Kalpa Publications in Computing
Volume 16, 2023, Pages 35—46

ialpat

Methods for ML-Enabled Autonomous Systems Computing

Proceedings of the 6th Workshop on Formal

Certified Private Inference on Neural Networks via
Lipschitz-Guided Abstraction Refinement*

Edoardo Manino!, Bernardo Magri?,
Mustafa A. Mustafa?, and Lucas C. Cordeiro*

! The University of Manchester, Department of Computer Science,
Oxford Road, Manchester M13 9PL, United Kingdom
2 imec-COSIC, KU Leuven, Kasteelpark Arenberg 10, B-3001, Belgium

Abstract

Private inference on neural networks requires running all the computation on encrypted
data. Unfortunately, neural networks contain a large number of non-arithmetic operations,
such as ReLU activation functions and max pooling layers, which incur a high latency cost
in their encrypted form. To address this issue, the majority of private inference methods re-
place some or all of the non-arithmetic operations with a polynomial approximation. This
step introduces approximation errors that can substantially alter the output of the neural
network and decrease its predictive performance. In this paper, we propose a Lipschitz-
Guided Abstraction Refinement method (LiGAR), which provides strong guarantees on
the global approximation error. Our method is iterative, and leverages state-of-the-art
Lipschitz constant estimation techniques to produce increasingly tighter bounds on the
worst-case error. At each iteration, LIGAR designs the least expensive polynomial approx-
imation by solving the dual of the corresponding optimization problem. Our preliminary
experiments show that LIGAR can easily converge to the optimum on medium-sized neural
networks.

1 Introduction

The rise of very large neural network models has made it attractive to offload all the related
computation to remote servers in the cloud [27]. While this configuration eases the computa-
tional burden on the client side, it opens the door to privacy concerns, as the user is forced to
send their private data to a third-party machine [22]. An ideal solution would involve a private
inference scheme (see Figure 1), where the server evaluates the neural network on encrypted
data and the client decrypts the result afterwards.

In order to realise such vision, each operation performed by the neural network needs to be
adapted for operating on ciphertext. Homomorphic encryption schemes enable this translation
as follows. For a given encryption scheme & = (Gen, Enc, Dec), we say that &£ is additively

*This work is funded by the EPSRC grant EP/T026995/1 entitled “EnnCore: End-to-End Conceptual Guard-
ing of Neural Architectures” under Security for all in an Al enabled society.

N. Narodytska, G. Amir, G. Katz and O. Isac (eds.), FOMLAS2023 (Kalpa Publications in Computing, vol.
16), pp. 35-46

Certified Private Inference on Neural Networks via LiGAR Manino, Magri, Mustafa and Cordeiro

h 4
)
h 4

“bridge” <

Client Server

Figure 1: Private inference requires running a neural network on encrypted data.

homomorphic if for two ciphertexts ¢; < Enc(m;) and ¢z < Enc(ms), one can compute c3 =
¢1 + co where Dec(c3) = my +mg. One example of such scheme is due to Paillier [21]. Similarly,
we say that £ is multiplicative homomorphic if for two ciphertexts ¢; < Enc(my) and co
Enc(mz), one can compute ¢ = ¢;-c2 where Dec(cz) = mq-mg. The RSA encryption scheme [23]
is of this flavor. A Fully Homomorphic Encryption (FHE) scheme is one that combines both
operations. In particular, it allows for a client to compute an encryption of its secret input x
and a server to homomorphically evaluate any circuit C' over the ciphertext; as an output the
server produces an encryption of the evaluation of C'(z) while it never learns anything about x.
The first construction of FHE by Gentry [7] is based on the hardness of lattices problems and
it is extremely inefficient. Since then, a lot of work has been done trying to bring FHE closer
to the practical realm [2, 3, 15].

