
EPiC Series in Computing

Volume 59, 2019, Pages 144–152

Proceedings of Pragmatics of SAT 2015 and 2018

A Problem Meta-Data Library
for Research in SAT
Markus Iser, Carsten Sinz

Institute for Theoretical Informatics (ITI)
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

Abstract
Experimental data and benchmarks play a crucial role in developing new algorithms and

implementations of SAT solvers. Besides comparing and evaluating solvers, they provide
the basis for all kinds of experiments, for setting up hypothesis and for testing them.
Currently – even though some initiatives for setting up benchmark databases have been
undertaken, and the SAT Competitions provide a “standardized” collection of instances –
it is hard to assemble benchmark sets with prescribed properties. Moreover, the origin of
SAT instances is often not clear, and benchmark collections might contain duplicates. In
this paper we suggest an approach to store meta-data information about SAT instances,
and present an implementation that is capable of collecting, assessing and distributing
benchmark meta-data.

1 Introduction
The experiment is the core sources of knowledge in science. It is the vital source of data in
a feedback loop between hypothesis formation and theory falsification. Algorithm engineers
use experiments to evaluate their methods. Runtime experiments are often based on publicly
available sets of benchmark problems. A set of characteristics or meta-data can be associated
with each benchmark problem.

Benchmark meta-data can be used for benchmark classification and for differentiated anal-
ysis of algorithmic methods. It is very common that a certain algorithmic method or heuristic
configuration works well on a specific type of problems but not so on others. Such correlations
between the feature space of our benchmarks and the configuration space (or even fundamental
algorithms) are of great interest. Disclosure and analysis of such correlations can lead to better
hypotheses and thus more solid theories.

Recent approaches in SAT solver development show that automatic feature extraction and
algorithm selection or heuristic configuration through machine learning are crucial to state-of-
the-art solver performance [4, 3]. Increasing the number of automatically extracted problem
features can improve predictions made by machine learning. But problem meta-data is not
only useful for the training of machine models, it can also help improve the interpretation of
experimental results. And if problem meta-data is used like this, there is no restriction to data
that can be automatically and efficiently extracted from the problem.

D. Le Berre and M. Järvisalo (eds.), POS-18 (EPiC Series in Computing, vol. 59), pp. 144–152

A Problem Meta-Data Library Markus Iser, Carsten Sinz

Meta Data Solutions Feature Extraction
Author Solution to SAT Problem Class (Horn, 2-SAT, etc.)
Generator Number of Solutions Max Clause Length
Application Domain Isomorphic Problems Tree-Width
Local Path Size of shortest recorded proof Number of connected components
Online Source Best recorded runtime . . .
Competition Usage . . .
. . .

Table 1: Meta-data of various types that can be made available in our system

Attempts to provide organized sets of benchmarks have been realized e.g. by Hoos et al. with
SATLib [6, 5]. The organizers of the bi-anual SAT Competition [2] assemble sets of benchmarks
that are sufficiently hard but not too hard for state-of-the-art solvers. Unfortunately, problem
meta-data is very diverse and is, like the problems themselves, distributed over multiple sources,
and usually it has to be manually gathered by the experimenter. Given a set of anonymous
SAT problems (e.g. from SAT competition), some information is hard to get (e.g. problem
origin), and some types of data are computationally hard to calculate (e.g. solution, number of
solutions).

The main goal of the presented tool is to easily gather and exchange meta-information about
benchmark problems. Databases of benchmark meta-data should be easily maintainable and be
distributed to researchers around the world. Meta information shall be collected from different
sources and users should be able to easily add their knowledge to the pool.

The paper is structured as follows. In section 2 we will present some use-cases for the
presented tool. In section 3 we will explain the structure of the database and the reasons
for the choice or benefits of the chosen structure. Section 4 will provide insights into the
implementation and usage of our tool. In section 5 we present some early experience with our
tool and possibilities for future extensions.

