
“It works on my research”: An argument for 

prioritized software testing in research software 

Lars Michel1*, Tom Carnein1 and Markus von der Heyde2† 
1 University of Potsdam, Germany 

2 SemaLogic UG, Germany 
lars.michel@uni-potsdam.de, tom.carnein@uni-potsdam.de, 

markus.von.der.heyde@semalogic.de  

Abstract 

As science deals with the ever-growing complexity of research fields, research 

software provides the tools to observe, assist and manage their processes and results. 

However, the majority of research software tends to prioritize the validation of theories 

and the creation of prototypes over the delivery of products, often overlooking the crucial 

aspect of quality assurance. This can result in products that are susceptible to flaws and 

errors. The risk of failing to deliver correct results not only undermines user trust, but 

also damages the reputation of researchers and developers in a team, risking losses in 

funding and public trust in research. The implementation and emphasis on software 

engineering practices, particularly software testing, can mitigate these risks by 

prioritizing the identification and elimination of errors and faults in software development 

while also enhancing observability and transparency throughout the coding cycle. In part, 

the project “CAVAS+” is used as an example of these practices. A thorough examination 

of the current state of research software development and its challenges highlights the 

importance of software quality and reliability in research software, ultimately 

contributing to a more robust research software ecosystem. 

1 Background 

Scientific inquiry, driven by hypothesis testing and experimentation, has greatly expanded our 

understanding of the world. However, many phenomena remain beyond direct observation due to 

limitations of scale, time and space. To overcome these limitations, scientists increasingly rely on 

simulations and computational models. At the core of this approach is research software which is 

powered by advanced computing technologies and often involves a multitude of libraries or 

microservices. 

 
* ORCID - Lars Michel: https://orcid.org/0009-0007-7523-1507  
† ORCID - Markus von der Heyde: https://orcid.org/0000-0002-6026-082X  

EPiC Series in Computing

Volume 107, 2025, Pages 364–373

Proceedings of EUNIS 2025 annual congress in Belfast

L. Desnos, R. Vogl, L. Merakos, C. Diaz, J. Mincer-Daszkiewicz and S. Mclellan (eds.), EUNIS 2025 (EPiC
Series in Computing, vol. 107), pp. 364–373

mailto:lars.michel@uni-potsdam.de
mailto:tom.carnein@uni-potsdam.de
mailto:markus.von.der.heyde@semalogic.de
https://orcid.org/0009-0007-7523-1507
https://orcid.org/0000-0002-6026-082X


The definition of the term “research software” does not share a universally agreed definition, though 

for this context, it is described as “source code files, algorithms, scripts, computational workflows and 

executables that were created during the research process or for a research purpose” (Gruenpeter et al., 

2021, p. 16). As such, these software tools are developed to overcome challenges in the various domains 

of science. An example includes the measurements of attributes of celestial objects in astrophysics and 

simulations of their behavior over large periods of time: Where humans would not be able to see far or 

live long enough to observe the outcomes, programs developed on astronomical theories are able to 

quickly calculate and estimate the possible outcomes in their stead. Simulations of this nature represent 

a significant advantage of software, offering capabilities such as modeling, data processing, statistical 

analysis, visualization and experimental design. Notably, these benefits are achieved in a more efficient 

manner compared to traditional software-less methods. 

However, as software complexity increases, it becomes increasingly challenging for “pure 

scientists” to develop and maintain these on their own. Recent studies indicate that most scientific teams 

that use software report a lack of adequate training in software development, primarily due to their 

educational backgrounds in scientific fields: “many scientific software developers obtain their 

knowledge from other scientific developers […]. This lack of formal training often leaves scientific 

software developers blind to much of the field of software engineering that could provide much greater 

control over the quality of their code” (Heaton and Carver, 2015, p. 208). The intricate nature of certain 

software-dependent domains contributes to a high likelihood of errors, which are often difficult to 

identify. On top, development limitations with the relation to science frequently result in additional 

challenges, including, but not limited to “limited interoperability, dependence on closed proprietary 

tools, management of large data sets, and computational challenges” (Bernoth et al., 2024, p. 283). 