In this regard, neural networks contain a significant number of operations that cannot be
represented as a combination of additions and multiplications: e.g. ReLU, hyperbolic tangent,
sigmoid, softmax and maxpool [1]. In order to avoid the computational cost of directly executing
these in FHE, existing private inference methods propose to approximate them with polynomials
[4, 18, 16, 14, 13]. Such polynomial conversion introduces some approximation error at every
layer of the neural network. For some inputs, the error can accumulate and drastically distort
the output of the network [6]. While most existing works claim that the approximated network
has similar predictive accuracy to the original one, some authors express the need for stronger
guarantees on the approximation error [6]. To the best of our knowledge, this need has not
been met so far. The only exception is the theoretical analysis in [14], which proves that the
output error is bounded, but does not provide a constructive algorithm to compute it.

In this paper, we address this research gap by designing neural network approximations with
formal guarantees on the maximum output error. Essentially, we recognise that this research
objective is fundamentally a problem of equivalence verification. As such, we leverage state-of-
the-art verification techniques, and we adapt them to the polynomial approximation setting.
More specifically, our contributions are the following:

e we propose an abstraction technique to represent the polynomial error;

e we adapt state-of-the-art reachability and Lipschitz estimation techniques to the archi-
tecture of our abstracted network;

e we derive a closed-form solution to the problem of optimal error allocation;

e we introduce our Lipschitz-Guided Abstraction Refinement (LiGAR) method to itera-
tively minimise the over-estimation caused by our abstraction;

e we show that LiGAR can easily converge on medium-sized neural networks;

36

Certified Private Inference on Neural Networks via LiGAR Manino, Magri, Mustafa and Cordeiro

e we discuss the practical limitations of a worst-case method like LiGAR.

All the code for the experiments in this paper is publicly available at [17].

2 Related Work

The literature on privacy-preserving machine learning is vast. Here, we only cover the main
research trends on the topic of private inference.

Neural Architecture Search (NAS). Since the main bottleneck is executing non-
arithmetic operations on encrypted data, some works propose to select neural architectures
that contain the bare minimum of them. Delphi [18] uses NAS to select which ReLUs we can
approximate with degree-2 polynomials. The rest is replaced with garbled circuits to avoid
accuracy drop. Similarly, SAFENet [16] uses NAS to replace a subset of the ReLUs with poly-
nomials of degree in [0, 3]. Other methods include a finetuning phase after altering the network
architecture: DeepReDuce [9] uses pruning and distillation techniques, while SNL [5] replaces
some ReLUs with the identity function before re-training.

Low-degree approximations. Earlier approaches aimed at replacing all non-arithmetic op-
erations with low-degree polynomials. CryptoNets [8] replaces all activation functions with z2.
Similarly, the authors of [4] use degree-2 polynomials but includes batch normalisation layers
to keep the input distribution centred with the polynomial approximation. As discussed in [6],
these low-degree approximation only allow for shallow neural networks, as it is very challenging
to fine-tune the approximations without incurring in the gradient explosion problem.

High-degree approximations. An alternate approach is approximating non-arithmetic op-
erations with high-degree polynomials [14]. This way, the approximated network does not
require any fine-tuning. The major obstacle to such goal is obtaining stable high-degree ap-
proximations of the sign operator [12]. From it, a number of popular non-arithmetic operations
can be derived, including ReLLU and max-pooling. A recent example of this line of research
is [13], which focuses on the challenge applying fully-homomorphic encryption to large-scale
networks.

3 Preliminaries

3.1 Neural Network Definitions and Notation

In this paper, we focus on feedforward fully-connected neural networks with ReLLU activation
functions. This neural architecture encapsulates all the challenges in designing private inference
methods. Extension of our method to general neural networks is possible, but we leave it for
future work.

Definition 1 (ReLU Layer). Define the Rectified Linear Unit (ReLU) as the function o(z;)
max(z;,0) with potential z; € R. A ReLU layer is a mapping h : R™ — R™ that applies o
element-wise, i.e. (h(z)); = o(z;).

