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Abstract

We present a few lightweight numeric abstract domains to analyze C programs that ex-
ploit the binary representation of numbers in computers, for instance to perform “compute-
through-overflow” on machine integers, or to directly manipulate the exponent and man-
tissa of floating-point numbers. On integers, we propose an extension of intervals with a
modular component, as well as a bitfield domain. On floating-point numbers, we propose
a predicate domain to match, infer, and propagate selected expression patterns. These
domains are simple, efficient, and extensible. We have included them into the Astrée and
AstréeA static analyzers to supplement existing domains. Experimental results show that
they can improve the analysis precision at a reasonable cost.

1 Introduction

Semantic-based static analysis is an invaluable tool to help ensuring the correctness of programs
as it allows discovering program invariants at compile-time and fully automatically. Abstract
interpretation [9] provides a systematic way to design static analyzers that are sound but ap-
proximate: they infer invariants which are not necessarily the tightest ones. A central concept
is that of abstract domains, which consist of a set of program properties together with a com-
puter representation and algorithms to compute sound approximations in the abstract of the
effect of each language instruction. For instance, the interval domain [9] allows inferring vari-
able bounds. Bound properties allow expressing the absence of many run-time errors (such as
arithmetic and array overflows) but, due to approximations, the inferred bounds may not be
sufficiently precise to imply the desired safety assertions (e.g., in the presence of loops). An
effective static analyzer for run-time errors, such as Astrée [7], uses additional domains to infer
local and loop invariants of a more complex form (e.g., octagons [20]) and derive tighter bounds.

Most numeric domains naturally abstract an ideal semantics based on perfect integers or
rationals, while computers actually use binary numbers with a fixed number of digits. One so-
lution is to adapt the domains to take into account hardware limitations: overflows are detected
and treated as errors, while floating-point semantics is simulated by introducing rounding errors
[17]. While this works well in many cases, it is not sufficient to analyze programs that perform
overflows on purpose (expecting a wrap-around semantics) or that rely on the precise binary
representation of numbers. The goal of this article is to propose a set of simple, lightweight
numeric abstract domains that are aware of these aspects.

1.1 Motivating Examples

Figure 1.a presents a small C function that adds two signed bytes (char) by casting them to
unsigned bytes before the addition and casting the result back to signed bytes. The function
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char add1(char x, char y) {
return (char)

((unsigned char)x +

(unsigned char)y);

}

char add2(char x, char y) {
unsigned register r1,r2,r3;

r1 = x; r2 = y;

r3 = r1 + r2;

return r3;

}
(a) (b)

Figure 1: Integer “compute-through-overflow” examples. char are assumed to be signed.

union u { int i[2]; double d; };
double cast(int i) {

union u x,y;

x.i[0] = 0x43300000;

y.i[0] = x.i[0];

x.i[1] = 0x80000000;

y.i[1] = i ^ x.i[1];

return y.d - x.d;

}

double sqrt(double d) {
double r;

unsigned* p = (unsigned*)&d;

int e = (*p & 0x7fe00000) >> 20;

*p = (*p & 0x801fffff) | 0x3fe00000;

r = ((c1*d+c2)*d+c3)*d+c4;

*p = (e/2 + 511) << 20;

p[1] = 0;

return d * r;

}
(a) (b)

Figure 2: Floating-point computations exploiting the IEEE binary representation. On the
right, c1 to c4 are unspecified constant coefficients of a polynomial approximation. A 32-bit
big-endian processor is assumed (e.g., PowerPC).

systematically triggers an overflow on negative arguments, which is detected by an analyzer
such as Astrée. Additionally, on widespread architectures, the return value equals x+y due to
wrap-around. This programming pattern is used in popular industrial code generators such as
TargetLink [10] and known as “compute-through-overflow.” An analysis not aware of wrap-
around will either report dead code (if overflows are assumed to be fatal) or return [−128, 127]
(if overflows produce full-range results). Even a wrapping-aware interval analysis will return
an imprecise interval for arguments crossing zero, e.g. [−1, 0], as the first cast maps {−1, 0} to
{255, 0} and intervals cannot represent non-convex properties (see Sec. 2.6).

A variant is shown in Fig. 1.b, where the casts are implicit and caused by copies between
variables of different types. This pattern is used to ensure that arithmetic computations are
performed in CPU registers only, using a pool of register variables with irrelevant signedness
(i.e., register allocation is explicit and not entrusted to the compiler).

Figure 2.a presents a C function exploiting the binary representation of floating-point num-
bers based on the IEEE standard [13]. It implements a conversion from 32-bit integers to 64-bit
floats by first constructing the float representation for x.d = 252 + 231 and y.d = 252 + 231 + i

using integer operations and then computing y.d − x.d = i as a float subtraction. This code
is similar to the assembly code generated by compilers when targeting CPUs missing the con-
version instruction (such as PowerPC). Some code generators choose to provide their own C
implementation instead of relying on the compiler (for instance, to improve the traceability of
the assembly code). Figure 2.b exploits the binary encoding of floats to implement a square
root: the argument is split into an exponent e and a mantissa in [1, 4] (computed by masking
the exponent in d); then the square root of the mantissa is evaluated through a polynomial,
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while the exponent is simply halved. In both examples, a sound analyzer not aware of the IEEE
floating-point encoding will return the full float range.

These examples may seem disputable, yet they are representative of actual industrial codes
(the examples have been modified for the sake of exposition). The underlying programming
patterns are supported by many compilers and code generators. An industrial-strength static
analyzer is expected to accept existing coding practices and handle them precisely.

1.2 Contribution

We introduce a refined concrete semantics taking bit manipulations into account, and present
several abstractions to infer precise bounds for the codes in Figs. 1–2.

