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1 Introduction.

A (non-trivial) knotted rule is an inequality of the form xm ≤ xn for m 6= n, m ≥ 1, n ≥ 0.
Knotted rules were introduced in [2].

Consider the variety V of residuated lattices that satisfy xyx = x2y and any knotted rule
xm ≤ xn. We will show that V has the finite embeddability property (FEP). Previously Van
Alten proved in [4] that the FEP holds for commutative residuated lattices that satisfy any
knotted rule. A class of algebras K is said to have the FEP, if for every algebra A in K and
every finite partial subalgebra B of A, there exists a finite algebra D in K such that B embeds
into D. B is a finite partial subalgebra of A, if B is a finite subset of A and each n−ary
operation fA on A induces a partial operation fB on B defined as:

fB(b1, . . . , bn) =

{
fA(b1, . . . , bn), if fA(b1, . . . , bn) ∈ B.

undefined, if fA(b1, . . . , bn) /∈ B.

We have that if V possesses the FEP, then V has the finite model property as well. Namely,
it is generated by its finite members.

A residuated frame is a structure of the form W = (W,W ′, N, ◦,
,�), where (W, ◦) is a
monoid and N ⊆ W × W ′ is a nuclear relation on (W, ◦) with respect to 
,�. The Galois
algebra of W is denoted by W+. We define W+ = (γN [℘(W )],∩,∪γN , ◦γN , \, /). We have that
the latter is a residuated lattice. See [1] for details.

Consider a A ∈ V and B a finite partial subalgebra of A such that B = {b1, b2, . . . , bk}.
Define (W, ◦, 1) to be the submonoid of A generated by B. By associativity, a unary linear
polynomial of (W, ◦, 1) is of the form u(x) = y ◦ x ◦ w for y, w ∈ W . Such polynomials are
also known as sections and we denote the set of all sections by SW . Let W ′ = SW × B, and
define xN(u, b) by uA(x) ≤A b. During the rest of the paper we will use u(x) to represent
uA(x) depending from the context. Given y ∈W and u ∈ SW , define sections u′(x) = u(x ◦ y)
and u′′(x) = u(y ◦ x). We will also use the notation u′ = u( ◦ x) and u′′ = u(x ◦ ). Define
y 
 (u, b) = {(u(y ◦ ), b)} and (u, b) � y = {(u( ◦ y), b)}. Then WA,B = (W,W ′, N, ◦,
,�) is
a residuated frame. In the construction from [1], it is shown that the map b 7→ {(id, b)}� is an
embedding of the partial subalgebra B of A into W+

A,B. For the construction we will use the

results that W+
A,B and A belong V and that the closed sets {(u, b)}� for u ∈ SW , b ∈ B form

a basis for W+
A,B.

2 The construction.

We divide the problem in two cases. First we consider the pomonoid class P that satisfies
xyx = x2y and xm ≤ xn, for m > n. To show that V has the FEP, we will find a pomonoid
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F ∈ V such that (W, ◦, 1,≤A) is a homomorphic image of F. We will utilize the structure of F
to prove that the basis of closed sets of W+

A,B is finite. One candidate for F is the free algebra
over P.

2.1 The free algebra in k generators over P.
First, we identify and construct the free algebra FM over k generators of the variety M of
monoids such that xyx = x2y. FM will be the monoid reduct of the F. The defining equation
of this variety implies that xkyx` = xk+`y. Hence, expressions in these monoids can be written
using every generator at most once. In this case every element can be identified by the order
in which the generators appear and their exponents.

For instance, if we have 5 generators {z1, z2, z3, z4, z5}, then z35z
4
1z

2
3 can be encoded by the

exponents of the generators (4, 0, 2, 0, 3) and the order in which they appeared 513. In the order
513 we only include the indices of the generators that have exponents greater than 0. With this
encoding, z35z

4
1z

2
3 would be represented as ((4, 0, 2, 0, 3), 513).

When we multiply two elements, the exponents of the corresponding generators are added.
On the other hand, the order of the generators is consolidated. If we consider the generators
without the exponents, the defining equation xyx = x2y becomes xyx = xy. The last equation
captures the behavior of the order of the generators.