Definition 2 (Affine Layer). An affine layer is a mapping g : R™ — R"™ such that g(z) =
Wz 4+ b where W € R™™ is a matrix and b € R™ is a column vector.

37

Certified Private Inference on Neural Networks via LiGAR Manino, Magri, Mustafa and Cordeiro

Definition 3 (Feedforward Fully-Connected ReLU Neural Network). A feedforward fully-
connecte ReLU neural network f(x) is the composition of an alternating sequence of affine
and ReLU layers:

y=f(x)=grohg_10gp_10---0hiogi(z) (1)

3.2 Univariate Polynomial Approximation

The ReLU function is non-arithmetic and thus necessitates replacement. This is a classic
problem of univariate polynomial approximation [26], with the goal of minimising the maximum
error over a finite interval [z,Z]:

py = arg min{ max {|pd(z) — O'(Z)|}} (2)
Pd z€[z,7]

where d is the polynomial degree. The solution of Equation 2 can be computed via Remez’s

algorithm, of which many implementations exist (e.g. [20]); we present an example of it in

Figure 3a. Crucially, univariate polynomial approximation becomes numerically unstable as

the degree d grows into the hundreds. The authors of [12] address this issue by decomposing

the minimax polynomial into a composition of lower-degree ones.

4 LiGAR: Lipschitz-Guided Abstraction Refinement

We define the problem of finding the optimal polynomial approximation of a neural network
f(z) as follows:

Definition 4 (Optimal Polynomial Approximation). Given a (possibly infinite) set of inputs X
and a target output error 0y, find the least computationally expensive polynomial approximations
py, =~ 0(zi) of each ReLU function i in f(z), such that the mazimum output error satisfies

1f(z) = f(x)||oo < 8y, where all the ReLUs in f(x) have been replaced with their respective
approxrimations.

Here, we interpret the least expensive computation objective in terms of minimising the sum of
all degrees dyor =), d;. However, we note that other choices are possible (e.g. multiplication
depth in [13]). These are correlated with the polynomial degree, but not equivalent to it.

4.1 Approximation Error Abstraction

Substituting a ReLLU activation functions with a polynomials introduces some input-dependent
approximation error €(z;) = |0(2;) —pj (2;)|. In order to facilitate the solution of the optimisa-
tion problem in Definition 4, we propose to remove the dependency of €(z;) on z; by letting its
value vary freely in the interval ¢; € [—J;,+d;]. In this way, we can isolate the contribution of
each approximation pj on the output error (see Section 4.4).

We present a high-level picture of our abstraction in Figure 2. The abstracted network uses
the same weights, biases and activations of the original network. However, a new input ¢; is
added to the output of each activation function:

Definition 5 (Polynomial Neural Network Abstraction). Call f(z) the polynomial approzima-
tion of neural network f(x), such that |0(z;) — pa,(zi)| < 0; for each ReLU i with potentials

38

Certified Private Inference on Neural Networks via LiGAR Manino, Magri, Mustafa and Cordeiro

€1 €2 €3 €4 €5

Original Network Network Abstraction

Figure 2: We abstract away the details of the polynomial approximation by introducing an
additional error input ¢; to the output of each ReLLU activation.

zi € |2;,%i]. Define f(x,€) as the abstraction of f(x) if each ReLU layer hy of the abstraction
takes the following form:

(ilz(z))i =o0(z) te (3)

where €; € [—8;,+6;] and z; € [z;,Z;] for alli and x € X.

4.2 Potential Range Estimation

Note that estimating the range of the potentials z; for each ReLLU neuron i corresponds to the
classic reachability problem in neural network verification [29, 25]. In our experiments, we use
the FastLin bound propagation technique in [28] to compute linear bounds on the output of the
affine layers g;. Differently from the standard definition therein, the bounds depend on both
the original input vector x and the error vector e:

Spx+Ue+v, < g@(l‘, 6) < ?@1‘ + U@G + vy (4)

Note that the matrices U, and U, have non-zero entries only in the columns j € [1, Zi;é nl,
where ny, is the number of ReLLU neurons in layer k. Furthermore, we derive the concrete range
of the ReLU potentials (g¢(x,€)); € [2;,Z:] by maximising (resp. minimising) the right-hand
side (resp. left-hand side) of Equation 4 over both z € X and ¢; € [—4;, +7;].