Section 2 focuses on integers with wrap-around: we propose an interval domain extended
with a modular component and a bitfield domain abstracting each bit separately. Handling the
union type and pointer cast from Fig. 2 requires a specific memory model, which is described
in Sec. 3. Section 4 presents a bit-level float domain based on pattern matching enriched with
predicate propagation. Section 5 presents experimental results using the Astrée and AstréeA
static analyzers. Finally, Sec. 6 concludes.

The domains we present are very simple and lightweight; they have a limited expressiveness.
They are intended to supplement, not replace, classic domains, when analyzing programs fea-
turing bit-level manipulations. Moreover, they are often slight variations on existing domains
[9, 15, 23, 19, 20]. We stress the fact that these domains and the change of concrete semantics
they require have been incorporated into existing industrial analyzers, to enrich the class of
programs they can analyze precisely, at low cost and with no precision regression on previously
analyzed codes.

1.3 Related Work

The documentation [2] for the PolySpace analyzer suggests removing, prior to an analysis, all
computes-through-overflows and provides a source filter based on regular expressions to do so.
This solution is fragile and can miss casts (e.g., when they are not explicit, as in Fig. 1.b) or
cause unsoundness (in case the pattern is too inclusive and transforms unrelated code parts),
while the solution we propose is semantic-based.

Various domains supporting modular arithmetics have been proposed, such as simple [11]
and affine congruences [12, 24]. Masdupuy introduced interval congruences [15] to analyze array
indices; our modular intervals are a slightly simpler restriction and feature operators adapted to
wrap-around. Simon and King propose a wrap-around operator for polyhedra [26]; in addition
to being costly, it outputs convex polyhedra while our examples require the inference of non-
convex invariants locally. Abstracting each bit of an integer separately is a natural idea that
has been used, for instance, by Monniaux [23] and Regehr et al. [25]. Brauer et al. [8] propose a
bit-blasting technique to design precise transfer functions for small blocks of integer operations,
which can bypass the need for more expressive (e.g., disjunctive) local invariants.

We are not aware of any abstract domain able to handle bit-level operations on floating-
point numbers. Unlike classic predicate abstraction [6], our floating-point predicate domain
includes its own fast and ad-hoc (but limited) propagation algorithm instead of relying on an
external generic tool.
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int-type ::= (signed | unsigned)? (char | short | int | long | long long) n? (n ∈ N∗)

bitsize : int-type→ N∗
signed : int-type→ {true, false}

range(t)
def
=

{
[0, 2bitsize(t) − 1] if ¬signed(t)

[−2bitsize(t)−1, 2bitsize(t)−1 − 1] if signed(t)

Figure 3: Integer C types and their characteristics.

2 Integer Abstract Domains

2.1 Concrete Integer Semantics

In this section, we focus on integer computations. Before designing a static analysis, we need to
provide a precise, mathematical definition of the semantics of programs. We base our semantics
on the C standard [5], extended with hypotheses on the representation of data-types necessary
to analyze the programs in Fig. 1.

The C language mixes operators based on mathematical integers (addition, etc.) and opera-
tors based on the binary representation of numbers (bit-wise operators, shifts). At the hardware
level, however, all integer computations are performed in registers of fixed bit-size. Thus, one
way to define the semantics is to break it down at the bit level (i.e., “bit-blasting” [8]). We
choose another route and express the semantics using classic mathematical integers in Z. Our
semantics is higher-level than a bit-based one, which provides some advantages: on the concrete
level, it makes the classic arithmetic C operations (+, -, *, /, %) straightforward to express; on
the abstract level, it remains compatible with abstract domains expressed on perfect numbers
(such as polyhedra). We show that this choice does not preclude the definition of bit-wise
operators nor bit-aware domains.

2.2 Integer Types

Integer types in C come in different sizes and can be signed or unsigned. We present in Fig. 3
the type grammar for integers, int-type, including bitfields that can only appear in structures
(when a bit size n is specified). The bit size and signedness of types are partly implementation-
specific. We assume that they are specified by two maps: bitsize : int-type → N∗ and signed :
int-type → {true, false}. Moreover, we assume that unsigned integers are represented using

a pure binary representation: bn−1 · · · b0 ∈ { 0, 1 }n represents
∑n−1
i=0 2ibi, and signed integers

use two’s complement representation: bn−1 · · · b0 ∈ { 0, 1 }n represents
∑n−2
i=0 2ibi − 2n−1bn−1.

Although this is not required by the C standard, it is the case for all the popular architectures.1

The range (i.e., the set of acceptable values) of each type is derived as in Fig. 3.

2.3 Integer Expressions

We consider here only a pure, side-effect-free, integer fragment of C expressions, as depicted in
Fig. 4. To stay concise, we include only arithmetic and bit-wise operators and casts. Moreover,
statements are reduced to assignments and assertions (which are sufficient to model programs
as control-flow graphs). We perform a static transformation that makes all wrap-around effects

1The C standard allows some features that we do not handle: padding bits, trap representations, one’s
complement representations or sign-magnitude representations of negative numbers, and negative zeros.
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expr ::= n (constant n ∈ Z)
| V (variable V ∈ V)
| (int-type) expr (cast)

| � expr (unary operation, � ∈ { -,~ })
| expr ◦ expr (binary operation, ◦ ∈ { +, -, *, /, %, &, |,^, >>, << })

stat ::= V = expr (assignment)

| assert(expr) (assertion)

Figure 4: Fragment of integer C syntax.

