
EPiC Series in Computing

Volume 103, 2024, Pages 64–121

Proceedings of the 11th Int. Workshop on Applied
Verification for Continuous and Hybrid Systems

ARCH-COMP24 Category Report:

Artificial Intelligence and Neural Network Control Systems

(AINNCS) for Continuous and Hybrid Systems Plants

Diego Manzanas Lopez1, Matthias Althoff2, Luis Benet3, Clemens Blab4,
Marcelo Forets5, Yuhao Jia6, Taylor T. Johnson1, Manuel Kranzl4,

Tobias Ladner2, Lukas Linauer4, Philipp Neubauer4, Sophie A. Neubauer4,
Christian Schilling7, Huan Zhang6, and Xiangru Zhong6

1 Vanderbilt University, Nashville, TN
{diego.manzanas.lopez, taylor.johnson}@vanderbilt.edu
2 Technische Universität München (TUM), Munich, Germany

{althoff, tobias.ladner}@tum.de
3 Instituto de Ciencias F́ısicas, Universidad Nacional Autónoma de México (UNAM), México

benet@icf.unam.mx
4 DatenVorsprung GmbH, Vienna, Austria

team@datenvorsprung.at
5 Universidad de la República, Montevideo, Uruguay

mforets@gmail.com
6 University of Illinois Urbana-Champaign, Urbana, IL

yuhaojia98@g.ucla.edu, huan@huan-zhang.com, xiangru4@illinois.edu
7 Aalborg University, Aalborg, Denmark

christianms@cs.aau.dk

Abstract

This report presents the results of a friendly competition for formal verification of
continuous and hybrid systems with artificial intelligence (AI) components. Specifically,
machine learning (ML) components in cyber-physical systems (CPS), such as feedforward
neural networks used as feedback controllers in closed-loop systems, are considered, which
is a class of systems classically known as intelligent control systems, or in more modern and
specific terms, neural network control systems (NNCS). We broadly refer to this category
as AI and NNCS (AINNCS). The friendly competition took place as part of the workshop
Applied Verification for Continuous and Hybrid Systems (ARCH) in 2024. In the 8th
edition of this AINNCS category at ARCH-COMP, five tools have been applied to solve
12 benchmarks, which are CORA, CROWN-Reach, GoTube, JuliaReach, and NNV. This
is the year with the largest interest in the community, with two new, and three previous
participants. Following last year’s trend, despite the additional challenges presented, the
verification results have improved year-over-year. In terms of computation time, we can
observe that the previous participants have improved as well, showing speed-ups of up to
one order of magnitude, such as JuliaReach on the TORA benchmark with ReLU controller,
and NNV on the TORA benchmark with both heterogeneous controllers.

G. Frehse and M. Althoff (eds.), ARCH-COMP24 (EPiC Series in Computing, vol. 103), pp. 64–121

ARCH-COMP24 AINNCS Manzanas Lopez et al.

1 Introduction

Neural Networks (NNs) have demonstrated an impressive ability to solve complex problems in
numerous application domains [78]. The success of these models in contexts such as adaptive
control, non-linear system identification [56], image and pattern recognition, function approx-
imation, and machine translation has stimulated the creation of technologies that are directly
impacting our everyday lives [68], and has led researchers to believe that these models possess
the power to revolutionize a diverse set of arenas [62].

Despite these achievements, there have been reservations about utilizing them within high-
assurance systems for various reasons, such as their susceptibility to unexpected and errant
behavior caused by slight perturbations in their inputs [43]. In a study by Szegedy et al. [69],
the authors demonstrated that carefully applying a hardly perceptible modification to an input
image could cause a successfully trained neural network to produce an incorrect classification.
These inputs are known as adversarial examples, and their discovery has caused concern over
the safety, reliability, and security of neural network applications [78]. As a result, some research
has been directed toward obtaining an explicit understanding of neural network behavior.