The order of the generators or signature of the expressions will be modeled by a monoid
that satisfies xyx = xy. Let’s consider the free idempotent monoid in k generators {1, 2 . . . , k}
that satisfies the equation ∀x, y (xyx = xy). In this monoid S = (S, ·, ε), S consists of all the
words where each generator appears at most once. The operation is concatenation and when a
generator appears twice or more we preserve only the leftmost one. We have that S is a finite
set.

For s ∈ S, let |s| denote the length of s. When i > 0, define si to represent the ith position
in s, where i ≤ |s|. Define s = {si : i ≤ |s|}, the set of elements that appear in s.

Now, the operation in FM will be defined by addition in Nk for the first coordinate and
multiplication in S for the second coordinate.

We have enough information to determine the free monoid ofM. Notice that (Nk,+, 0),S ∈
M. Let F = {(~x, s) ∈ Nk × S : s = supp(~x)}. F is closed under multiplication, hence
FM = (F, ·F, 0) is a submonoid of Nk × S. Clearly FM is in M. We will write x ∈ F as
x = (~x, sx).

Lemma 2.1. FM = (F, ·F, 0) is the free algebra in M on k generators. Moreover, the set F is
generated by the vectors: z1 = ((1, 0, . . . , 0), 1), z2 = ((0, 1, . . . , 0), 2), . . . , zk = ((0, 0, . . . , 1), k).
Also, the identity vector is 0 = (~0, ε).

For m > n let’s define a relation ≤mn on the non negative integers N by u ≤mn v if and only
if u = v, or n ≤ v < u and u ≡ v (mod m − n). This relation is a partial order on N that is
compatible with +.

0 1 2 · · · · · · · · ·n− 1 n n+ 1 · · · · · ·
m− 1 = n+ (m− n)− 1

n+ 2(m− n)− 1

n+ 3(m− n)− 1

m+ 1

2m− n+ 1

m = n+ (m− n)

n+ 2(m− n)
...

...
...
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A partially ordered set is said to be well partially ordered if it has no infinite antichains
and no infinite descending chains. For instance, N with the usual order, namely 〈N,≤〉, is well
partially ordered. If 〈P,≤〉 is well partially ordered, then it is known that for each k ∈ N, P k

is well partially ordered under the direct product ordering of P k. Furthermore, disjoint unions,
subposets and homomorphic images of well partially ordered sets are well partially ordered.

Notice that 〈N,≤mn 〉 is the disjoint union of n one-element chains and (m − n) chains iso-
morphic to 〈Z−,≤〉. Thus, it is dually well partially ordered. This order can be extended to
the direct product 〈Nk,≤mn 〉, which is dually well partially ordered as well.

We have that 〈Nk,≤mn 〉 and 〈S,=〉 are dually well partially ordered sets. Consider F under
the order ≤F , defined as ∀x, y ∈ F, (x ≤F y) iff ~x ≤mn ~y and sx = sy. Then (F, ·F, 0,≤F ) is a
subpomonoid of the direct product (Nk,+, 0,≤mn )× (S, ·, ε,=). Hence 〈F,≤F 〉 is a dually well
partially ordered set. Furthermore, ≤F is compatible with ·F because ≤mn and = are compatible
with the corresponding operations.

Lemma 2.2. (F, ·F, 0,≤F ) is the free object in P.

2.2 Case m > n.

Recall that B = {b1, . . . , bk} and Z is the set of generators of F. Let h1 : Z → W be the
map that sends zi 7→ bi for each i = 1, . . . , k and extend it to a pomonoid homomorphism
h : (F, ·F, 0,≤F ) → (W, ◦, 1,≤A) by the universal mapping property. The map h is surjective
because B generates (W, ◦, 1).

Consider the new frame WF
A,B = (F,W ′, h◦N, ·F,�h,
h, {1}), where x(h◦N)z iff h(x)Nz,

and x
hz = h(x)
z and z�hy = z�h(y). Then h◦N is nuclear, so WF
A,B is a residuated frame.