τ : expr→ int-type
τ(n) ∈ int-type (given) τ(V ) ∈ int-type (given)

τ(� e) def
= promote(τ(e)) τ((t) e)

def
= t

τ(e1 ◦ e2)
def
=

{
lub(promote(τ(e1)), promote(τ(e2))) if ◦ ∈ { +, -, *, /, %, &, |,^ }
promote(τ(e1)) if ◦ ∈ { <<, >> }

where:

promote(t)
def
=

int if rank(t) < rank(int) ∧ range(t) ⊆ range(int)

unsigned else if rank(t) < rank(int) ∧ range(t) ⊆ range(unsigned)

promote(t′) if t has bitfield type t′ n, based on t′

t otherwise

lub(t, t′)
def
=

when rank(t) ≥ rank(t′):
t if signed(t) = signed(t′) or ¬signed(t) ∧ signed(t′)

or signed(t) ∧ ¬signed(t′) ∧ range(t′) ⊆ range(t)

unsigned t if signed(t) ∧ ¬signed(t′) ∧ range(t′) 6⊆ range(t)

when rank(t) < rank(t′): lub(t′, t)

rank(char)
def
= 1 rank(short)

def
= 2 rank(int)

def
= 3 rank(long)

def
= 4

rank(long long)
def
= 5 rank(signed t)

def
= rank(unsigned t)

def
= rank(t)

Figure 5: Typing of integer expressions.

explicit in expressions by first typing sub-expressions and then inserting casts. These steps are
performed in a front-end and generally not discussed, but we present them to highlight of few
subtle points.

Typing. The type τ(e) of an expression e is inferred as in Fig. 5 based on the given type of
variables and constants. Firstly, a promotion rule (promote) states that values of type t smaller
than int (where the notion of “smaller” is defined by the rank function) are promoted to int,
if int can represent all the values in type t, and to unsigned otherwise. Values of bitfield type
t n are promoted as their corresponding base type t. Secondly, for binary operators, the type
of the result is inferred from that of both arguments (lub). Integer promotion causes values
with the same binary representation but different types to behave differently. For instance,
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LV M def
= V

Ln M def
= (τ(n))n

L (t) e M def
= (t) L e M

L � e M def
= let t = τ(� e) in (t) (� (t) L e M)

L e1 ◦ e2 M def
= if ◦ ∈ { +, -, *, /, %, &, |,^ } then:

let t = τ(e1 ◦ e2) in (t) ((t) L e1 M ◦ (t) L e2 M)
if ◦ ∈ { <<, >> } then:

let t = τ(e1) in (t) ((t) L e1 M ◦ (unsigned 5) L e2 M)

LV = e M def
= V = (τ(V )) L e M

L assert(e) M def
= assert(L e M)

Figure 6: Insertion of implicit casts.

J expr K : E → P(Z)

JV Kρ def
= { ρ(V ) } Jn Kρ def

= {n }
J (t) e Kρ def

= {wrap(v, range(t)) | v ∈ J e Kρ } J � e Kρ def
= { � v | v ∈ J e Kρ }

J e1 ◦ e2 Kρ def
= { v1 ◦ v2 | v1 ∈ J e1 Kρ ∧ v2 ∈ J e2 Kρ ∧ (v2 6= 0 ∨ ◦ /∈ { /, % }) }

where wrap(v, [`, h])
def
= min { v′ | v′ ≥ ` ∧ ∃k ∈ Z : v = v′ + k(h− `+ 1) }

J stat K : E → P(E)

JV = e Kρ def
= { ρ[V 7→ v] | v ∈ J e Kρ }

J assert(e) Kρ def
= { ρ | ∃v ∈ J e Kρ : v 6= 0 }

Figure 7: Concrete semantics.

unsigned char a = 255 and signed char b = -1 have the same representation, but a >> 1

= 127 while b >> 1 = -1. Integer promotion is said to be “value preserving”, as opposed to
“representation preserving” [4]. This rule comforts us in our decision to focus on the integer
value of variables instead of their binary representation.

Cast introduction. The translation of expressions, L · M, is presented in Fig. 6. Firstly,
before applying an operator, its arguments are converted to the type of the result. This can
lead to wrap-around effects. For instance, in (int)-1 + (unsigned)1, the left argument is
converted to unsigned, which gives 232 − 1 on a 32-bit architecture. The case of bit shift
operators is special; as shifting by an amount exceeding the bit-size of the result is undefined
in the C standard, we model instead the behavior of intel 32-bit hardware: the right argument
is masked to keep only the lower 5 bits (abusing bitfield types). Secondly, casts are introduced
to ensure that the value of the result lies within the range of its inferred type. Finally, before
storing a value into a variable, it is converted to the type of the variable.

2.4 Operator Semantics

After translation, the semantics of expressions can be defined in terms of integers, without any
reference to C types. The arithmetic operators (+,-,*,/,%) have their classic meaning in Z.2 To

2Note that / rounds towards zero and that a % b
def
= a− (a/b)*b.
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define bit-wise operations (~, &, |, ^, <<, >>) on Z, we first associate an (infinite) bit pattern to
each integer in Z. It is an element of the boolean algebra B = ({0, 1}N,¬,∧,∨) with pointwise
negation ¬, logical and ∧, and logical or ∨ operators. The pattern p(x) ∈ B of an integer x ∈ Z
is defined using an infinite two’s complement representation:

p(x)
def
=

{
p(x) = (bi)i∈N where bi = bx/2ic mod 2, if x ≥ 0

p(x) = (¬bi)i∈N where (bi)i∈N = p(−x− 1), if x < 0
(1)

The elements in B are reminiscent of 2-adic integers, but we restrict ourselves to those repre-
senting regular integers. The function p is injective, and we note p−1 its inverse, which is only
defined on sequences that are stable after a certain index (∃i : ∀j ≥ i : bj = bi). The bit-wise
C operators are given a semantics in Z, based on their natural semantics in B, as follows:

~x
def
= p−1(¬p(x)) = −x− 1 x & y

def
= p−1(p(x) ∧ p(y))

x | y
def
= p−1(p(x) ∨ p(y)) x ^ y

def
= p−1(p(x)⊕ p(y))

x << y
def
= bx× 2yc x >> y

def
= bx× 2−yc

(2)

where ⊕ is the exclusive or and b·c rounds towards −∞. This semantics is compatible with
that of existing arbitrary precision integer libraries [1, 22].