Neural networks are often viewed as “black boxes” whose underlying operation is often
incomprehensible. Still, the last several years have witnessed numerous promising white-box
verification methods proposed for reasoning about the correctness of their behavior. However,
it has been demonstrated that neural network verification is an NP-complete problem [38].
Despite many recent efforts and significant advances in the past decade [55, 73, 74, 75, 7,
23, 24, 39, 46, 67], there are remaining challenges that prevent these approaches from being
successfully applied to very large neural networks used in many real-world applications such
as [61]. Most of this work also focuses on verifying pre-/post-conditions for neural networks in
isolation. Reasoning about their usage behavior in cyber-physical systems, such as in neural
network control systems, remains a key challenge.

The following report aims to provide a survey of the landscape of the current capabilities
of verification tools for closed-loop systems with neural network controllers, as these systems
have displayed great utility as a means for learning control laws through techniques such as
reinforcement learning and data-driven predictive control [19, 71]. Furthermore, this report
aims to provide readers with a perspective on the intellectual progression of this rapidly growing
field and stimulate the development of efficient and effective methods capable of use in real-
life applications. Since the first iteration, there have been several publications investigating
the formal verification of AINNCS, out of which several of them have participated in one or
more of the previous competitions such as Verisig [33], VenMas [1] and ReachNN [22], among
others [75, 15, 28, 2, 41, 21, 52, 19, 17, 32, 66].

Disclaimer The presented report of the ARCH-COMP friendly competition for closed-
loop systems with neural network controllers, termed in short AINNCS (Artificial Intelli-
gence / Neural Network Control Systems), aims to provide the landscape of the current
capabilities of verification tools for analyzing these systems that are classically known as
intelligent control systems. This AINNCS ARCH-COMP category is complementary to the
ongoing Verification of Neural Networks Competition (VNN-COMP) [9, 55], the latter of
which focuses on open-loop specifications of neural networks. In contrast, the AINNCS cat-
egory focuses on closed-loop behaviors of dynamical systems incorporating neural networks.
We want to stress that each tool has unique strengths and not all of the specificities can be

65

ARCH-COMP24 AINNCS Manzanas Lopez et al.

highlighted within a single report. To reach a consensus on what benchmarks are used, some
compromises had to be made so that some tools may benefit more from the presented choice
than others. To establish further trustworthiness of the results, the code with which the re-
sults have been obtained is publicly available at gitlab.com/goranf/ARCH-COMP, and the
submitted results are available at arch.repeatability.cps.cit.tum.de/frontend/submissions.

Specifically, this report summarizes results obtained in the 2024 friendly competition of the
ARCH workshop1 for verifying systems of the form

ẋ(t) = f(x(t), u(x, t)),

where x(t) and u(x, t) correspond to the states and inputs of the plant at time t, respectively,
and where u(x, t) is the output of a feedforward neural network provided an input of the plant
state x at time t. The architecture of the closed-loop systems we consider is depicted in Figure
1, where the input to the neural network controller is additionally sampled.

Figure 1: Closed-loop architecture of the benchmarks to be verified.

This year is the 6th iteration of the AINNCS category at ARCH-COMP and builds on the
previous iterations and reports [50, 36, 35, 47, 48]. Participating tools are summarized in Sec. 2.
Please, see [78] for further details on these and additional tools. The results of our selected
benchmark problems are shown in Sec. 3. Similar to last year, we run all tools on the same
hardware using docker images for further comparison. The docker images allow an automatic
evaluation of the tools on the submission server, thus, giving researchers immediate feedback on
the results of their submission. The submission server specifications are given in Appendix A.

The goal of the friendly competition is not to rank the results but rather to present the
landscape of existing solutions in a breadth that is impossible with scientific publications in
classical venues. Such publications would typically require the presentation of novel techniques,
while this report showcases the current state-of-the-art tools. The selection of the benchmarks
has been conducted within the forum of the ARCH website (cps-vo.org/group/ARCH), which
is visible for registered users, and registration is open for anyone.

1Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-vo.org/group/ARCH

66

https://gitlab.com/goranf/ARCH-COMP
https://arch.repeatability.cps.cit.tum.de/frontend/submissions
http://cps-vo.org/group/ARCH
http://cps-vo.org/group/ARCH

ARCH-COMP24 AINNCS Manzanas Lopez et al.

2 Participating Tools

We present a brief overview of all the participating tools in this friendly competition. The
tools are CORA, JuliaReach, and NNV, and first-time participants CROWN-Reach and Go-
Tube. The tools participating in the Artificial Intelligence / Neural Network Control Systems
in Continuous and Hybrid Systems Plants (AINNCS) category are introduced subsequently in
alphabetical order.

CORA (Tobias Ladner, Matthias Althoff). CORA [2] is a COntinuous Reachability Analyzer
for the formal verification of cyber-physical systems using reachability analysis. It is written in
MATLAB and is available at https://cora.in.tum.de. CORA integrates various set repre-
sentations and operations on them as well as reachability algorithms of various dynamic system
classes. For this competition, we used the approach described in [41, 45] for open-loop and
closed-loop neural network verification based on polynomial zonotopes [40]. Polynomial zono-
topes are particularly well suited for verifying neural networks due to their polynomial time
complexity on many operations. CORA realizes a fast layer-based computation of an outer
approximation of the output set of networks with various activation functions, including ReLU,
sigmoid, and tanh [41], and can automatically refine the neuron abstractions in neural networks
to obtain tighter enclosures [45]. Our neural network verification approaches are naturally in-
tegrated into our reachability analysis methods for linear and nonlinear plant dynamics. For
most benchmarks, we can deploy a fully automatic verification process using CORA: We first
simulate random runs to find potential violations of the specifications. If one run violates the
specifications, we verify the violating run using reachability analysis, as simulations are not
sound. Otherwise, we try to verify the benchmark for the given specifications.

CROWN-Reach (Xiangru Zhong, Yuhao Jia, Huan Zhang). CROWN-Reach is a new open-
source tool for reachability analysis of neural network control systems developed at UIUC. It
aims to strengthen and extend the successful α,β-CROWN neural network verifier [80, 76, 81, 64]
to the setting of neural network controller verification. CROWN-Reach consists of four main
components: bound-propagation for efficient analysis of neural network controllers, Taylor
model for plant analysis, branch-and-bound to refine the reachable set, and a sampling-based
falsifier. For the analysis of neural network controllers, we use linear relaxation based pertur-
bation analysis (LiRPA) methods such as CROWN [82] and α-CROWN [80] with extensions
to cooperate with Taylor Model flowpipe computation. Our tool is based on the auto LiRPA
library[79], which can automatically compute linear functional over-approximations for neural
networks with various activation functions, including ReLU, tanh, and sigmoid, as well as neu-
ral networks with general architectures (e.g., residual blocks and custom operators). We use the
Flow*[16] library for analyzing the plant with continuous dynamics using Taylor models, and
these Taylor models are symbolically combined with the linear bounds from CROWN to form
the reachable set of the entire system. The branch-and-bound refinement process splits the in-
put state space and utilizes parallelization (including both GPU and CPU) to achieve quick and
precise analysis. The bound propagation process can be accelerated on GPUs and can scale
to very large networks, while the computation of Taylor models is executed on CPUs using
multi-threading. A paper describing the algorithm details of CROWN-Reach is currently being
prepared. Code is available at https://github.com/Verified-Intelligence/CROWN-Reach.

67

https://cora.in.tum.de
https://github.com/Verified-Intelligence/CROWN-Reach

ARCH-COMP24 AINNCS Manzanas Lopez et al.