To create successful research software, it is indicated that the combination of in-depth scientific 

knowledge with engineering skills is essential: “scientific software developers believe that software 

engineering practices could increase their ability to develop quality software and software engineers 

agree that scientific software developers need adopting software engineering practices would allow 

them to produce higher quality software” (Heaton and Carver, 2015, p. 217) Scientists must be able to 

translate their research findings into data and algorithms while software engineers and developers must 

be able to turn these findings into practical software solutions. Alternatively, scientists could also 

acquire software development skills of their own to taking on a hybrid role that combines both the 

provision and implementation of scientific software. However, neither option is commonly represented 

within the scientific community. While research software repeatedly accelerates the discovery and 

innovation of the domain, it is also often considered a secondary tool that does not take a large priority. 

This can result in a lack of qualitative design and well-tested functions in the software, leading to 

unreliable results that compromise the integrity of scientific research and risk inaccuracy or falsehood 

in discoveries, resulting in criticism. 

In order to mitigate the risks of faulty research software, information about the current state of 

research software and their shortcomings has been gathered to formulate recommendations to 

developers, researchers, and stakeholders involved in scientific computing. The aim is to increase the 

overall reliability and trustworthiness of these programs. Common issues caused by the lack of software 

engineering practices such as missing agile processes, insufficient testing or poor documentation, will 

be addressed to increase communication between scientists and software engineers and ensure sufficient 

training in computational methods for researchers. The increased priority of software testing improves 

the efficiency and correctness of implemented algorithms and facilitates the reuse of the software for 

further experiments in the same domain or variations of them in other domains. Transparency and 

communication between developers and the stakeholders (or the public) establishes more trust in the 

process through exchange of information and quick response to issues. 

An Argument for Prioritized Software Testing in Research Software Michel et al.

364



2 Recommendations to increase quality and reliability 

Reliability is a critical factor in the effectiveness and longevity of software. However, research 

software often exhibits shortcomings in development and maintenance, resulting in suboptimal quality 

in the final product (or prototype). While standard IT practices are present in development environments 

focused on science and proofs, they often do not meet the higher standards set by software engineering 

principles. A survey of research software developers, conducted by Eisty and Carver in 2022, highlights 

that these deficits can be mitigated by introducing or emphasizing software engineering practices, 

particularly in training and software testing. The context of research software development also 

demands an increased focus on trust and communication, as potential failures can permanently tarnish 

the reputation of otherwise adequate work. 

2.1 Increased training in software engineering practices 

Where commercial software standardized development strategies such as defined requirements, 

version control and regular testing, scientific software prioritizes short-term goals like functionality and 

rapid prototyping over long-term value like maintainability and scalability. This makes sense because 

less experienced researchers typically have a shorter-term interest in the software or its results, but 

contribute a major part of the academic software. As commercial vendors and academia are pressured 

by constraints in time and resources additional quality checks may appear to detract from the final 

research output or product. In order to avoid inaccuracy or even false information in the output, it is 

recommended that at least some software engineering methods, which are not too unfamiliar with 

scientific habits, can be integrated without too many drawbacks. 

This can largely be addressed by providing skills for proper software development in advance as 

“later modifications become increasingly difficult and error-prone” (Heaton and Carver, 2015, p. 209). 

Research shows that “researchers are rarely purposely trained to develop software” (Carver et al., 2022, 

p. 6) and that they are “either unaware of their need for or may not have access to sufficient formal 

training in software development” (Carver et al., 2022, p. 7). If researchers develop their software 

engineering skills early and well enough, they will be able to dedicate the same level of effort to the 

research software development as they do to their own research field. Specialized training in 

development competencies “should provide research software developers with hands-on experience so 

they are able to understand and utilize existing testing techniques and tools in their projects, where 

appropriate” (Eisty and Carver, 2022, p. 25). 

Addressing the issue at the outset of the project cycle ensures that subsequent stages such as the 

initial design stages or the coding process itself, are supported by a robust foundation. This approach 

facilitates the creation of software that is more structured and easier to maintain, aligning with both 

scientific objectives and long-term usability requirements: “As research software developers better 

understand the existing tools and techniques, they will also be able to identify gaps that can be filled by 

modifying existing tools and techniques or by creating new ones” (Eisty and Carver, 2022, p. 25). 