4.3 Local Lipschitz Constant Estimation

In order to compute the optimal polynomial approximation of each ReLU, we need both the
potential range [z;,Z;] and the optimal approximation error €; (see Section 4.4). In this regard,
we can inform our decision by estimating the impact of each €; on the output error. We achieve
this goal by computing the local Lipschitz constant of €;:

Definition 6 (Lipschitz Constant). The local Lipschitz constant of €; is:

L;)o — max |f(1‘,€) _ f(z76/)|oo

/
’ .
X ,€,€ |67, €i|00

where x € X, €j,¢; € [=0;,+0;] for all j and €; = €} for all j #i.

39

Certified Private Inference on Neural Networks via LiGAR Manino, Magri, Mustafa and Cordeiro

T 0.03 I I
— ReLU —— Obj. Func.
P —d;=1 / 5 d; = 5 Error
~ Zil = . b
= =5 / » d 002 .
g / §
s
s <<
2 01l |
£) py | E 0.0
< - /
l l | 0 | | | L
Z 0 Z; 0 0.2 0.4 0.6 0.8 1
Potential z; (0(zi) —0(2:)/(zi — 2;)
(a) Minimax polynomial in [z;, Z]. (b) Minimax error vs C;d; ' objective.

Figure 3: Approximating a ReLU activation with polynomials (3a) and the resulting error (3b).
Note that the example on the left has (0(z;) — o(z;))/(Zi — 2z;) = 0.4.

In other terms, Definition 6 quantifies the maximum rate of change in the output as we modify
one single error input ¢;. Thanks to it, we can bound the total approximation error as follows:

1£(2) = f(@)lloo < max {||f(x) — f(z,€)l[oc} < ZL?" max{ei|} (6)

Computing the Lipshitz constant of a neural network is highly non-trivial, and it is currently
an area of active research [24, 10]. In our experiments, we adapt the algorithm in [24] to
the architecture of our abstracted neural network, by extracting the Jacobian of ¢ from the
intermediate results of the backward pass.

4.4 Optimal Error Allocation

Recall that our objective is approximating the neural network f(z) in such a way that the
output error never exceed a given margin §, (see Definition 4). With the Lipschitz estimates
from Section 4.3, we can decide how to optimally distribute the local approximation error ¢; as
follows:

Minimise dior = Y diei, ;. %) (7)
Subject to Z Le; < 0y (8)
And 0 S €; S 5i, Vi (9)

where ¢; is a shorthand for max,, {|¢;|} from Equation 6, i.e. the maximum approximation error
of each ReLU function in [z;,Z;].

Crucially, the objective function estimates the inference cost of replacing each activation 4
with a polynomial of degree d;. We give an example of such polynomial in Figure 3a. Clearly,
the degree is a monotonically increasing function in the size of the potential range [z;,Zi],
and monotonically decreasing in the required precision ¢;. Furthermore, we know that the

minimax approximation p} (z;) of degree d; of any continuous non-differentiable function o(2;)

40

Certified Private Inference on Neural Networks via LiGAR Manino, Magri, Mustafa and Cordeiro

Algorithm 1 LiGAR

Input: network abstraction f(z, €), finite input set X, input domain d,,, error domain J, output
precision J,, convergence threshold h.
Output: optimal error allocation €*, potential ranges z,Z.

