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Abstract

This paper evaluates a robust Model Predictive Controller (MPC) based on Sliding
Modes (SMPC) for the downstream level control in irrigation canal pools. Its features
are compared with the conventional Generalized Predictive Controller (GPC), regarding
set point tracking (water level) and output disturbances (offtake discharges). Simulation
results suggest feasibility of applying SMPC for gate manipulation, with suitable command
signals and robustness.

1 Introduction

Among several functions, water transportation systems may be used for delivering water for
irrigation, often from a long distance source, to the users. The main goal in canal control for
agricultural purposes is to minimize the water waste when supplying water to farmers [11].
Since the off-takes are, in most cases, gravity fed, the requirement of being able to supply water
is a set-point regulation of water levels (and consequently water flow rate), by using the gate
opening heights (or associated discharges) as control actions [3]. This is normally accomplished
by controlling the water depth at the extraction localization (downstream). This control logic
transfers the offtake demands to the upstream water source, being therefore demand-oriented.

A canal pool can be divided into the uniform part (transport zone), located upstream,
where water flows at approximately constant depth, and the backwater part (storage zone),
where water is slow-moving or stagnant (with an approximately horizontal surface), which is
caused by an obstruction (as a gate) to the flow at the downstream end. The model captures
the water profile along the pool axis, the wave translation and attenuation as well as the flow
acceleration, known as pool model [18, 17].
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Open irrigation canals are well modelled by the Saint-Venant equations, a set of hyper-
bolic partial differential equations. Such canals are formed by a sequence of pools separated
by gates, therefore a challenging system dynamics and control problem for distributed param-
eter plants, since a gate opening produces a water wave that travels through the pool which
is partially reflected back in the next gate, the remainder crosses the gate and propagates to
the next pool. Works such as [15] deal with the rigorous analysis of such interactions consid-
ering wave disturbances and the Boundary feedback control proposed by [6] is directly based
on the Saint-Venant equations. Control oriented models usually assume a nonlinear system
around equilibrium points (steady-state conditions) and typically linearized models are used
for predicting the system dynamics within a Model Predictive Control (MPC) approach. Un-
der certain assumptions, these linear models can approximate the nonlinear dynamics well.
The MPC optimization for such models is easy and fast to solve and moreover global optimal
solutions can be found. The most common simplified model used in practice is the Integrator
Delay (ID) model [20] which considers that in low frequencies the water depth can be approx-
imated as the integral of the flow. Its extension, the Integrator Delay with Zero (IDZ) model
[16] is more general and includes a zero in the transfer function to cope with low and high
frequencies. Based on the IDZ model, a suitable and simpler model for pools relating solely
the downstream level (output) with the upstream gate opening (input) can be described by a
second order plus dead time transfer function, as used by [10, 9, 8]. Here, the model of the first
pool (Bocal) of the Aragon Imperial main canal (Ebro River, Spain), described in [10] is used as
the prediction model for the MPC and the proposed Sliding Mode MPC (SMPC). MPC offers
a straightforward design method to anticipate future control actions within some time horizon
(control horizon), in order to track a future behavior (in some prediction horizon), predicted
by an explicit model. Recent MPC approaches suggest a trend toward state space formulations
which provides flexibility in representing stable, unstable, integrating and unmeasured distur-
bances, just as the Controller Auto-Regressive Integrated Moving-Average (CARIMA) model
in the Generalized Predictive Control (GPC) [5, 1].

The objective function of GPC is very similar to that of Dynamic Matrix Control (DMC),
with the fundamental difference of using a Diophantine equation and CARIMA model to for-
mulate the dynamic matrix. [1] showed that GPC and Extended Predictive Control (EPC)
can handle the system matrix ill-conditionality better than other MPC methods and, therefore,
it still motivates the development and applications of GPC, as in [5]. Considering its wide
application in environments subject to disturbances, robustness is a necessary feature and must
be taken into account. An attempt to aggregate robustness into GPC by combining GPC with
Sliding Mode Control (SMC) was firstly reported in [4]. For the canal problem, time varying
parameters are a common issue [10] and must be properly controlled.