2.5 Expression Semantics

Given environments ρ ∈ E def
= V → Z associating integer values to variables, we can define

the semantics J · K of expressions and statements as shown in Fig. 7. The semantics of wrap-
around is modeled by the wrap function. Our semantics is non-deterministic: expressions (resp.
statements) return a (possibly empty) set of values (resp. environments). This is necessary to
define the semantics of errors that halt the program (e.g., division by zero). Non-determinism
is also useful to design analyses that must be sound with respect to several implementations at
once. We could for instance relax our semantics and return a full range instead of the modular
result in case of an overflow in signed arithmetics (as the result is undefined by the standard).

All it takes to adapt legacy domains to our new semantics is an abstraction of the wrap

operator. A straightforward but coarse one would state that wrap](v, [`, h])
def
= {v} if v ∈ [`, h],

and [`, h] otherwise (see also [26] for a more precise abstraction on polyhedra). In the following,
we will introduce abstract domains specifically adapted to the wrap-around semantics.

2.6 Integer Interval Domain D]
i

We recall very briefly the classic interval abstract domain [9]. It maps each variable to an
interval of integers:

D]i
def
= { [`, h] | `, h ∈ Z ∪ {±∞}}

As it is a non-relational domain, the abstract semantics of expressions, and so, of assignments,
can be defined by structural induction, replacing each operator ◦ on Z with an abstract version ◦]i
on intervals. Abstract assertions are slightly more complicated and require backward operators;
we refer the reader to [18, § 2.4.4] for details. We recall [9] that optimal abstract operators can
be systematically designed with the help of a Galois connection (α, γ):

[`1, h1] ◦]i [`2, h2]
def
= αi({ v1 ◦ v2 | v1 ∈ γi([`1, h1]), v2 ∈ γi([`2, h2]) }

γi([`, h])
def
= {x ∈ Z | ` ≤ x ≤ h }

αi(X)
def
= [minX, maxX]

61



Abstract Domains for Bit-Level Machine Integer and Floating-point Operations A. Miné

-]m([`, h] + kZ)
def
= [−h,−`] + kZ

~
]
m

([`, h] + kZ)
def
= [−h− 1,−`− 1] + kZ

([`1, h1] + k1Z) ◦]m ([`2, h2] + k2Z)
def
=

([`1, h1] ◦]i [`2, h2]) + gcd(k1, k2)Z if ◦ ∈ { +, -, *,∪,O }
([`1, h1] ◦]i [`2, h2]) + 0Z if k1 = k2 = 0, ◦ ∈ { /, %, &, |,^, >>, << }
[−∞,+∞] + 0Z otherwise

wrap]m([`, h] + kZ, [`′, h′]) def
=

let k′ = gcd(k, h′ − `′ + 1) in{
[wrap(`, [`′, h′]), wrap(h, [`′, h′])] + 0Z if (`′ + k′Z) ∩ [`+ 1, h] = ∅
[`, h] + k′Z otherwise

where gcd is the greatest common divisor, and gcd(0, x) = gcd(x, 0) = x.

Figure 8: Abstract operators in the modular interval domain D]m.

For instance, [`1, h1] +]
i [`2, h2]

def
= [`1 + `2, h1 + h2]. Additionally, an abstraction ∪]i of the set

union ∪, as well as a widening O]i [9] enforcing termination are required. We note that the
optimal abstraction of wrap is:

wrap]i([`, h], [`′, h′]) ={
[wrap(`, [`′, h′]), wrap(h, [`′, h′])] if (`′ + (h′ − `′ + 1)Z) ∩ [`+ 1, h] = ∅
[`′, h′] otherwise

which returns the full interval [`′, h′] when [`, h] crosses a boundary in `′ + (h′ − `′ + 1)Z. This
is the case when {wrap(v, [`′, h′]) | v ∈ [`, h] } is not convex.

Example. Consider the function add1 in Fig. 1.a and assume that, in the abstract, the
computed range for both arguments is [−1, 1]. Then (unsigned char)[−1, 1] is abstracted as
[0, 255]. This is the best interval abstraction as, in the concrete, the value set is {0, 1, 255}.
The following interval addition, which is computed in type int due to integer promotion, gives
[0, 510]. Once cast back to signed char, the interval result is the full range [−128, 127]. This is
much coarser than the concrete result, which is [−2, 2].

2.7 Modular Interval Domain D]
m

We now propose a slight variation on the interval domain that corrects the precision loss in
wrap]i . It is defined as intervals with an extra modular component:

D]m
def
= { [`, h] + kZ | `, h ∈ Z ∪ {±∞}, k ∈ N }

γm([`, h] + kZ)
def
= {x+ ky | ` ≤ x ≤ h, y ∈ Z }

The domain was mentioned briefly in [14] but not defined formally. It is also similar to the
interval congruences θ.[`, u]〈m〉 by Masdupuy [15], but with θ set to 1, which results in simpler
abstract operations (abstract values with θ 6= 1 are useful when modeling array accesses, as in
[15], but not when modeling wrap-around).

Abstract operators ◦]m are defined in Fig. 8. There is no longer a best abstraction in general
(e.g., { 0, 2, 4 } could be abstracted as either [0, 4]+0Z or [0, 0]+2Z which are both minimal and
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yet incomparable), which makes the design of operators with a guaranteed precision difficult. We
designed ~

]
m

, -]m, +]m, -]m, and ∪]m based on optimal interval and simple congruence operators
[11], using basic coset identities to infer modular information. The result may not be minimal
(in the sense of minimizing γm(x]◦]my])) but suffices in practice. For other operators, we simply
revert to classic intervals, discarding any modulo information.