However, the same studies also mention that training in software engineering is available, but does 

not have a positive effect on development for different reasons. While it is possible to consider the 

training practice to be impractical or even irrelevant to the otherwise specialized software in research, 

a larger issue lies in time constraints: “while training may be available, respondents do not have 

adequate time to take advantage of it” (Carver et al., 2022, p. 19) – An issue that could be solved through 

adjustments in management, ensuring team members of a scientific project have the necessary time to 

learn and apply engineering skills to their project for quality assurance purposes. 

An Argument for Prioritized Software Testing in Research Software Michel et al.

365



2.2 Higher priority and quality of testing 

Crucial to the developed software is the guarantee of high quality. Written functions must fulfill 

their intended purpose, transforming required inputs into expected outputs during execution, ideally in 

a short time. This is achieved through the dedicated stage (or parallel development, depending on the 

overall project development strategy) of software testing and conclusive debugging where potential 

errors in the source code are identified and eliminated to ensure a reliable code structure. 

In a study about the claims of software engineering practices in science, it is asserted that “the 

effectiveness of the testing practices currently used by scientific software developers is limited” (Heaton 

and Carver, 2015, p. 212). While common responses do acknowledge that testing is done for the sake 

of “correctness of software”, other answers such as “easiest or least effort required for these tests” or 

even in favor of skipping testing by saying “it is usually clear whether the software is working as 

intended” are more unorthodox. These statements hint at a badly arranged, sometimes even the absence 

of a validation process, a necessary condition to certify correct results and deliver the answer whether 

the overall output represents the solution to a problem. 

A peculiar perspective emerges when considering integration and regression testing in particular, 

known as the control procedure for how different software components interact with each other during 

source code updates: “many scientists who successfully test their code are actually using integration 

testing already, but they just think of it as using the scientific method. For example, every time a model 

is changed, the scientists treat it as a new experiment and test it, using the previous results as a control” 

(Heaton and Carver, 2015, p. 213). This perspective encourages testing by framing it as “updated 

experiments”, enabling a quick look into early results and follow-up adaptations depending on them. 

Similar parallels can be drawn when talking about the processes of verification and validation. While 

verification is typically defined as insurance that the software is built correctly and meets specified 

requirements, for scientists, “this same concept is described as ensuring that the computational model 

[…] matches the mathematical model” (Heaton and Carver, 2015, p. 213). The same can be said for 

validation, the assurance that the software fulfills the intended purpose and its user requirements, where 

scientists are also “ensuring that the mathematical model […] matches the real world” (Heaton and 

Carver, 2015, p. 213). Taking these parallels into account, the implementation of proper test suites 

appears similar to scientific processes and motivates their application in the development process. 

Concerns have been raised regarding studies and responses suggesting that testing is not only 

lacking, but also more challenging in the context of scientific software development compared to 

traditional software development as the correct results are often undefined or unclear. Poorly written 

test cases result in imprecise reports: “The problem is that when the oracle and test results do not match, 

the scientist does not know whether the problem lies with the theory, the theory’s implementation, the 

input, or if the oracle itself is flawed” (Heaton and Carver, 2015, p. 213). Aforementioned validation is 

often not given: “[The] lack of experimental validation means that a scientist may not even have an 

expected answer” (Heaton and Carver, 2015, p. 213). This highlights the need for clearer oversight 

during development, with consideration for future projects. 

2.3 Practices in regards to trust and reputation 

As effective quality management becomes both more challenging and more crucial, the 

consequences of failure are becoming more widespread. A 2024 US government technical report, 

endorsed by “leading technology companies, academics, and civil society organizations” (The White 

House, 2024), highlights these concerns. While the report primarily focuses on cybersecurity issues 

such as memory safety, rather than research software specifically, it highlights “the multifaceted nature 

of the software measurability problem” (The White House, 2024) which presents a challenge to 

software in general. 

An Argument for Prioritized Software Testing in Research Software Michel et al.

366



Despite decades of efforts from major institutions to eliminate entire classes of software defects, 

fundamental quality issues persist, requiring ongoing large-scale interventions. This raises a critical 

question: If even rigorously tested, commercially developed software struggles with reliability and 

security, how can research software, often built under far fewer constraints and oversight, be immune 

to similar problems? The challenges of assessing and improving software quality are not limited to 

cybersecurity, but extend to any domain where software plays a crucial role. 