2 Use Cases

In order to create exchangeable collections of meta-data in a decentralized manner, the bench-
mark to data association has to be established via benchmark fingerprinting, i.e. well defined
hash values of benchmark problems. As meta-data is associated with hash values of benchmark
problems, it is easy to exchange meta-data with colleagues (see section 2.1).

Our system can be used to find duplicate problems (2.2) in competition sets or own collections
of problems. It can be used to find correlations (2.3) that are particularly suitable for algorithm
selection and interpretation of results.

The database can contain collections of metrics (e.g. “tree-width” or “number of connected
components”). Also information about the source of the problem might be helpful, e.g. urls of
a benchmark repository, problem author and application name.

Even algorithmic results that are hard to calculate, such as the solution to the SAT problem,
the solution to the #SAT problem (i.e. number of solutions) or the solution to an isomorphism
check can be exposed. It might also contain the shortest known proof for an unsatisfiable
problem or just its size. Reporting and comparison of runtime results can easily be accomplished
with our tool. Table 1 summarizes several types of data that can be made available in our
system.

145

A Problem Meta-Data Library Markus Iser, Carsten Sinz

2.1 Global repository for SAT meta-data
Collections of SAT benchmarks can take up a large amount of storage. Also filenames can be
ambiguous and the same problem might occur with different names in several collections of
benchmark problems. Thus, a meta-data database should only reference benchmark problems
via their fingerprints in the form of hash values and not the benchmark problem itself.

This is beneficial as researchers around the world can easily exchange benchmark attributes
without the need to care about benchmark identification. The system solves the identification
problems automatically via hash values.

2.2 Finding Duplicates
Benchmark collections tend to contain duplicate benchmarks. For example the benchmark col-
lections that are regularly compiled for the annual SAT Competition often contain benchmarks
that are used in previous collections. We even found that some benchmarks are present with
different filenames in the same benchmark collection multiple times.

Our system detects simple duplicates (those with an empty diff) directly, as they carry
equal fingerprints or hash-values. However there are also duplicates, like isomorphic problems
through variable renaming and clause reordering, which are not that easy to detect. Checks
for isomorphism in benchmark problems impose hard algorithmic problems. It is beneficial
to store and exchange this information. Our system assigns ids of equivalence classes to each
benchmark. Once an isomorphism has been detected by one researcher, this information can
be exposed via our systems equivalence-class table.

2.3 Finding Correlations
Most new algorithms or heuristic configurations under test are unsuccessful in improving general
solver performance. They might be beneficial for a specific subset of the benchmarks but
catastrophic on another. Many such outcomes are considered being inconclusive.

Given a huge collection of meta-data, correlations of solver behavior and attributes that
the experimenter might not even have thought of might be revealed. Experimental results that
would otherwise be classified as being inconclusive might expose new coherences and lead to
conclusions and even new theoretic models.

3 Database Layout
The database should be small enough to be distributed quickly. Furthermore the data model
should be extensible, without changes to the meta model, i.e. it should be possible to add new
types of meta data without changing the software. The tool should be able to access different
sources of data; for example a local database (e.g., for own experiments) and a global database
(for the SAT community). Researchers can share their individual database with a collection of
certain metrics in the web.

3.1 Hashing Benchmarks
In order to keep the database small, the benchmarks themselves should not be part of the
database. The same benchmark problem can come with different filenames. Anyway the iden-
tification of a specific problem must be possible. Therefore we use hash values to identify a
benchmark.

146

A Problem Meta-Data Library Markus Iser, Carsten Sinz

usage: gbd.py [-h] [-d [DB]] {init,reflect,group,tag,query,resolve} ...