GoTube v2.0 (DatenVorsprung GmbH). GoTube v2.0 is a formal statistical verification algo-
rithm for Neural-Network-Controlled Systems that uses reachability analysis to formally quan-
tifiy the behavioral robustness and safety of any time-continuous process. The algorithm solves
a set of global optimization (Go) problems over a given time horizon to construct a tight en-
closure (Tube) of the set of all process executions starting from a ball of initial states. As an
extension of GoTube [30, 29], GoTube v2.0 is able to handle any kind and any amount of neural
network controllers within a nonlinear continuous system (cyber-physical system), whereas the
first version was only able to handle continuous-depth neural networks and control systems
with one controller. In addition, GoTube v2.0 includes verification methods while GoTube was
only able to perform reachability analysis. GoTube v2.0 is able to perform a fully automatic
verification process for all benchmarks. Through its construction, GoTube ensures that the
bounding tube is conservative up to a desired confidence and up to a desired tightness factor.
GoTube can trade runtime for confidence, so by setting a lower confidence it is possible to get a
result faster. If the result of that fast run with low confidence is ”falsified” or ”unknown”, the
analysis is finished, as we will also not be able to verify the result with a higher confidence. Only
if the result is ”verified”, we will need to increase the confidence until the desired confidence of
the verification result is reached. Compared to advanced reachability analysis tools for Neural-
Network-Controlled Systems, GoTube does not accumulate over-approximation errors between
time steps and avoids the infamous wrapping effect inherent in symbolic techniques. Thus, it
is able to handle bigger initial radii, systems with bigger differences between trajectories (e.g.
Cartpole benchmark) as well as time horizons well beyond what has been previously possible.

JuliaReach (Luis Benet, Marcelo Forets, Christian Schilling). JuliaReach [15] is an open-
source software suite for reachability computations of dynamical systems, written in the Julia
language and available at http://github.com/JuliaReach. The package ClosedLoopReacha-
bility.jl handles the closed-loop analysis and queries sub-problems to our other libraries Reacha-
bilityAnalysis.jl for continuous-time analysis of plant models and NeuralNetworkReachability.jl
for set propagation through neural networks (both forward and backward [27]). Additional set
computations are performed with LazySets.jl [26]. The algorithm we use is described in [63].
For the plant analysis, we use the sound algorithm TMJets based on interval arithmetic and Tay-
lor models; this algorithm is implemented in TaylorModels.jl [11, 14], which itself incorporates
TaylorSeries.jl [12, 13] and TaylorIntegration.jl [57]. The algorithm uses a jet transportation of
a Taylor polynomial with interval coefficients. It has the following main parameters for tweak-
ing: the absolute tolerance abstol and two parameters to define the order at which the Taylor
expansion is cut in time (orderT) resp. in space (orderQ). For the neural-network analysis, we
use an abstract interpretation based on zonotopes [67]. For falsification, we choose an initial
point but then use set-based analysis for validated simulations.

NNV (Diego Manzanas Lopez, Taylor Johnson). The Neural Network Verification (NNV)
Tool [75, 49] is a formal verification software tool for deep learning models and cyber-
physical systems with neural network components written in MATLAB and available at
https://github.com/verivital/nnv. NNV uses a star-set state-space representation and
reachability algorithm that allows for a layer-by-layer computation of exact or overapproximate
reachable sets for feed-forward [73], convolutional [70], semantic segmentation (SSNN) [74], and
recurrent (RNN)[72] neural networks, as well as neural network control systems (NNCS) [71, 75]
and neural ordinary differential equations (Neural ODEs) [53]. The star-set based algorithm
is naturally parallelizable, which allows NNV to be designed to perform efficiently on multi-

68

http://github.com/JuliaReach
https://github.com/JuliaReach/ClosedLoopReachability.jl
https://github.com/JuliaReach/ClosedLoopReachability.jl
https://github.com/JuliaReach/ReachabilityAnalysis.jl
https://github.com/JuliaReach/ReachabilityAnalysis.jl
https://github.com/JuliaReach/NeuralNetworkReachability.jl
https://github.com/JuliaReach/LazySets.jl
https://github.com/JuliaIntervals/TaylorModels.jl
https://github.com/JuliaDiff/TaylorSeries.jl
https://github.com/PerezHz/TaylorIntegration.jl
https://github.com/verivital/nnv

ARCH-COMP24 AINNCS Manzanas Lopez et al.

core platforms. Additionally, if a particular safety property is violated, NNV can be used to
construct and visualize the complete set of counterexample inputs for a neural network (exact-
analysis). Using NNV in combination with HyST [8, 6] and CORA [2, 3, 4] allows for the
verification of closed-loop neural network control systems with nonlinear plant dynamics.