A recent example of a widely used commercial software failing to meet expectations is the event 

known as the ‘CrowdStrike incident’ in July 2024 which affected Windows operating systems 

worldwide, causing widespread disruption. The incident impacted a broad range of sectors by wrecking 

“havoc on airlines, health care systems, banks and scores of other businesses and services around the 

world” (Satariano et al., 2024). Public trust in the company immediately decreased, measurable by the 

stock price, which “plunged 13% on Monday […] after Wall Street analysts downgraded the stock on 

concerns over the financial fallout from a global cyber outage last week” (Reuters, 2024). 

Beyond failures in commercial software, research software faces its own trust-related challenges. 

Two notable instances are the retractions of research related to COVID-19 which demonstrate how a 

lack of transparency in software can lead to a loss of confidence in scientific findings. 

“The Lancet published, then retracted, analysis of the effects of hydroxychloroquine or chloroquine 

treatment for COVID-19. In the retraction, Prof. Mehra indicates that the data and software on which 

the analysis was based were not made available for independent peer review or replication” (Lee et al., 

2021). Common software practices, such as making the code open source with basic documentation or 

a descriptive test suite, could have helped prevent this issue, possibly leading to less loss of trust in the 

scientific community. 

Another significant example of this phenomenon is a “simulation by scientists at Imperial College 

London, one of several models that helped to sway UK politicians into declaring a lockdown” (Chawla, 

2020). Even though the research model turned out to be correct, the massive criticism it received could 

have been mitigated through the adoption of enhanced coding practices. 

While the direct impact of these retractions is difficult to quantify, they exemplify how flaws in 

software can undermine trust in both scientific research and policy decisions - an issue that remains 

relevant, as skepticism toward COVID-19 measures persists to this day. 

3 Reliability practices in CAVAS+ 

In light of the ongoing debate surrounding research software, the authors introduce their current 

project, along with the practices they have implemented to ensure reliability. The project is titled 

“Computer Assistance for the Validation and Accreditation of Study Regulations to improve 

studyability (CAVAS+)”. 

It is evident from the title that CAVAS+ is an organizational development and training project 

dedicated to the creation of software prototypes that assist educational and structural purposes. More 

precisely, it is an approach to model study and examination regulations and their frameworks with a 

formal specification language, SemaLogic, and to convert them into a clear, machine-interpretable 

structure. The result is an advanced program that can continuously check for consistency and 

contradictions during the writing process and transparently visualize the interpreted representation for 

subsequent processes. This potentially reduces the effort involved in downstream checking and 

correction loops and enables the rules contained in the study and examination regulations to be applied 

directly in subsequent digital systems, thereby increasing process efficiency (Lucke, 2023). 

It is important to note that, while the software developed within CAVAS+ is considered scientific 

software on grounds of being developed and discussed in university context and aiming to answer a 

research question, it is technically not research software itself as it does not generate concrete 

An Argument for Prioritized Software Testing in Research Software Michel et al.

367



knowledge through data analysis or processing. Rather, CAVAS+ conducts research in order to develop 

such software. 

Much like research software, CAVAS+ recognizes the importance of well-written software and 

strives to hold the quality of written code and functionality of components to a high standard. In its 

current state (as of February 19th 2025), the lines of test-related code in the projects amounts to an 

average of 25.34% (see Figure 1). A variety of software testing practices have been implemented, 

ranging from basic ones that are to be expected from programs fulfilling their intended function to more 

advanced ones that would go beyond the fundamental principles of a typical software development 

project. Software testing can be categorized in different ways, but a key approach is based on levels. It 

is possible to test both a single function in the project structure and all project components as a whole 

with different interpretations for their results. Common in CAVAS+ are three types of testing which 

address different levels of the microservice architecture. Unit tests, as the lowest layer, “searches for 

defects in, and verifies the functioning of software (e.g., modules, programs, objects, classes, etc.) that 

are separately testable.” (Graham et al., 2007, p. 44). These tests evaluate written functions at the 

individual level, with minimal consideration for import, and are designed to ascertain the function’s 

alignment with its intended purpose. Above it are integration tests which “tests interfaces between 

components, interactions to different parts of a system such as an operating system, file system and 

hardware or interfaces between systems” (Graham et al., 2007, p. 45). These tests ensure that different 

microservices communicate well with each other. An illustrative example is the request of “module 

data” describing details of a study regulation from the “External Data Service” component, followed 

up by transforming the data in the “Student Use Case Controller”, then forwarding that to “CavasGUI” 

to display the result as a solution in the front end. It is possible to verify whether the expected results 

are displayed in the front end, as this indicates that all services are communicating correctly with each 

other. At the top level, system test and acceptance tests, would test the project as a whole and determine 

its readiness for realistic application. While some groundwork exists, development is not yet advanced 

enough to address this last level. 