We now focus our attention on wrap]m([`, h] + kZ, [`′, h′]). Similarly to intervals, wrapping
[`, h]+kZ results in a plain interval if no [`, h]+ky, y ∈ Z crosses a boundary in `′+(h′−`′+1)Z,
in which case the operation is exact. Otherwise, it returns the interval argument [`, h] modulo
both h′− `′+1 and k. This forgets that the result is bounded by [`′, h′] but keeps an important
information: the values ` and h. In practice, we maintain the range [`′, h′] by performing a

reduced product between D]m and plain intervals D]i , which ensures that each operator (except
the widening) is at least as precise as in an interval analysis.

Example. Consider again the function add1 from Fig. 1.a, with abstract arguments [−1, 1] +
0Z. Then, e = (unsigned char)[-1,1] is abstracted as [−1, 1]+256Z. Thus, e+e gives [−2, 2]+
256Z. Finally, (char)(e+e) gives back the expected interval: [−2, 2] + 0Z.

2.8 Bitfield Domain D]
b

The interval domain D]i is not very precise on bit-level operators. On the example of Fig. 2.b,
(range(int) & 0x801fffff) | 0x3fe00000 is abstracted as range(int), which does not capture
the fact that some bits are fixed to 0 and others to 1. This issue can be solved by a simple domain
that tracks the value of each bit independently. A similar domain was used by Monniaux when
analyzing unsigned 32-bit integer computations in a device driver [23]. Our version, however,
abstracts a Z−based concrete semantics, making it independent from bit-size and signedness.
The domain associates to each variable two integers, z and o, that represent the bit masks for
bits that can be set respectively to 0 and to 1:

D]b
def
= Z× Z

γb(z, o)
def
= { b | ∀i ≥ 0 : (¬p(b)i) ∧ p(z)i or p(b)i ∧ p(o)i }

αb(S)
def
= (∨{¬p(b) | b ∈ S }, ∨{ p(b) | b ∈ S })

where p is defined in (1). The optimal abstract operators can be derived through the Galois

connection P(Z) −−−→←−−−
αb

γb Z × Z. We present the most interesting ones in Fig. 9. They use the

bit-wise operators on Z defined in (2). For bit shifts, we only handle the case where the right

argument represents a positive singleton (i.e., it has the form n]b for some constant n ≥ 0).
Wrapping around an unsigned interval [0, 2n − 1] is handled by masking high bits. Wrapping
around a signed interval [−2n, 2n − 1] additionaly performs a sign extension. Our domain has

infinite increasing chains (e.g., X]
n = (−1, 2n − 1)), and so, requires a widening: O]b will set all

the bits to 0 (resp. 1) if the mask for bits at 0 (resp. at 1) is not stable.

Efficiency. The three domains D]i , D]m, D]b are non-relational, and so, very efficient. Using
functional maps, even joins and widenings can be implemented with a sub-linear cost in practice
[7, §III.H.1]. Each abstract operation costs only a few integer operations. Moreover, the values
encountered during an analysis generally fit in a machine word. Our analyzer uses an arbitrary
precision library able to exploit this fact to improve the performance [22].
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n]b
def
= (~n, n) (n ∈ Z)

~
]
b(z, o)

def
= (o, z)

(z1, o1) &]b (z2, o2)
def
= (z1 | z2, o1 & o2)

(z1, o1) |]b (z2, o2)
def
= (z1 & z2, o1 | o2)

(z1, o1) ^
]
b (z2, o2)

def
= ((z1 & z2) | (o1 & o2), (z1 & o2) | (o1 & z2))

(z1, o1) <<]b (z2, o2)
def
= ((z1 << n) | ((1 << n)− 1), o1 << n), when ∃n ≥ 0 : (z2, o2) = n]b

(z1, o1) >>]b (z2, o2)
def
= (z1 >> n, o1 >> n), when ∃n ≥ 0 : (z2, o2) = n]b

(z1, o1) ∪]b (z2, o2)
def
= (z1 | z2, o1 | o2)

(z1, o1) O]b (z2, o2)
def
= (z1 O z2, o1 O o2) with x O y

def
= if x = x | y then x else − 1

wrap]b((z, o), [0, 2
n − 1])

def
= (z | (−2n), o & (2n − 1))

wrap]b((z, o), [−2n, 2n − 1])
def
= ((z & (2n − 1)) | (−2nzn), (o & (2n − 1)) | (−2non))

Figure 9: Abstract operators in the bitfield domain D]b. See also (2).

synt : (L × P(L))→ expr

synt((V, o, t), C)
def
=

c if c = (V, o, t) ∈ C
(t)c if c = (V, o, t′) ∈ C ∧ t, t′ ∈ int-type ∧ bitsize(t) = bitsize(t′)

hi-word-of-dbl(c) if c = (V, o, t′) ∈ C ∧ t ∈ int-type ∧ t′ = double ∧ bitsize(t) = 32

dbl-of-word(c1, c2) if c1 = (V, o, t′) ∈ C ∧ c2 = (V, o+ 4, t′) ∈ C ∧ t = double∧
t′ ∈ int-type ∧ bitsize(t′) = 32

range(t) otherwise

Figure 10: Cell synthesis to handle physical casts. A big endian architecture is assumed.

3 Memory Abstract Domain

A prerequisite to analyze the programs in Fig. 2 is to detect and handle physical casts, that is,
the re-interpretation of a portion of memory as representing an object of different type through
the use of union types (Fig. 2.a) or pointer casts (Fig. 2.b).

In this section, we are no longer restricted to integers and consider arbitrary C expres-
sions and types. Nevertheless our first step is to reduce expressions to the following simplified
grammar:

expr ::= n | &V | � expr | expr ◦ expr | (scalar-type) expr | *scalar-type expr
stat ::= (*scalar-type expr) = expr | assert(expr)
scalar-type ::= int-type | float | double | char *

Memory accesses (including field and array accesses, variable reads and modifications) are
through typed dereferences *t e, and pointer arithmetics is reduced to arithmetics on byte-
based memory addresses. The translation to such expressions can be performed statically by
a front-end. For instance, in Fig. 2.a, the statement y.i[1] = i ^ x.i[1] is translated into
*int (&y + 4) = (*int &i) ^ (*int (&x + 4)). We do not detail this translation further.