Access and maintain benchmark databases.

positional arguments:
{init,reflect,group,tag,query,resolve}

Available Commands:
init Initialize Database
reflect Reflection, Display Groups
group Create or modify an attribute group
tag Associate attribues with benchmarks
query Query the benchmark database
resolve Resolve Hashes

optional arguments:
-h, --help show this help message and exit
-d [DB], --db [DB] Specify database to work with

Figure 1: The basic commands of the GBD Command-line Interface

Our system creates an md5-hash for the unpacked and normalized benchmark. Unpacking
ensures that the hash value is invariant to benchmark compression. Normalization includes re-
moval of comment-lines and leading or duplicate whitespace characters. Also the line-separator
characters are normalized and replaced by unix-style line-separators. The hash value is created
such, that a call to md5sum on an already unpacked and normalized DIMACS-file would create
the same hash-value.

During an initial local bootstrapping process, a local benchmark table is created that maps
the hash values to local paths where the actual problems reside. The system treats the such
recorded local path like a specific type of meta information that is attached to each hash-value.
However, the benchmark table has a special meaning, as it is used to resolve problem hashes
against actual paths in the local filesystem.

3.2 Attribute Groups

Problem attributes are organized in groups. For each attribute group, our system uses a two
column table to store hash and value pairs. By default, attribute groups store strings such that
queries run a substring search on the attribute group. Numeric types are supported as well, in
which case queries can also use “less than” or “greater than” constraints.

Furthermore, attributes of a certain group can be constrained to be unique (i.e. attach at
most one value to each problem) or have a default value (e.g. SAT, UNSAT and the default value
UNKNOWN). If an attribute group is configured to have a default value and to be unique, our
system ensures that there is always exactly one value stored for each locally available benchmark
problem.

147

A Problem Meta-Data Library Markus Iser, Carsten Sinz

4 Technology and Implementation

We developed the system GBD (Global Benchmark Database) which is maintained in a pub-
licly available GIT repository [1]. The database is stored in a SQLite file and is created and
maintained by a set of Python scripts. The GBD Command-line Interface is organized into six
basic commands: init, reflect, group, tag, query and resolve. Figure 1 shows the help page of
GBD. Each individual command has its own help page that can be studied for further refer-
ence. In the following we give an overview on the usage and parameters of the most important
commands.

The init command (section 4.1) provides access to bootstrapping and other initialization
functionality, whereas the reflect command (section 4.4) provides reflection related functionality,
such as gathering information about existing groups and their properties.

The group command (section 4.3) provides access to group creation and modification func-
tionality. The tag command (section 4.5) can be used to associate attributes with benchmarks.
With the query command (section 4.6) attributes and groups can be used to search for sets of
hashes and to combine them using set operations. Using the resolve command (section 4.7) a
query resultset of benchmark hashes can be translated to benchmark paths in the filesystem.

Note that, in order to simplify usability, most commands use the parameters -n to specify
a group name and -v to specify an attribute value. In general hash values of benchmarks are
printed line-wise to stdout and read line-wise from stdin, i.e. usage of pipe functionality is
encouraged.

4.1 Initialization

The init command creates a database and some basic tables. Via parameter -p the path of
a directory is given. This directory is recursively searched for benchmarks and their hashes
and paths are integrated into the benchmark database in the local benchmark table. With this
bootstrapping command the benchmark table is filled with local benchmark data (i.e. the local
physical path to the benchmark). The benchmark is hashed as described in 3.1 and that hash
is stored alongside its path in the local benchmark table. The local benchmark table is treated
not different than a special attribute group (see section 4.3).

4.2 Database Selection

GBD supports database selection via the –-db paramater. The argument must be a local
path to a SQLLite database that was created by GBD. This command simplifies working with
multiple datasources, e.g. including meta-data collections of colleagues in ones own research.
If not specified otherwise the default database “local.db” in the GBD directory is used.