Less easy to fit into a layer, but still highly relevant, is a testing method that works in tandem with 

the code as it is written and updated. To ensure that project components still fulfill their core purposes 

An Argument for Prioritized Software Testing in Research Software Michel et al.

368



after each update of the code, regression testing has been added into the pipelines of each project 

(CAVAS+ uses GitLab to collaborate on and maintain code). Regression testing is defined as the 

process “to verify that modifications in the software or the environment have not caused unintended 

adverse side effects and that the system still meets its requirements” (Graham et al., 2007, p. 52). 

Survey results such as those from Carver et al. (2022) demonstrate that the current testing level is 

comparable to that of testing conducted in research software.  While these results can be considered 

sufficient for each of the sub-projects under the comprehensive field of CAVAS+, it should be noted 

that this method is prone to errors. Developers tend to be biased towards their own developments: “it is 

difficult to find our own mistakes. So, business analysts, marketing staff, architects and programmers 

often rely on others to help test their work. This other person might be a fellow analyst, designer or 

developer.” (Graham et al., 2007, p. 30). In CAVAS+, that “other person” is represented by the 

dedicated sub-project “Quality Management”. The purpose of this sub-project is to oversee other 

actively developed sub-projects and ensure that they write their tests as well as keep them up to date 

and to the required standards. Quality management is currently working as the project’s independent 

integration test and will later generate and evaluate a system test of all components. As for its team 

members, they participate in the short meetings occurring twice a week to follow developments of the 

project components, communicate potential issues that may arise and discuss options to manage these 

issues using test suites of various levels. One such exemplary communication result is the 

accommodation of each user story (a planned software feature based on user requirements) with a 

relevant test suite. The quality management developers also contribute to CAVAS+ as well through 

 
Figure 1: Percentages of lines of code written in subprojects services and APIs in CAVAS+. 

Green: Development related code. Yellow: Testing related code. The outlier in ASP API is (partly) due to 

containing several SemaLogic models in its test suites. 

 

An Argument for Prioritized Software Testing in Research Software Michel et al.

369



added work for a “Test Dashboard” that is currently underway. This is a web page that provides a 

display of the current state of all relevant components of the project. It allows not only other project 

members to identify problems during development, but also future maintainers to pinpoint sources of 

issues in the running prototype. 

While the current state of quality assurance in CAVAS+ appears satisfactory, it has not always been 

the case. As a research project, developing an AI-based support software for study regulations was not 

as straightforward as it is usually the case for dedicated product development at companies. In 

traditional software engineering, discussions regarding the direction of a potential software product take 

place in the early stages of development. During these phases, requirements are typically structured and 

well-defined, and they generally remain consistent throughout the remainder of the development cycle. 

Agile software development has transformed the industry by adopting a user-centric approach, 

delivering minimal viable products in short development cycles. Similarly, in scientific research, 

priorities can evolve when initial plans prove unsuccessful. CAVAS+ uses a similar approach: The 

project's development leads to discoveries that define the potential direction. Only after these 

discoveries do requirements become clearer and development in all areas become more consistent. 

Arguably, this too can be seen as an argument for the necessity of a dedicated team of quality 

management as they can quickly adapt priorities in testing in line with changes to the project. 