A low-level semantics would model memory states as maps in { (V, i) ∈ V × N | i <
bitsize(τ(V )) } → { 0, 1 } from bit positions to bit values. We consider instead a slightly

higher-level concrete semantics: the memory is a collection of cells in L def
= { (V, o, t) ∈
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V × N × scalar-type | o + sizeof(t) ≤ sizeof(V ) }, where V is the variable the cell lives in, o
is its offset in bytes from the start of V , and t is the cell type (integer, float, or pointer). A
concrete environment ρ is a partial function from cells in L to values in V, where V contains
all the integer, float, and pointer values. Pointer values are represented as pairs composed of
a variable name V ∈ V and a byte offset o ∈ N from the start of the variable, and written
as &V + o. Cells are added on-demand when writing into memory: an assignment *t e = e′

creates a cell (V, o, t) for each pointer &V + o pointed to by e. Reading a cell (V, o, t) from
a memory with cell set C ⊆ L returns ρ(V, o, t) if (V, o, t) ∈ C. If (V, o, t) /∈ C, we try to
synthesize its value. An example synthesis function, synt, is presented in Fig. 10: it returns
an expression over-approximating the value of a cell (V, o, t) using only cells in C. Firstly, if t
is an integer type and there is an integer cell (V, o, t′) ∈ C with the same size but t 6= t′, its
value is converted to t — i.e., a physical cast *((int*)&V) is treated as a regular cast (int)V.
Secondly, selected bit-level manipulations of floats are detected and translated into expressions
using two new operators: hi-word-of-dbl and dbl-of-word, that denote, respectively, extracting
the most significant 32-bit integer word of a 64-bit double and building a 64-bit double from
two words (this semantics is formalized in Sec. 4.1). Thirdly, if no synthesis can occur, the
whole range of t is returned.

This concrete semantics is then abstracted in a straightforward way: a specific memory
domain maintains a set C ⊆ L of current cells and delegates the abstraction of P(C → V) to an
underlying domain. Pointer values are abstracted by maintaining an explicit set of pointed-to
variables C → P(V) and delegating the abstraction of offsets to a numeric domain. Given
an expression and an abstract environment, the memory domain resolves pointer dereferences,
synthesizes cell values, and translates dynamically expressions into simple numeric expressions,
similar to Fig. 4 extended with the operators introduced during synthesis. Such expressions
can then be handled directly by numeric domains, as shown in Sec. 4.2.

This memory domain was introduced in [19] and we will not discuss it further. Note however
that the synthesis was limited to integer cells in [19], while we extend it here to express some
bit-level float manipulations.3

Example. In Fig. 2.a, writing into x.i[0] and x.i[1] creates the cells c1 = (x, 0, int) and
c2 = (x, 4, int). Reading back x.d amounts to evaluating the expression dbl-of-word(c1, c2).
In Fig. 2.b, the expression (*p & 0x7fe00000) >> 20 is translated into (hi-word-of-dbl(c) &

0x7fe00000) >> 20, where the cell c = (d, 0, double) represents the variable d.

4 Floating-Point Abstract Domains

4.1 Concrete Bit-Level Floating-Point Semantics

We now consider the analysis of programs manipulating floating-point numbers. Due to the
limited precision of computers, float arithmetics exhibits rounding errors. For many purposes, it
is sufficient to model floats as reals, with rounding abstracted as a non-deterministic choice in an
error interval. This permits the use of the classic abstract domains defined on rationals or reals
(intervals, but also relational domains [17]) to model floating-point computations. However,
this is not sufficient when the bit representation of numbers is exploited, as in Fig. 2.

We introduce a bit-level semantics based on the ubiquitous IEEE 754-1985 standard [13].
We focus here on double-precision numbers, which occupy 64 bits: a 1-bit sign s, a 11-bit

3Our analyzer (Sec. 5) extends this further to synthesize and decompose integers, bitfields, and 32-bit floats
(not presented here for the sake of conciseness).
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dbl : {0, 1}64 → V
dbl(s, e10, . . . e0,m0 . . . ,m51)

def
=

(−1)s × (1 +
∑51
i=0 2−i−1mi)× 2(

∑10
i=0 2iei−1023) if

∑10
i=0 2iei /∈ { 0, 2047 }

(−1)s × (
∑51
i=0 2−i−1mi)× 2−1022 if ∀i : ei = 0

(−1)s ×∞ if ∀i : ei = 1 ∧ ∀j : mj = 0

NaN if ∀i : ei = 1 ∧ ∃j : mj = 1

J dbl-of-word(e1, e2) Kρ def
= { dbl(b131, . . . , b10, b231, . . . , b20) |
∀j ∈ {1, 2} :

∑31
i=0 2ibji ∈ Jwrap(ej , [0, 2

32 − 1]) Kρ }
J hi-word-of-dbl(e) Kρ def

= {
∑31
i=0 2ibi+32 | ∃b0, . . . , b31 : dbl(b63, . . . , b0) ∈ J e Kρ }

Figure 11: Bit-level concrete semantics of floating-point numbers, extending Fig. 7.

exponent e0 to e10, and a 52-bit mantissa m0 to m51. The mapping from bit values to float
values is described by the function dbl in Fig. 11. In addition to normalized numbers (of
the form ±1.m0m1 · · · × 2x), the standard allows denormalized (i.e., small) numbers, signed
infinities ±∞, and NaNs (Not a Numbers, standing for error codes). This representation
gives a concrete semantics to the operators dbl-of-word and hi-word-of-dbl introduced by cell
synthesis. As in the case of integers, legacy abstract domains can be adapted to our new
semantics by defining an abstraction for our new operators. Straightforward ones would state
that dbl-of-word](e1, e2) = range(double) and hi-word-of-dbl](e) = range(unsigned), but we
propose more precise ones below.

