented DA 
framework in improving EWS performances with specific regard to the improvements in representing 
the distribution of water levels and the reduced uncertainties in the simulation of the inundation extent. 
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