1:t<0

2: 0;(1) < 6, Vi > Largest error domain
3: repeat

4: t+—t+1

5: for all z € X do

6: z(z),z(z) + ComputePotentials(f,x,d,,d;(t)) > Forward pass
7: L*°(x) < ComputeLipschitz(f, z,Z) > Backward pass
8: end for

9: C; + C(ming{z;(z)}, max,{z;(x)}), Vi > Cost coeflicients
10: L + max, {L°(x)}, Vi > Lipschitz estimates
11: €*(t),v(t) + OptimalAllocation(C, L>,d;(t),d,) > Solve dual problem
12: 8 + S(max{€; (t)} + ming.. (1) <5, (1) L€, (£)}), Vi > Tighter error domain
13: until v(t — 1) —v(t) < h > Stop if no progress
14: t* «+ argmin,{v(t)}

15: return e*(t*), v(t*) > Return best allocation

guarantees a maximum approximation error ¢; oc O(d~') [26]. As a result, we can compute the
exact relation between ¢; and d; = 1 and extend it to any d; > 1:

~ G _1 o0(zi) —a(z)
€~ dil where Cz = 5 <U(ZZ) 7517 (10)

i
which is exact for d; = 1 and overestimated for d; > 1, unless the constant C; is very close to 0
or 1 (see example for d; = 5 in Figure 3b). We show how to derive the corresponding optimal
solution in Appendix A.

4.5 Abstraction Refinement Cycle

Now, we can discuss the key idea behind our LiIGAR method. When we compute the Lipschitz
constants L —i° and potential ranges [z;,Z;], we need to specify a domain ¢€; € [—d;, +0;] for the
approximation error. If we choose a domain that is too large, our estimates will be conservative.
If we choose it too small, the values of ¢; will also be small, thus yielding a larger cost C;/e;.

We solve this issue by making our abstraction-optimisation process iterative (see Algorithm
1). More specifically, we start with a large user-defined error domain (Line 2). Then, we
estimate the potential ranges and Lipschitz estimates accordingly (Lines 5-10). Next, we solve
the dual optimisation problem (Line 11), which gives us the optimal error allocation given the
current estimates. With this result, we can tighten the error domain (Line 12) and repeat the
process.

Note that the error domain is always kept larger than any of the solutions found so far, and
smaller than all error domains that did not activate the constraint € < §;. In our experiments,
LiGAR converges after 20-30 iterations. Finally, we use an indirect definition for the input
domain in Lines 5-10. That is, akin to many neural network verification settings [19], we select
a finite set of concrete inputs X, and consider a norm-oo ball of size d,, around each of them.

41

Certified Private Inference on Neural Networks via LiGAR Manino, Magri, Mustafa and Cordeiro

I T T
o~ .51 65 =0 =
| 6 [’ B
| 10 0,0 = 0.001 SQS
® ®4,,5. = 0.003 = = = 10t
%)D 104 [.51’65 =0.01 + & | *E
% .51, 65 =0.03 =3 é}
2 = e 10*
Tt e W OTE B =
20 e HE T 5
g % z
S £
~ 100 ‘ ‘ | | | B 2 102
1 2 3 4 5 6
Layer ID Layer ID
(a) Potential ranges. (b) Lipschitz constants.

Figure 4: Potential ranges (Fig. 4a) and Lipschitz constants (Fig. 4b) on the MNIST (fc)
network. The values become more conservative as d, and d, increase.

5 Empirical Analysis

Here, we present our preliminary experimental results. Our main goal is twofold: demonstrate
the behaviour of LIGAR on medium-size networks; gather evidence on the practical utility of
worst-case approximations for private inference.

5.1 Experimental Setting

Neural Network Model. We select the MNIST (fc) image classification network from VNN-
COMP’21.! This network has six hidden layer containing 256 neurons each. The inputs are
grey-scaled images with 784 pixels, whose values are scaled to the interval [0,1]. The outputs
are ten scores that represent the log-likelihood of the image containing a hand-written digit
between zero and nine [11].

LiGAR Parameters. For reasons of time, we run LiGAR with X containing only 1000
random samples from the MNIST training set [11]. We set the initial error domain to § = 0.1,
the convergence threshold to A = 0.01 and the output precision to §, = 0.01, unless otherwise
specified.