4.2 Predicate Domain on Binary Floating-Point Numbers D]
p

The programs in Fig. 2 are idiomatic. It is difficult to envision a general domain that can reason
precisely about arbitrary binary floating-point manipulations. Instead, we propose a lightweight
and extensible technique based on pattern matching of selected expression fragments. However,
matching each expression independently is not sufficient: it provides only a local view that
cannot model computations spread across several statements precisely enough. We need to
infer and propagate semantic properties to gain in precision.

To analyze Fig. 2.a, we use a domain D]p of predicates of the form V = e, where V ∈ V and
e is an expression chosen from a fixed list P with a parameter W ∈ V. At most one predicate
is associated to each V , so, an abstract element is a map from V to P∪ {>}, where > denotes
the absence of a predicate:

D]p
def
= V → (P ∪ {>}) where:

P ::= W ^ 0x80000000 (W ∈ V)
| dbl-of-word(0x43300000,W ) (W ∈ V)

γp(X
]
p)

def
= { ρ ∈ E | ∀V ∈ V : X]

p(V ) = > ∨ ρ(V ) ∈ JX]
p(V ) Kρ }

(3)

The concretization is the set of environments that satisfy all the predicates, and there is no
Galois connection. Figure 12 presents a few example transfer functions. Assignments and tests
operate on a pair of abstractions: a predicate X]

p and an interval X]
i . Sub-expressions from e are

combined by combine with predicates from X]
p to form idioms. The assignment then removes

(in Y ]p ) the predicates about the modified variable (var(p) is the set of variables appearing in
p) and tries to infer a new predicate. The matching algorithm is not purely syntactic: it uses a

semantic interval information from X]
i (e.g., to evaluate sub-expressions). Dually, successfully
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JV = e K]p(X
]
p, X

]
i )

def
=

let Y ]i = JV = combine(e,X]
p, X

]
i ) K

]

i
X]
i in

let Y ]p = λW : if W = V or V ∈ var(X]
p(W )) then > else X]

p(W ) in

if e = W ^ e1 ∧ J e1 K]iX
]
i ∈ {[231, 231], [−231,−231]}

then (Y ]p [V 7→W ^ 0x80000000], Y ]i )

else if e = dbl-of-word(e1,W ) ∧ J e1 K]iX
]
i = [1127219200, 1127219200]

then (Y ]p [V 7→ dbl-of-word(0x43300000,W )], Y ]i )

otherwise (Y ]p , Y
]
i )

J assert(e) K]p(X
]
p, X

]
i )

def
= (X]

p, J assert(combine(e,X]
p, X

]
i )) K

]

i
X]
i )

X]
p ∪] Y ]p

def
= λV : if X]

p(V ) = Y ]p (V ) then X]
p(V ) else >

combine(e,X]
p, X

]
i ) replaces sub-expressions V1 - V2 in e with (double)I when:

∃V ′1 , V ′2 : ∀j ∈ {1, 2} : X]
p(Vj) = dbl-of-word(0x43300000, V ′j ) ∧

X]
p(V

′
1) = I ^ 0x80000000 ∧X]

i (V
′
2) = [−231,−231]

Figure 12: Abstract operator examples in the predicate domain D]p.

double frexp(double d, int* e) {
int x = 0;

double r = 1, dd = fabs(d);

if (dd >= 1) { while F (dd > r) { x++; � r *= 2; } }
else { while (dd < r) { x--; r /= 2; } }
*e = x;

return d/r;

}

Figure 13: Floating-point decomposition into mantissa and exponent.

matched idioms refine the interval information. The join on D]p removes the predicates that are

not identical. As D]p is flat, it has no need for a widening. Similarly to non-relational domains,
the cost of each operation is sub-linear when implemented with functional maps [7, §III.H.1].

To stay concise, we only present the transfer functions sufficient to analyze Fig. 2.a. It is
easy to enrich P with new predicates and extend the pattern matching and the propagation
rules to accommodate other idioms. For instance, Fig. 2.b can be analyzed by adding the
predicate V = hi-word-of-dbl(W ) and using information gathered by the bitfield domain D]b
during pattern matching.

4.3 Exponent Domain D]
e

As last example, we consider the program in Fig. 13 that decomposes a float into its exponent
and mantissa. Although it is possible to extract exponents using bit manipulations, as in
Fig. 2.b, this function uses another method which illustrates the analysis of loops: when |d| ≥ 1
it computes r = 2x iteratively, incrementing x until r ≥ |d|. This example is, as those in
Figs. 1–2, inspired from actual industrial codes and out of scope of existing abstract domains.

To provide precise bounds for the returned value, a first step is to bound r. We focus on
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size with domains w/o domains pre-processed

(KLoc) time alarms time alarms time alarms
154 10h44 22 10h04 22 11h38 22
186 7h44 10 7h22 10 7h16 10
103 54mn 2 44mn 451 46mn 6

(a) 493 7h34 3 15h27 1,833 8h40 195
661 14h46 2 16h23 3,419 13h32 253
616 22h03 5 26h46 5,350 20h45 300
859 65h08 110 41h03 5,968 59h55 316

2,428 48h28 1 44h06 3,822 44h57 674

(b) 113 25mn 30 20mn 30 17mn 30

(c) 79 3h22 7 3h09 7 3h27 7

(d) 102 46mn 64 59mn 64 59mn 64

1,727 30h18 2,133 26h15 2,388 28h46 2,190

Figure 14: Analysis performance on industrial benchmarks.

the case where |d| ≥ 1. To prove that r and d/r are bounded, it is necessary to infer at F the
loop invariant r ≤ 2d and use the loop exit condition d ≤ r. Several solutions exist to infer
this invariant (such as using the polyhedra domain). We advocate the use of a variation D]e of
the, more efficient, zone domain [16]. While the original domain infers invariants of the form
V −W ∈ [`, h], we infer invariants of the form V/W ∈ [`, h]:

D]e
def
= (V × V)→ { [`, h] | `, h ∈ R ∪ {±∞}}

γe(X
]
e)

def
= { ρ ∈ E | ∀V,W ∈ V : ρ(W ) = 0 ∨ ρ(V )/ρ(W ) ∈ X]

e(V,W ) }
αe(X)

def
= λ(V,W ) : [min { ρ(V )/ρ(W ) | ρ ∈ X }, max { ρ(V )/ρ(W ) | ρ ∈ X }]

The domain is constructed by applying a straightforward log transformation to [16]. A near
linear cost can be achieved by using packing techniques [7, §III.H.5].