4 Conclusion 

In the current climate of scientific complexity, traditional measurement tools are reaching their 

limits. However, technological advances have enabled the development of new methods for calculating 

and simulating complex phenomena. These innovations, in particular research software, have enabled 

the generation of highly precise results in scientific research. However, this is not yet the norm, with 

researchers often treating software as a means of proving a theory, rather than developing it for 

longevity and extensibility. Modern software engineering practices, which emphasize the creation of 

long-lasting, flexible software from the ground up, are therefore encouraged. Scientists require special 

training in software engineering methods such as appropriate design principles or acceptable 

documentation. In order to ensure the accuracy of research results, it is essential that written functions 

operate without flaws. This means that software testing and debugging must be given high priority 

during the development process. Increased communication and application of common software 

practices in the created software ensure that the work and effort of properly researched results cannot 

be harmed by overlooked faults. By strengthening engineering practices and addressing previously 

unconsidered gaps in our development process, it can be ensured that research software meets the same 

standards as commercially developed software in terms of quality, reliability and longevity. This will 

also enable newer continuation projects to build on our software as a solid foundation, further enhancing 

its value and impact. 

An Argument for Prioritized Software Testing in Research Software Michel et al.

370



References 
Bernoth, J., Riedel, C., Wiepke, A., & Laban, F. A. (2024). From Receiving to Characterizing: 

Improving Training Strategies for Research Data/Software Management by another domain. 

https://doi.org/10.18420/DELFI2024_25 

Carver, J. C., Weber, N., Ram, K., Gesing, S., & Katz, D. S. (2022). A survey of the state of the 

practice for research software in the United States. PeerJ Computer Science, 8, e963. 

https://doi.org/10.7717/peerj-cs.963 

Eisty, N. U., & Carver, J. C. (2022). Testing research software: A survey. Empirical Software 

Engineering, 27(6), 138. https://doi.org/10.1007/s10664-022-10184-9 

Graham, D., van Veenendaal, E., Evans, I., & Black, R. (2006). Foundations of Software Testing: 

ISTQB Certification. Int. Thomson Business Press. Retrieved from 

https://www.utcluj.ro/media/page_document/78/Foundations%20of%20software%20testing%20-

%20ISTQB%20Certification.pdf  

Gruenpeter, M., Katz, D. S., Lamprecht, A.-L., Honeyman, T., Garijo, D., Struck, A., Niehues, A., 

Martinez, P. A., Castro, L. J., Rabemanantsoa, T., Chue Hong, N. P., Martinez-Ortiz, C., Sesink, L., 

Liffers, M., Fouilloux, A. C., Erdmann, C., Peroni, S., Martinez Lavanchy, P., Todorov, I., & Sinha, M. 

(2021). Defining Research Software: A controversial discussion (Version 1). Zenodo. 

https://doi.org/10.5281/ZENODO.5504016  

Heaton, D., & Carver, J. C. (2015). Claims about the use of software engineering practices in 

science: A systematic literature review. Information and Software Technology, 67, 207–219. 

https://doi.org/10.1016/j.infsof.2015.07.011 

Lee, G., Bacon, S., Bush, I., Fortunato, L., Gavaghan, D., Lestang, T., Morton, C., Robinson, M., 

Rocca-Serra, P., Sansone, S.-A., & Webb, H. (2021). Barely sufficient practices in scientific computing. 

Patterns, 2(2), 100206. https://doi.org/10.1016/j.patter.2021.100206  

Reuters. (2024). CrowdStrike shares tumble 13% on IT outage impact. Retrieved from 

https://www.reuters.com/technology/crowdstrike-shares-set-extend-losses-outage-effects-linger-2024-

07-22/  

Satariano, A., Taylor, D. B., Tumin, R., & Kaye, D. (2024). Outage for Microsoft Users Knocks Out 

Systems for Airlines and Hospitals in Chaotic Day. The New York Times. Retrieved from 

https://www.nytimes.com/live/2024/07/19/business/global-tech-outage  

The White House. (2024). BACK TO THE BUILDING BLOCKS: A PATH TOWARD SECURE AND 

MEASURABLE SOFTWARE. Retrieved from 

https://web.archive.org/web/20250118014817/https://www.whitehouse.gov/wp-

content/uploads/2024/02/Final-ONCD-Technical-Report.pdf  

The White House. (2024). Statements of Support for Software Measurability and Memory Safety. 

Retrieved from 

https://web.archive.org/web/20250116115017/https://www.whitehouse.gov/oncd/briefing-

room/2024/02/26/memory-safety-statements-of-support/  

von der Heyde, M., Goebel, M., Lindow, S., & Lucke, U. (2024). Einsatz symbolischer KI in 

Hochschulen durch formale Modellierung von Studien- und Prüfungsordnungen [Use of symbolic AI 

in universities through formal modeling of study and examination regulations]. Informatik Spektrum, 

47(3), 87–96. https://doi.org/10.1007/s00287-024-01577-9  

An Argument for Prioritized Software Testing in Research Software Michel et al.