5.2 Experimental Results

Potential Ranges and Lipschitz Constants. Computing worst-case guarantees on the
potential ranges and Lipschitz constants incur a cost regarding over-estimation. In Figure 4,
we show what happens when we increase the input d, and error §. domains. As expected, the
bound propagation yields fairly tight estimates for the potential range Z; — z; over the first
layers of the network until the over-approximation caused by the FastLin abstraction technique
begins to accumulate. Similarly, Lipschitz constants are tight for the final few layers but get
increasingly worse as the backward estimation procedure reaches earlier layers. Note that
LiGAR can iteratively reduce the over-estimation caused by d., but not the one caused by 9.

Ihttps://github.com/stanleybak/vnncomp2021/tree/main/benchmarks

42

https://github.com/stanleybak/vnncomp2021/tree/main/benchmarks

Certified Private Inference on Neural Networks via LiGAR Manino, Magri, Mustafa and Cordeiro

T T I I T T
2 . = % Z =0, =01 T
g 10-5] T % | 5 5y = 0.01 % %
2 = S 107°Hmg, =0.001 || i .
=) ‘I < = J, = 0.0001 = T
é 1077 - ’ § 3 T 1
5| = 55, =0 1078 | F &
';‘%s‘ 1079 ES 8y = 0.001 || E F %
2 - g, = 0.01 2 - *
SIRUR w0, =01 || S 10-10 1 |
| | | | T T | | | | | |
1 2 3 4 5 6 1 2 3 4 5 6
Layer ID Layer ID
(a) Input domain (with §, = 0.01). (b) Output precision (with d, = 0.001).

Figure 5: Optimal error allocation for different input domain sizes (Fig. 5a) and output precision
requirements (Fig. 5b) on the MNIST (fc) network. ReLU neurons have been omitted in their
linear state (always active or inactive).

LiGAR Error Allocation. We report the optimal error allocation computed by LiGAR in
Figure 5. Note how increasing the input domain J, forces LIGAR, to be more conservative in its
estimates. Interestingly, this conservative behaviour is more pronounced for earlier layers. We
believe this is caused by the corresponding over-estimation of the Lipschitz constants (see Figure
4b). In constrast, the error allocation is proportional to the output precision d,. This is not
surprising, since J, appears only in one constraint of the optimization problem (see Equation
8).

Linearly Removable ReLU Activations. It has been claimed in the literature that many
ReLU activations in a given network can be replaced by a linear function [5]. We test this
claim by checking how many ReLUs are either always active or always inactive according to
LiGAR’s potential range estimates. The results in Table 1 show that the number of ReLUs we
can remove quickly falls to zero as we cover a larger portion of the input space by increasing
Og.-

MNIST (fc) | Layer 1 | Layer 2 | Layer 3 | Layer 4 | Layer 5 | Layer 6
0, =0 23 11 53 81 238 162
0, = 0.001 23 11 53 76 161 0

6, = 0.01 17 7 0 0 0 0

6, =0.1 0 0 0 0 0 0

Table 1: Number of ReLLUs in the always-active or always-inactive state.

Inference-Time Output Error. LiGAR guarantees that the output approximation error is
never greater than J,. Here, we estimate the practical performance of the approximated network
by measuring both the maximum observed output error and the change in predictive accuracy.
Note that due to numerical instability in existing univariate polynomial approximation libraries
(see Section 3.2) we report only the result for the abstracted network. In Table 2 we show results
for both the 1000-sample LiGAR train set X (see Section 5.1), and the full 10000-sample MNIST
test set. Note how the accuracy matches the original network, and the maximum error is at least

43

Certified Private Inference on Neural Networks via LiGAR Manino, Magri, Mustafa and Cordeiro

two orders of magnitude smaller than the LIGAR guarantee ¢, = 0.01. This shows that using
worst-case estimates in designing neural network approximations leads to very conservative
solutions.