4.3 Creation of Groups

Groups are distinct categories for attribute values. The group name is basically the name
of a certain attribute that can be specified for a benchmark, such as “author” or “solution”.
Table 2 summarizes the paramaters of the group commandy. Groups can have a default value
(e.g. “UNKNOWN”), in which case every benchmark gets at least the default value assigned.
Groups can be unique, i.e. every benchmark gets at most one value in that group. E.g.
making the “solution” group unique prevents benchmarks from having solution “UNKNOWN”
and “UNSAT” at the same time. Groups have a value type, which can be “text”, “integer” or

148

A Problem Meta-Data Library Markus Iser, Carsten Sinz

Usage: gbd group [-h] [-v VALUE] [-u] [-t text,integer,real] [-r] [-c] name
name Name of group to create (or modify)
-h, –help show this help message and exit
-v VALUE,
–value VALUE

Specify a default value for the group

-u, –unique Specify if the group stores unique or several attributes per benchmark
-t TYPE,
–type TYPE

Specify the value type of the group. TYPE ∈ {“text”, “integer”, “real”}

-r, –remove If group exists: remove the group with the specified name
-c, –clear If group exists: remove all values in the group with the specified name

Table 2: Parameters of the group command of the GBD Command-line Interface

“real” (the default value type is “text”). The type determines the possibilities of how to add
attribute values and query for values in the group (see Section 4.6).

4.3.1 Example:

Creation of group smallest_tracked_proofsize:

gbd group -n smallest_tracked_proofsize -u -t integer

4.4 Reflection on Groups

The reflect command prints information about existing groups. If a specific group is given with
-g or –-group then the properties of that specific group are shown. If the -v flag is used, then
the distinct values in that group are shown.

4.5 Association of Attributes with Benchmarks

Usage: gbd tag [-h] -v VALUE [-r] name
name Name of attribute group
-h, –help show this help message and exit
-v VALUE,
–value VALUE

Attribute value

-r, –remove Remove attribute from hashes if present, instead of adding it

Table 3: Parameters of the tag command of the GBD Command-line Interface

Attribute values can be associated with a set of benchmark problems in a specific attribute
group. An attribute value and a group name must be specified. Table 3 summarizes the
parameters of the tag command. The attribute value must fit the type of the group. If the
group is unique (see section 4.3), each hash can only have one associated attribute value in that
group such that existing values are overwritten automatically.

The hashes are read from stdin. Common usage is to first query for specific benchmarks
hashes and then to pipe them through the command. Several queries (see section 4.6) can be
combined and the hashes can all be tagged or attributed at once.

149

A Problem Meta-Data Library Markus Iser, Carsten Sinz

4.5.1 Example:

Adding an attribute value to a benchmark problem:

echo $hash | gbd tag -n smallest_tracked_proofsize -v 123

4.6 Query

Usage: gbd query [-h] [-v VALUE] [-o union,intersection,difference,symdiff] [name]
name Specify attribute group to query
-h, –help show this help message and exit
-v VALUE,
–value VALUE

Specify attribute value to query for. Searches for substring in groups
of textual type. In groups of numeric types prepend “<”, “>” or “=”
to specify type of comparison.

-o TYPE,
–operation TYPE

Optionally specify how to combine with hashes read from stdin.
TYPE ∈ {“union”, “intersection”, “difference”, “symdiff”}

Table 4: Parameters of the query command of the GBD Command-line Interface

The query command provides methods to find benchmarks that match the specified at-
tributes. A set of hash values is printed line-wise. Table 4 summarizes the parameters of the
query command. Several queries can be combined via pipe operations. The parameter -o is
used to specify how the hashes of the current query shall be combined with previous queries.

4.6.1 Example:

The following query will return all hashes that contain the string 2017 in their path:

gdb query -n benchmarks -v 2017

4.6.2 Example:

The following sequence of commands will create the intersection of two queries. The first query
returns all problems that carry the attribute “2017” in the group “competition”. The second
query returns all problems with the attribute “sat” in the group “solution”:

gdb query -n competition -v 2017
| gdb query -o intersection -n solution -v sat

4.7 Resolve
As the query command only returns hashes of problems, in order to obtain the paths to the
problems, the resolve command is used to resolve these hashes against the paths in the local
benchmark table. The local benchmark table was created by the bootstrapping procedure as
described in section 4.1.