371

https://doi.org/10.18420/DELFI2024_25
https://doi.org/10.7717/peerj-cs.963
https://doi.org/10.1007/s10664-022-10184-9
https://www.utcluj.ro/media/page_document/78/Foundations%20of%20software%20testing%20-%20ISTQB%20Certification.pdf
https://www.utcluj.ro/media/page_document/78/Foundations%20of%20software%20testing%20-%20ISTQB%20Certification.pdf
https://doi.org/10.5281/ZENODO.5504016
https://doi.org/10.1016/j.infsof.2015.07.011
https://doi.org/10.1016/j.patter.2021.100206
https://www.reuters.com/technology/crowdstrike-shares-set-extend-losses-outage-effects-linger-2024-07-22/
https://www.reuters.com/technology/crowdstrike-shares-set-extend-losses-outage-effects-linger-2024-07-22/
https://www.nytimes.com/live/2024/07/19/business/global-tech-outage
https://web.archive.org/web/20250118014817/https:/www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://web.archive.org/web/20250118014817/https:/www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://web.archive.org/web/20250116115017/https:/www.whitehouse.gov/oncd/briefing-room/2024/02/26/memory-safety-statements-of-support/
https://web.archive.org/web/20250116115017/https:/www.whitehouse.gov/oncd/briefing-room/2024/02/26/memory-safety-statements-of-support/
https://doi.org/10.1007/s00287-024-01577-9


Author biographies 

Lars Michel studied both the Bachelor program in Informatics/ 

Computational Science as well as the Master program in Computational Science 

at the University of Potsdam. He started working as a scientific assistant in 

March 2022 at the Chair of Complex Multimedia Application Architectures in 

the Institute of Computer Science at the same university, parallel to his master 

studies. After finishing and achieving his degree, he was promoted right away 

to work full time as a scientist and developer since January 2024. He is currently 

involved with the CAVAS+ project with a focus on quality management and 

software testing. Besides that, he also shows interest in general multimedia, 

software management and virtual reality. In his free time, he is editing media 

for content as well as participating in and contributing to the fighting game 

community. 

 

Tom Carnein is a student enrolled in the Bachelor of 

Informatics/Computational Science program at the University of Potsdam since 

October 2020. In March 2022, he started working as a scientific assistant on the 

CAVAS+ project, where he has contributed to frontend and backend 

development, focusing on database management, data analysis, transformation, 

and API integration. Beyond his academic and professional work, he enjoys 

developing software in his free time, including Android applications, video 

games, and various other types of software, which has given him broader 

insights into software design, architecture, and development in general. 

Currently, he is spending time abroad in Japan, further expanding his 

perspectives on technology, cross-cultural collaboration, and international 

research environments. 

 

Dr. von der Heyde received his PhD with topics in cognition research at the 

Max Planck Institute for Biological Cybernetics in Tübingen. Since 2011, Dr. 

von der Heyde has been advising colleges, universities, and public cultural and 

research institutions on a wide range of digitalization topics (governance, 

organization, strategy, research data management, information security, IT 

service management) as part of vdH-IT, and conducts independent research on 

these topics (see ResearchGate). Since 2018, he has been an Adjunct Professor 

at the School for Interactive Arts and Technology (SIAT) at Simon Fraser 

University, Vancouver. Dr. von der Heyde is also active as a volunteer in a 

variety of non-profit organizations (GI, ZKI, EUNIS, Educause). In 2020, he 

founded SemaLogic UG to use semantic and structural logic technologies to 

automatically map and validate natural language regulatory texts. The application of these technologies 

to study regulations and accreditation is currently being implemented with partners from the university 

environment. Further details can be found on LinkedIn or Google Scholar. 

 

An Argument for Prioritized Software Testing in Research Software Michel et al.

372

https://www.researchgate.net/profile/Markus-Von-Der-Heyde
https://www.linkedin.com/in/mvdh42/
https://scholar.google.com/citations?user=ue1kFZ8AAAAJ