3 Benchmarks

We have selected 12 benchmarks for this year’s competition – we reuse the same benchmarks
(with modification on the specifications of 3 of them) and add two new ones, described at the
end of the section [48]. A few of them, such as the TORA benchmark, are presented with
several different controllers to be analyzed. We now describe these benchmarks in no particular
order and have made them readily available online.2 All benchmarks are derived for continuous
time. Given the continuous dynamics ẋ = f(x), where x ∈ Rn is the state vector, the discrete-
time versions for a time increment of ∆t are obtained in this competition using forward Euler
integration:

x(k + 1) = x(k) + f(x)∆t.

3.1 Adaptive Cruise Controller (ACC)

The Adaptive Cruise Control (ACC) benchmark is a system that tracks a set velocity and
maintains a safe distance from a lead vehicle by adjusting the longitudinal acceleration of an
ego vehicle [54]. The neural network computes optimal control actions while satisfying safe
distance, velocity, and acceleration constraints using model predictive control (MPC) [59]. For
this case study, the ego car is set to travel at a set speed vset = 30 and maintains a safe distance
Dsafe from the lead car. The car’s dynamics are described by the following equations [71, p.
17]:

ẋlead(t) = vlead(t), v̇lead(t) = alead(t), ȧlead(t) = −2alead(t) + 2ac,lead − uv2lead(t),

ẋego(t) = vego(t), v̇ego(t) = aego(t), ȧego(t) = −2aego(t) + 2ac,ego − uv2ego(t),
(1)

where xi is the position, vi is the velocity, ai is the acceleration of the car, ac,i is the acceleration
control input applied to the car, and u = 0.0001 is a coefficient for air drag, where i ∈ {ego,
lead}. We evaluate a neural network controller with five layers and 20 neurons each for this
benchmark. The inputs of the controller are the set speed vset, the desired time gap Tgap, the
ego velocity vego, the distance Drel = xlead − xego, as well as the relative velocity vrel, and the
output is ac,ego.

Specifications The verification objective of this system is that given a scenario where both
cars are driving safely, the lead car suddenly slows down with ac,lead = -2. We want to check
whether there is a collision in the following 5 s. Formally, this safety specification of the system
can be expressed as Drel ≥ Dsafe, where Dsafe = Ddefault + Tgap · vego, and Tgap = 1.4 s and
Ddefault = 10. The initial conditions are: xlead(0) ∈ [90,110], vlead(0) ∈ [32,32.2], alead(0) =
aego(0) = 0, vego(0) ∈ [30, 30.2], xego ∈ [10,11]. A control period of 0.1 s is used.

2GitHub repository of benchmarks: https://github.com/verivital/ARCH-COMP2024

69

https://github.com/verivital/ARCH-COMP2024

ARCH-COMP24 AINNCS Manzanas Lopez et al.

3.2 TORA

This benchmark considers translational oscillations by a rotational actuator (TORA) [19, 34],
where a cart is attached to a wall with a spring and is free to move on a friction-less surface.
The cart has a weight attached to an arm inside it, which is free to rotate about an axis. This
serves as the control input to stabilize the cart at x = 0. The model is a four-dimensional
system, given by the following equations [34, eq. (4)]:

ẋ1 = x2, ẋ2 = −x1 + 0.1 sin(x3), ẋ3 = x4, ẋ4 = u. (2)

This benchmark has three neural network controllers: the first has three ReLU hidden layers
and a linear output layer. This controller was trained using a data-driven model predictive
controller proposed in [20]. Note that the output of the neural network f(x) needs to be
normalized to obtain u, namely u = f(x) − 10. The sampling time for this controller is 1 s,
and we verify it against specification 1 below. The other two controllers have three hidden
layers of 20 neurons each and one output layer. In contrast to the first controller, we use
sigmoid activation functions for the hidden layers and a tanh output layer. The sampling time
of these controllers is 0.5 s, the output of the neural network f(x) needs to be post-processed
as u = 11 · f(x), and we verify them against specification 2 below.