As many problems occur in multiple publicly available compilations, it is not uncommon
that resolve finds multiple representatives of one hash-value on the disk. Therefore the resolve
command can be used with additional parameters. The parameter -c (collapse) is used to print
only one representative per hash, that is usually the first in the list. Similarly, the -p [str]
command constrains the returned path to contain the given substring. Both parameters can be
used in combination in order to prefer resolution against a specific problem compilation.

150

A Problem Meta-Data Library Markus Iser, Carsten Sinz

4.7.1 Example:

The query returns all problems that carry the attribute “2017” in the group “competition”.
Then it is resolved against the local benchmark table. So the command returns a set of paths
to problems that are locally available and fit the given query.

gdb query -n competition -v 2017 | gbd resolve

4.7.2 Example:

Like in the previous example, the query returns all problems that carry the attribute “2017” in
the group “competition”. Then it is resolved against the local benchmark table. The resolve
command has additional constraints to return only one path per hash, and to return only paths
that contain the substring “folder1”. So the command returns a set of paths to unique problems
that are locally available (e.g. in “folder1”) and fit the given query.

gdb query -n competition -v 2017 | gbd resolve -c -p folder1

5 First Results and Future Work

Initializing the database with benchmarks from the agile set of SAT Competition 2017 showed
that more than half of them are duplicates of one another. This could easily be detected, as only
less than 50% unique hashes have been generated and the resolve command often returned
multiple candidates for the same hash within the agile set of benchmark problems. There is no
problem with the hash function, a quick check with the diff command showed that in fact the
problems are identical.

In addition to present database selection, which requires physical exchange of files, new
methods to setup a REST web-service for database-exposure are currently under development.
Setup of a directory service where sources of benchmarks together with their meta-information
can be publicly collected might be a future step of our work, or even a community effort.
Functions to import and merge tables from another database are currently under development.

Future work includes functionality to automatically extract meta-information from bench-
mark files. This could include meta-data from specially formatted comments, but also the
automatic execution of specialized algorithms.

Currently, only the most basic ideas of decentralized meta-data collection are implemented.
The implementation of specific use-cases on top of basic meta-data collection and distribution
is considered future work. Such use-cases include automatic detection of correlations between
solver performance and other meta-data and automatic solver comparison.

References
[1] GBD public repository. https://github.com/Udopia/gbd. Accessed: 2019-01-15.
[2] SAT competitions. http://satcompetition.org/. Accessed: 2017-04-17.
[3] Tomás Balyo, Armin Biere, Markus Iser, and Carsten Sinz. SAT Race 2015. Artif. Intell., 241:45–65,

2016.
[4] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Thomas Lindauer, Yuri Malitsky, Alexan-

dre Fréchette, Holger H. Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin Tierney, and Joaquin
Vanschoren. Aslib: A benchmark library for algorithm selection. Artif. Intell., 237:41–58, 2016.

151

https://github.com/Udopia/gbd
http://satcompetition.org/

A Problem Meta-Data Library Markus Iser, Carsten Sinz

[5] Holger Hoos and Thomas Stützle. Satlib. http://www.cs.ubc.ca/~hoos/SATLIB/index-ubc.html.
Accessed: 2017-04-17.

[6] Holger Hoos and Thomas Stützle. SATLIB: An online resource for research on SAT. 2000.

152

http://www.cs.ubc.ca/~hoos/SATLIB/index-ubc.html

	Introduction
	Use Cases
	Global repository for SAT meta-data
	Finding Duplicates
	Finding Correlations

	Database Layout
	Hashing Benchmarks
	Attribute Groups

	Technology and Implementation
	Initialization
	Database Selection
	Creation of Groups
	Example:

	Reflection on Groups
	Association of Attributes with Benchmarks
	Example:

	Query
	Example:
	Example:

	Resolve
	Example:
	Example:

	First Results and Future Work