SMC is a nonlinear control scheme known to be robust to model uncertainties, disturbances
and unmodeled dynamics, being quite suitable for industrial environments. Since the con-
siderations by [23], the research on SMC theory and its applications have been of increasing
interest, providing an engineering look at SMC. Key aspects were clarified, such as the chat-
tering phenomena, both in continuous and discrete time. The key idea consists in choosing
a state variables function (sliding surface) in which all trajectories must reach in finite time
(reaching phase) and, once reached, can not escape, sliding to the desired final value (sliding
phase). A control law is then designed to force the trajectories towards this surface (corrective
action) and, moreover, to keep them thereafter (equivalent control [22]). This control law must
be discontinuous or, at least, it must contain a discontinuous component.

The well succeeded melting of SMPC motivated other works and applications [7, 12, 14, 19,
13]. Following some design steps of the SMPC presented in [13], this article keeps Quadratic
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Figure 1: Schematic representation of the Ebro river irrigation canal first pool. The manipulated
variable is the water level and the controlled variable is the upstream gate position [8]

Programming (QP) active-set for the optimization of the continuous component of the control
law responsible for the sliding phase, and proposes a tuning rule for selecting parameters for
the discontinuous component of the control law.

2 Problem Statement

In this article, it will be considered the problem addressed in [10] where the first pool of an
irrigation canal (see Figure 1), located near the Ebro river in Spain, has been modelled by
means of the following second-order transfer function:

∆Y (s)

∆U(s)
=

K

(T1s+ 1)(T2s+ 1)
e−τ s (1)

where ∆Y (s) and ∆U (s) denote, respectively, the downstream end water level variation and the
upstream gate position variation both in centimeters. The other parameters are the static gain,
K, the process main time constants T 1 and T 2 and the pure time delay τ . The time constant T 1

is associated to the canal pool dynamics and T 2 represents the mechanical actuators dynamics.
As can be expected, due to the immense inertia of the water pool, T 1 � T 2. For the considered
sampling time T s= 60s, a discretized version of (1) with Zero Order Hold is:

∆Y (z)

∆U(z)
=

0.0007811z + 0.0005975

z2 − 1.412z + 0.4465
z−6 (2)

and a lateral offtake discharge (output disturbance) is simulated with a first order plus dead
time model, with a time constant T 3= 70s. Both continuous and discrete models (T s= 60s)
are given below for a negative step input ∆f (z ):

∆D(s)

∆f(s)
=

1

T3s+ 1
⇔ ∆D(z)

∆f(z)
=

0.5756

z − 0.4244
(3)

The considered irrigation pool has a trapezoidal cross section that extends down for a length
of 8km. Using the water level measurements obtained after performing a set of step response
experiments, the coefficient values of the transfer function (1) were obtained. In particular, and
for a nominal operating regime, K=0.0401, T 1=880.79s, T 2=81.27s and τ=360s.
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3 Controller Design

The SMPC presented here is based on a Controller Auto-Regressive Integrated Moving-Average
model (CARIMA), considered linear around each operating point and described as:

A(q−1)∆y(k) = B(q−1)∆u(k − d− 1) + ξ(k), (4)

where d is the delay from input to output (here considered as a multiple of the sampling time),
u is the input signal, q−1 is the backward-shift operator, ∆: 1 – q−1, and ξ is the zero mean
white noise. A and B are polynomials in q−1 defined as:

A(q−1) = 1 + a1q
−1 + a2q

−2 + ...+ anaq
−na, (5)

B(q−1) = b0 + b1q
−1 + b2q

−2 + ...+ anbq
−nb. (6)

According to the SMC theory [22], the first step to design the controller is to define a sliding
surface, S (t), along which the process can slide to find its desired final value. Very often, S (t)
is chosen in such a way that represents a desired system dynamics and/or control objective. For
instance, S (t) could be the tracking error eo = y – w, with w being some reference signal. The
problem of tracking a reference value can be reduced to keeping S (t) at zero. From [12, 13],
the j -step ahead prediction of S (k) with information until the actual instant t = k is given by:

Ŝ(k + j) = Ps(q
−1)(ŷ(k + j)− w(k + j)) +Qs(q

−1)∆u(k + j − 1− d). (7)

Polynomials Ps(q
−1) and Qs(q

−1) have degree np and nq respectively, and allow to design
the desired dynamics in the sliding condition.