Specification 1. This is a safety specification. For an initial set of x1 ∈ [0.6, 0.7], x2 ∈
[−0.7,−0.6], x3 ∈ [−0.4,−0.3], and x4 ∈ [0.5, 0.6], the system states have to stay within the
box x ∈ [−2, 2]4 for a time window of 20 s.

Specification 2. For an initial set of x1 ∈ [-0.77, -0.75], x2 ∈ [-0.45, -0.43], x3 ∈ [0.51,
0.54], and x4 ∈ [−0.3,−0.28], it is required that the system reaches the set x1 ∈ [−0.1, 0.2],
x2 ∈ [−0.9,−0.6] within a time window of 5 s.

3.3 Unicycle

This benchmark considers a unicycle model of a car [19] with the x and y coordinates on a
two-dimensional plane, the velocity magnitude (speed), and steering angle as state variables.
The dynamic equations are (see [5, Sec. III.B]; a different input is used here):

ẋ1 = x4 cos(x3), ẋ2 = x4 sin(x3), ẋ3 = u2, ẋ4 = u1 + w, (3)

where w is a bounded error in the range 10−4[−1, 1]. A neural network controller was trained for
this system using a model predictive controller as a “demonstrator” or “teacher”. The trained
network has one hidden layer with 500 neurons. Note that the output of the neural network
f(x) needs to be normalized in order to obtain (u1, u2), namely ui = f(x)i− 20. The sampling
time for this controller is 0.2 s.

Specification This is a reachability specification. For an initial set of x1 ∈ [9.5, 9.55], x2 ∈
[−4.5,−4.45], x3 ∈ [2.1, 2.11], and x4 ∈ [1.5, 1.51], the system has to reach the set x1 ∈
[−0.6, 0.6], x2 ∈ [−0.2, 0.2], x3 ∈ [−0.06, 0.06], x4 ∈ [−0.3, 0.3] within a time window of 10 s.

70

ARCH-COMP24 AINNCS Manzanas Lopez et al.

NMAC zone

�

�

h

τ

|ḣ0|

Figure 2: VerticalCAS encounter geometry

3.4 VerticalCAS

This benchmark is a closed-loop variant of the aircraft collision avoidance system ACAS X. The
scenario involves two aircraft, the ownship and the intruder, where the ownship is equipped with
a collision avoidance system referred to as VerticalCAS [37]. VerticalCAS issues vertical climb
rate advisories every second to the ownship pilot to avoid a near mid-air collision (NMAC).
Near mid-air collisions are regions where the ownship and the intruder are separated by less
than 100ft vertically and 500ft horizontally. The ownship (black) is assumed to have a constant
horizontal speed, and the intruder (red) is assumed to follow a constant horizontal trajectory
towards ownship, see Figure 2. The current geometry of the system is described by

• h, intruder altitude relative to ownship,

• ḣ0, ownship vertical climb rate, and

• τ , the time until the ownship (black) and intruder (red) are no longer horizontally sepa-
rated.

We can, therefore, assume that the intruder is static and the horizontal separation τ de-
creases by one each second. There are nine advisories and each of them instructs the pilot to
accelerate until the vertical climb rate of the ownship complies with the advisory:

1. COC: Clear Of Conflict;

2. DNC: Do Not Climb;

3. DND: Do Not Descend;

4. DES1500: Descend at least 1500 ft/s;

5. CL1500: Climb at least 1500 ft/s;

6. SDES1500: Strengthen Descent to at least 1500 ft/s;

7. SCL1500: Strengthen Climb to at least 1500 ft/s;

8. SDES2500: Strengthen Descent to at least 2500 ft/s;

9. SCL2500: Strengthen Climb to at least 2500 ft/s.

In addition to the parameters describing the geometry of the encounter, the current state of
the system stores the advisory adv ∈ {1, . . . , 9} (numbers correspond to the above list) issued to
the ownship at the previous time step. VerticalCAS is implemented as nine ReLU networks Ni,
one for each (previous) advisory, with three inputs (h, ḣ0, τ), five fully-connected hidden layers
of 20 units each, and nine outputs representing the score of each possible advisory. Therefore,
given a current state (h, ḣ0, τ, adv), the new advisory adv′ is obtained by computing the argmax
of the output of Nadv on (h, ḣ0, τ).