To prove the finite embeddability property we will show that W+
A,B is finite. It suffices to prove

that it possesses a finite basis of sets {z}�N = {x ∈ W : xNz}, for z ∈ W ′. As h is surjective,
it is enough to show that there are finitely many sets of the form {z}� = {x ∈ F : x(h ◦N)z},
for z ∈W ′.

For x ∈ F , and (u, b) ∈ W ′, we have x ∈ {(u, b)}� iff u(h(x)) ≤A b iff h(v(x)) ≤A b,
for some v ∈ SF such that h(v) = u, since h is a surjective homomorphism. Equivalently,
v(x) ∈ h−1[↓A b], for some v ∈ h−1(u). Now, h−1[↓A b] is a downset in F . Since F is dually
well partially order, we have that h−1[↓A b] =↓ Db, for some finite Db ⊆ F .

Hence v(x) ≤F d for some d ∈ Db. Define d
v = {x ∈ F : v(x) ≤F d}, where v = y ·F ·F w

for some y, w ∈ F .

Lemma 2.3. For a fixed d ∈ Db, there exists finitely many choices for the sets d
v .

Given that
{(u, b)}� =

⋃
d∈Db

d
v ,

and Db is finite, we conclude that for a fixed b, there exists finitely many {(u, b)}�. This and
the fact that B is a finite set concludes the proof.

2.3 Case m < n.

Define a relation ≤nm (notice that the bigger value is the subindex in this order) on the N by
u ≤mn v if and only if u = v, or m ≤ u < v and v ≡ u (mod m − n). This order is the dual of
the order ≤nm, i.e., ≤mn =≥nm. This implies that 〈Nk,≤mn 〉 is well partially ordered.

As before, we construct the free pomonoid (F, ·F, 0,≤F ) for this class. By the universal
mapping property, there exists a surjective homomorphism h : (F, ·F, 0)→ (W, ◦, 1). Following
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the previous construction we conclude that it is sufficient to show that there are only finitely
many closed sets of the form {(u, b)}� with u ∈ SW , b ∈ B.

We use a characterization of well partially ordered sets taken from Nash-Williams [3]. Let
〈P,≤〉 be a poset. An infinite sequence p1, p2, . . . of elements of P is called bad when i < j
implies that pi 6≤ pj . Note that an infinitely descending chain or antichain would be a bad
sequence. A poset is well partially ordered if and only if it has no bad sequences.

Now, for each b ∈ B, define Cb = {{(u, b)}� : u ∈ SW }. The result follows from the next
two lemmas. We omit the proofs here.

Lemma 2.4. For each b ∈ B, 〈Cb,⊇〉 is well partially ordered.

By the above lemma 〈Cb,⊇〉 has no infinite antichains or descending chains.

Lemma 2.5. 〈Cb,⊇〉 has no infinite ascending chains.

Since 〈Cb,⊇〉 has no infinite ascending chains, infinite descending chains and no infinite
antichains, Cb is finite for every b ∈ B. Thus, there are finitely many sets of the form {(u, b)}�
because B is finite.

Theorem 2.6. The variety V has the finite embeddability property and the finite model property.

3 Generalization

The previous proof can be tailored to prove the FEP for the variety V(r) of residuated lattices
such that for some ai ∈ N

xy1xy2x · · ·xyrx = xa0y1x
a1y2x

a2 · · ·xar−1yrx
ar , where

r∑
i=0

ai = r + 1 and

r∏
i=0

ai = 0,

and xm ≤ xn for m < n, m ≥ 1. In this case, we will prove the FEP for a variety containing
V(r). For the previous construction it was important to prove that our signature monoid S was
finite. We will create a signature monoid that is finite and captures the behavior of our variety.

Lemma 3.1. The equation xy1xy2x · · ·xyrx = xa0y1x
a1y2x

a2 · · ·xar−1yrx
ar implies that for

all ` ≥ 2r, there exist natural numbers p, q, and t such that

xy1xy2x · · ·xy`x = xy1xy2x · · ·xyp−1xtypyp+1 · · · y`−q+1xy`−q+2x · · · y`x,

where t = `+ 2− (p+ q) ≥ 0.

Then our signature set will be bounded because every variable will appear at most in q
places.

Claim. The variety V(r) for all r ∈ Z+ has the FEP.
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