A common adjustment is choosing Ps(q
−1) and Qs(q

−1) as:

Qs(q
−1)

Ps(q−1)
=

(1− α)q−1

1− αq−1
, (8)

with 0 < α ≤ 1, since all roots of Ps(q
−1) must be inside the unit circle [13]. As α → 0 the

dynamic is faster.
The cost function aggregates two simultaneous objectives:

JC =

Ny∑
j=N1

[Ŝ(k + j)]2 +

Nu∑
j=1

λ [∆u(k + j − 1)]
2

(9)

where λ is set constant and N 1– Ny is the period of time in which one desires the output tracks
the reference signal and Nu is the control horizon. For these parameters, [13] suggested some
intuitive relations, which can be used as initial values. Other online tuning strategies for these
specific parameters are available in literature [2].

Likewise GPC, to minimize (9) the output prediction within the interval j = [N 1, Ny] is
formed by two parts:

ŷ(k + j) = yf (k + j) + yl(k + j), (10)

where yf is the forced response (considering the initial conditions null but subject to future
control actions) and yl is the free response (natural system response from the initial conditions
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with no future control actions). The forced response yf may be calculated from the step response
of the parametric model (H matrix described in [19]) (4):

yf = H ·∆u (11)

where yf = [yf (1), · · · yf (Nu)] and ∆uc = [∆uc(1), · · · ,∆uc(Nu)].

3.1 Prediction of the Sliding Surface

SMPC control law, ∆uSMPC(k), is the combination of two additive parts: a continuous part
∆uc(k) = ∆u(k) developed like a GPC by the minimization of (9) using quadratic program-
ming (QP), which is responsible for keeping the process variable on the reference value, and
a discontinuous part ∆ud(k) to be detailed further, responsible for guiding the system to the
sliding surface. To calculate ∆uc(k), (10) is substituted into (7) and, after putting it into matrix
form, one has:

Ŝ = (PsH +Qs)∆uc + Ps(yl −w), (12)

with Ps a square matrix of dimension (Ny−N1− 1)× (Ny−N1− 1), Qs a matrix of size (Ny−
N1 − 1)×Nu composed after (9), Ŝ = [Ŝ(1), · · · , Ŝ(Nu)] . Additionally, w = [w(1), · · ·w(Nu)],
ps0 = 1, ps1 = –α, qs0 = 0, qs1 = 1– α, np = 1 and nq = 1.

Substituting (11) into (9), the cost function becomes:

JC =
1

2
∆uTc G∆uc + ∆uTc b+ f0, (13)

with G = 2(λ1Z
TZ + λ2I), Z = PsH + Qs, f0 = λ1(Ps(yl − w))T (Ps(yl − w)) and b =

2λ1Z
TPs(yl −w).

A necessary and sufficient condition for discrete time reaching motion is |Ŝ(k + 1)| ≤ Ŝ(k)
[13] and a control law satisfying this condition does guarantee that all trajectories will enter and
remain within at least a non-increasing domain. In order to guarantee the reaching condition
of (12), a constraint is added into the optimization problem of (13), namely:

−Ŝ · 1 + Ps(yl −w) ≤ (PsH +Qs)∆uc ≤ Ŝ · 1− Ps(yl −w), (14)

where 1Nu×1 is a vector whose entries are ones.

3.2 Discontinuous Control Signal Component

The discontinuous part ∆ud is given here by its smooth version, replacing the sign function by
a hyperbolic tangent function:

∆ud(k + j) = Kd · tanh(Ŝ(k + j)), (15)

where Kd is a gain responsible for the velocity of the reaching mode but also increases chattering.
To improve both tracking and disturbance rejection, this work uses an adaptive Kd, similar to
the one proposed in [21], defined as:

Kd = (1− µ)KdR+ µKdSS, (16)

with

µ = e
−e20
L , µ0 < µ ≤ 1 (17)
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where e0 represents the tracking error, µ0 the lower bound for µ, L = 0.2, and KdR and KdSS
are, respectively, the rising and steady-state components of Kd. In this case, KdR = 0.28 and
KdSS = 6.52.