LiGAR Train Set Test Set
|f(z)—f(x,€)| | Accuracy | |f(z)—f(z,€)| | Accuracy
Original f(z) - 0.980 - 0.969
b6z =0 2.64 x 107* 0.980 7.26 x 107 0.969
0, = 0.001 4.90 x 106 0.980 5.67 x 1076 0.969
0, = 0.01 3.36 x 1075 0.980 4.00 x 107 0.969
0, =0.1 1.26 x 10~* 0.980 1.30 x 10~* 0.969

Table 2: Output error and inference accuracy of the abstracted network.

6 Conclusions

In this paper, we propose the Lipschitz-Guided Abstraction Refinement (LiGAR) method, which
can compute the optimal neural network approximation with a given worst-case output error.
We show that LiGAR converges quickly on medium-sized networks and could in principle scale
to larger ones. At the same time, the worst-case guarantees come at the price of conservative
solutions. We believe that this is a major obstacle for the adoption of worst-case methods like
LiGAR for the purpose of private inference.

References

[1] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning.
Springer, 2006.

[2] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (stan-
dard) LWE. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of Com-
puter Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 97-106. IEEE
Computer Society, 2011.

[3] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-lwe and se-
curity for key dependent messages. In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO
2011 - 81st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Pro-
ceedings, volume 6841 of Lecture Notes in Computer Science, pages 505-524. Springer, 2011.

[4] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel, and Emmanuel
Prouff. Privacy-preserving classification on deep neural network. Cryptology ePrint Archive,
Paper 2017/035, 2017. https://eprint.iacr.org/2017/035.

[5] Minsu Cho, Ameya Joshi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde. Selective
network linearization for efficient private inference. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th Interna-
tional Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pages 3947-3961. PMLR, 17-23 Jul 2022.

[6] Karthik Garimella, Nandan Kumar Jha, and Brandon Reagen. Sisyphus: A cautionary tale of
using low-degree polynomial activations in privacy-preserving deep learning, 2021.

[7] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009, pages 169-178. ACM, 2009.

44

https://eprint.iacr.org/2017/035

Certified Private Inference on Neural Networks via LiGAR Manino, Magri, Mustafa and Cordeiro

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

21]

22]

23]

24]

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John
Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pages 201-210, New York, New York, USA, 20-22 Jun 2016. PMLR.

Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. Deepreduce: Relu
reduction for fast private inference. In Marina Meila and Tong Zhang, editors, Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 4839-4849. PMLR, 18-24 Jul 2021.

Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic.
A general construction for abstract interpretation of higher-order automatic differentiation. Proc.
ACM Program. Lang., 6(O0OPSLA2), oct 2022.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Eunsang Lee, Joon-Woo Lee, Jong-Seon No, and Young-Sik Kim. Minimax approximation of sign
function by composite polynomial for homomorphic comparison. IEFEE Transactions on Depend-
able and Secure Computing, 19(6):3711-3727, 2022.

Joon-Woo Lee, Hyungchul Kang, Yongwoo Lee, Woosuk Choi, Jieun Eom, Maxim Deryabin, Eu-
nsang Lee, Junghyun Lee, Donghoon Yoo, Young-Sik Kim, and Jong-Seon No. Privacy-preserving
machine learning with fully homomorphic encryption for deep neural network. IEEE Access,
10:30039-30054, 2022.

Junghyun Lee, Eunsang Lee, Joon-Woo Lee, Yongjune Kim, Young-Sik Kim, and Jong-Seon No.
Precise approximation of convolutional neural networks for homomorphically encrypted data, 2021.
Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly efficient private information retrieval and
fully homomorphic ram computation from ring lwe. Cryptology ePrint Archive, 2022.

Qian Lou, Yilin Shen, Hongxia Jin, and Lei Jiang. {SAFEN}et: A secure, accurate and fast neural
network inference. In International Conference on Learning Representations, 2021.