Now that r is bounded, in order to prove that x is also bounded, it is sufficient to infer a
relationship between x and r, i.e., r = 2x atF, and r = 2x−1 at �. This is possible, for instance,
by using the predicate domain D]p from Sec. 4.2 enriched with a new predicate parameterized
by a variable W and an integer i:

P′ ::= P | 2W+i (W ∈ V, i ∈ Z)

To stay concise, we do not describe the adapted transfer functions.

5 Experimental Results

All the domains we presented have been incorporated into the Astrée static analyzer for syn-
chronous embedded C programs [3, 7] and its extension AstréeA for multi-threaded programs
[21]. Both check for arithmetic and memory errors (integer and float overflows and invalid
operations, array overflows, invalid pointer dereferences). Thanks to a modular design based
on a partially reduced product of communicating domains, new domains can be easily added.

Figure 14 presents the running-time and number of alarms when analyzing large (up to
2.5 MLoc) C applications from the aeronautic industry. Figure 14.a corresponds to a family
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of control-command software; each one consists in a single very large reactive loop generated
from a graphical specification language (similar to Lustre) and features much floating-point
computations (integrations, digital filters, etc.). Figure 14.b is a software to perform hardware
checks; it features many loops and is mainly integer-based. Figures 14.c–d are embedded
communication software that manipulate strings and buffers; they feature much physical casts
to pack, transmit, and unpack typed and untyped messages, as well as some amount of boolean
and numeric control. Additionally, the applications in Fig. 14.d are multi-threaded. More
details on the analyzed applications are available in [7, III.M] and [21].

In all the tests, the default domains are enabled (intervals, octagons, binary decision trees,
etc., we refer the reader to [7] for an exhaustive list). The first and second columns show,
respectively, the result with and without our new domains. In many cases (shown in boldface),
our domains strictly improve the precision. Moreover, the improved analysis is between twice
slower and twice faster. This variation can be explained as follows: adding new domains incurs
a cost per abstract operation, but improving the precision may decrease or increase the number
of loop iterations to reach a fixpoint. In the third column, our new domains are disabled but
the code is pre-processed with ad-hoc syntactic scripts to (partially) remove their need (e.g.,
replacing the cast function in Fig. 1.b with a C cast), which is possibly unsound and incomplete
(hence the remaining alarms). Comparing the first and last columns shows that being sound
does not cause a significant loss of efficiency.

6 Conclusion

We presented several abstract domains to analyze C codes exploiting the binary representation
of integers and floats. They are based on a concrete semantics that allows reasoning about
these low-level implementation aspects in a sound way, while being compatible with legacy
abstract domains. Each introduced domain focuses on a specific coding practice, so, they are
not general. However, they are simple, fast to design and implement, efficient, and easy to
extend. They have been included in the industrial-strength analyzer Astrée [3] to supplement
existing domains and enable the precise analysis of codes exploiting the binary representation
of numbers without resorting to unsound source pre-processing.

Future work includes generalizing our domains and developing additional domains special-
ized to code patterns we will encounter when analyzing new programs, with the hope of building
a library of domains covering most analysis needs.
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[21] A. Miné. Static analysis of run-time errors in embedded critical parallel C programs. In Proc. of
the 20th European Symp. on Prog. (ESOP’11), volume 6602 of LNCS, pages 398–418. Springer,
Mar. 2011.

[22] A. Miné, X. Leroy, and P. Cuoq. ZArith: Arbitrary precision integers library for OCaml. http:

//forge.ocamlcore.org/projects/zarith.

[23] D. Monniaux. Verification of device drivers and intelligent controllers: a case study. In Proc. of
the 7th ACM & IEEE Int. Conf. on Embedded Soft. (EMSOFT’07), pages 30–36. ACM, Sep. 2007.

[24] M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. In Proc. of the 14th European Symp.
on Prog. (ESOP’05), volume 3444 of LNCS, pages 46–60. Springer, Apr. 2005.

[25] J. Regehr and U. Duongsaa. Deriving abstract transfer functions for analyzing embedded software.
In Proc. of the ACM Conf. on Lang., Compilers, and Tools for Embedded Syst. (LCTES’06), pages
34–43. ACM, June 2006.

[26] A. Simon and A. King. Taming the wrapping of integer arithmetic. In Proc. of the 14th Int. Symp.
on Static Analysis (SAS’07), volume 4634 of LNCS, pages 121–136. Springer, Aug. 2007.

70

http://www.dspaceinc.com
http://forge.ocamlcore.org/projects/zarith
http://forge.ocamlcore.org/projects/zarith

	Introduction
	Motivating Examples
	Contribution
	Related Work

	Integer Abstract Domains
	Concrete Integer Semantics
	Integer Types
	Integer Expressions
	Operator Semantics
	Expression Semantics
	Integer Interval Domain Di
	Modular Interval Domain Dm
	Bitfield Domain Db

	Memory Abstract Domain
	Floating-Point Abstract Domains
	Concrete Bit-Level Floating-Point Semantics
	Predicate Domain on Binary Floating-Point Numbers Dp
	Exponent Domain De

	Experimental Results
	Conclusion