Therefore, the complete control signal increment for the SMPC at t = k is:

∆uSMPC(k) = ∆uc(k) + ∆ud(k). (18)

It is noteworthy that at each instant k, although Nu components are calculated for ∆uc
and ∆ud, only the first component of each (uc(k), ud(k)) is considered, neglecting the other
components, obeying the receding horizon principle. Then, the actual control signal sent to the
process is given by:

uSMPC(k) = uSMPC(k − 1) + uc(k) + ud(k). (19)

4 Simulation Results and Discussion

This section deals with the obtained results concerning the application of SMPC to the problem
of water level regulation in the first pool of the Ebro river irrigation canal, and its performance
compared with a MPC. All simulations represent a total time of 30,000s, with a fixed step
size of 60s. An offtake discharge reduces by 0.3m the downstream water level, introduced at
t=20,000s. The input constraints are uSMPC ∈ [0cm, 100cm], ∆uSMPC ∈ [-25cm, 25cm]. The
canal has a variable depth between 3.7m and 3.1m. Besides, λ1=λ2 =1, Ny=100, Nu=20, α=0.3
and the MPC was equally tuned with these parameters.

The results are compared in terms of overshoot, rise time, settling time, ITAE, ISE, IAE,
total control signal and control signal standard deviation, which are presented in Table 1. All
these indexes must be as small as possible, but an usual trade-off between tracking and control
effort is expected, and therefore it must be addressed according to the problem, constraints and
performance requirements. Figure 2 shows the system output for the MPC and SMPC for a
unitary reference. Also, a steady-state setpoint error tolerance of 5%, represented by the red
lines, is considered acceptable.

Index MPC SMPC
Overshoot (%) 0.05 0.24
Rise time (s) 3110.4 2879.8
Settling time (s) 5293.3 5018.5
ITAE 5677.8 5337.4
ISE 39.46 33.50
IAE 60.16 53.50
Total control signal 13005 13208
Control signal standard deviation 6.11 5.59

Table 1: MPC and SMPC performance indexes

By analysing the information provided in Table 1 and Figure 2, the SMPC shows a faster
tracking and disturbance rejection ability, when compared with MPC. Although the SMPC
presents a slightly higher overshoot, this value is negligible within the considered steady-state
error tolerance. The main advantage of SMPC is its ability to increase the overall system
response, which can be observed in Figure 2. This increased dynamic performance is represented
by lower values in terms of rise time and settling time. Also, the SMPC has a lower control effort
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Figure 2: Water level using MPC and SMPC control strategies

observed in the lower value of the control signal standard deviation. The overall performance
indexes for SMPC are smaller, showing a feasible application without significant control signal
increase, mainly for discharge actions.

5 Conclusions

The problem of water level regulation, in irrigation canal pools, represents a major challenge for
control systems design. This is due to the large dynamic variations that these systems exhibit
during their operating conditions. To overcome this fact, robust controllers should be applied.
In this work, a SMPC approach was used to regulate the water level in an irrigation canal
pool. Simulations, using a mathematical model of the system, have been elaborated in order
to evaluate the performance of the proposed control methodology. The obtained results were
compared to the ones provided using conventional MPC. The simulation outcomes indicate that
SMPC provides better results regarding the defined set of performance indexes. Thus, SMPC
presents promising features concerning the disturbance rejection and set-point tracking while
maintaining the control signals within its dynamic operating range. Nevertheless, this method
can be further improved by defining the Kd value through optimization algorithms for online
operation. Moreover, this control method must be further validated by applying it in a real or
scaled physical process.
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[7] Mercedes Pérez de la Parte, Oscar Cammacho, and Eduardo F. Comacho. Development of a
GPC-based sliding mode controller. ISA Transactions, 41(1):19–30, jan 2002.

[8] Josenalde Barbosa de Oliveira, Tatiana M. Pinho, João Paulo Coelho, José Boaventura-Cunha,
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