Edoardo Manino, Bernardo Magri, Mustafa A. Mustafa, and Lucas Cordeiro. Certified Private
Inference on Neural Networks via Lipschitz-Guided Abstraction Refinement, May 2023.
Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada
Popa. Delphi: A cryptographic inference service for neural networks. In 29th USENIX Security
Symposium (USENIX Security 20), pages 2505-2522. USENIX Association, August 2020.

Mark Niklas Miiller, Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T Johnson. The
third international verification of neural networks competition (vnn-comp 2022): Summary and
results, 2022.

Ricardo Pachén and Lloyd N. Trefethen. Barycentric-remez algorithms for best polynomial ap-
proximation in the chebfun system. BIT Numerical Mathematics, 49(4):721-741, 2009.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Jacques
Stern, editor, Advances in Cryptology — EUROCRYPT 99, pages 223-238. Springer Berlin Hei-
delberg, 1999.

Bernardo Pulido-Gaytan, Andrei Tchernykh, Jorge M. Cortés-Mendoza, Mikhail Babenko, Gleb
Radchenko, Arutyun Avetisyan, and Alexander Yu Drozdov. Privacy-preserving neural networks
with homomorphic encryption: Challenges and opportunities. Peer-to-Peer Networking and Ap-
plications, 14(3):1666-1691, 2021.

Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, 21(2):120-126, 1978.

Zhouxing Shi, Yihan Wang, Huan Zhang, J. Zico Kolter, and Cho-Jui Hsieh. Efficiently computing
local lipschitz constants of neural networks via bound propagation. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing
Systems, volume 35, pages 2350-2364. Curran Associates, Inc., 2022.

45

Certified Private Inference on Neural Networks via LiGAR Manino, Magri, Mustafa and Cordeiro

[25] Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet Nguyen,
Weiming Xiang, and Taylor T. Johnson. Star-based reachability analysis of deep neural networks.
In Maurice H. ter Beek, Annabelle Mclver, and José N. Oliveira, editors, Formal Methods — The
Next 30 Years, pages 670686, Cham, 2019. Springer International Publishing.

[26] Lloyd N Trefethen. Approzimation Theory and Approximation Practice, Extended Edition. STAM,
2019.

[27] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and
Jan S. Rellermeyer. A survey on distributed machine learning. ACM Comput. Surv., 53(2), mar
2020.

[28] Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning,
and Inderjit Dhillon. Towards fast computation of certified robustness for ReLU networks. In
Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 5276-5285.
PMLR, 10-15 Jul 2018.

[29] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neu-
ral network robustness certification with general activation functions. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 31. Curran Associates, Inc., 2018.

A Closed-Form Dual Solution

The objective function dior = Y, C;/e; is convex, and it is possible to derive its global minimum
in closed form as follows. First, let us write the Lagrangian of our optimization problem:

Llesi) = 3 S 3 lei = 0 + A L% = 8,) (1)

%

where we omit the constraints €; > 0 for simplicity. Now, we can derive the minimum of the
Lagrangian over € by equating its derivative to zero:

Ci

pi + AL (12)

e = argmin{L(e, 1, \)} =

for all 4, which already satisfies the implicit constraint ¢; > 0. Finally, the values of the dual
variables p; > 0 and A > 0 can be found by maximizing €. This operations requires satisfying
the following system of equations:

> G ey, (13)

- pi + AL "
Ci
[l = max <(6*)2 — AL?,O) (14)

which can be done iteratively by first solving Equation 13 with a binary search, and then
computing Equation 14. In our experience, very few iterations are required until convergence.

46

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Neural Network Definitions and Notation
	3.2 Univariate Polynomial Approximation

	4 LiGAR: Lipschitz-Guided Abstraction Refinement
	4.1 Approximation Error Abstraction
	4.2 Potential Range Estimation
	4.3 Local Lipschitz Constant Estimation
	4.4 Optimal Error Allocation
	4.5 Abstraction Refinement Cycle

	5 Empirical Analysis
	5.1 Experimental Setting
	5.2 Experimental Results

	6 Conclusions
	References
	A Closed-Form Dual Solution