71

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Given the new advisory, the pilot can choose acceleration ḧ0 as follows. If the new advisory
is COC, then it can be any acceleration from the set {− g

8 , 0,
g
8}. For all remaining advisories, if

the previous advisory coincides with the new one and the current climb rate complies with the
new advisory (e.g., ḣ0 is non-positive for DNC and ḣ0 ≥ 1500 for CL1500), the acceleration ḧ0
is 0; otherwise, the pilot can choose any acceleration ḧ0 from the given sets:

• DNC: {− g
3 ,−

7g
24 ,−

g
4};

• DND: { g4 ,
7g
24 ,

g
3};

• DES1500: {− g
3 ,−

7g
24 ,−

g
4};

• CL1500: { g4 ,
7g
24 ,

g
3};

• SDES1500: {− g
3};

• SCL1500: { g3};

• SDES2500: {− g
3};

• SCL2500: { g3},

where g represents the gravitational constant 32.2 ft/s
2
.

It was proposed to tweak the benchmark for the tools that cannot efficiently account for
all possible acceleration choices. Those tools can consider two strategies for picking a single
acceleration at each time step:

• a worst-case scenario selection, where we choose the acceleration to take the ownship
closer to the intruder.

• always select the acceleration in the middle.

Given the current system state (h, ḣ0, τ, adv), the new advisory adv′ and the acceleration
ḧ0, the new state of the system can be computed by the following equations [37, eq. (15)]:

h(k + 1) = h(k)− ḣ0(k)∆τ − 0.5ḧ0(k)∆τ
2

ḣ0(k + 1) = ḣ0(k) + ḧ0(k)∆τ
τ(k + 1) = τ(k) + ∆τ

adv(k + 1) = adv′

where ∆τ = 1.

Specification The ownship has to be outside of the NMAC zone after k ∈ {1, . . . , 10} time
steps, i.e., h(k) > 100 or h(k) < −100, for all possible choices of acceleration by the pilot. The
set of initial states considered is: h(0) ∈ [−133,−129], ḣ0(0) ∈ {−19.5,−22.5,−25.5,−28.5},
τ(0) = 25 and adv(0) = COC.

72

ARCH-COMP24 AINNCS Manzanas Lopez et al.

3.5 Single Pendulum

We consider a classical inverted pendulum. A ball of mass m is attached to a massless beam of
length L. The beam is actuated with a torque T and we assume viscous friction with a friction
coefficient of c. The governing equation of motion can be obtained as [51, eq. (1)]:

θ̈ =
g

L
sin θ +

1

mL2

(
T − c θ̇

)
, (4)

where θ is the angle of the link concerning the upward vertical axis and θ̇ is the angular velocity.
After defining the state variables x1 = θ and x2 = θ̇, the dynamics in state-space form is

ẋ1 =x2, (5a)

ẋ2 =
g

L
sinx1 +

1

mL2
(T − c x2) . (5b)

Controllers are trained using behavior cloning, a supervised learning approach for training
controllers. The code, as well as training procedures, are provided. The model parameters are
chosen as

m = 0.5, L = 0.5, c = 0, g = 1, (6)

and the time step for the controller and the discrete-time model is ∆t = 0.05. The initial set is

x ∈ [1.0, 1.175]× [0.0, 0.2].

Specification ∀t ∈ [0.5, 1] : θ ∈ [0, 1] (analogously for k ∈ [10, 20] in discrete time).

3.6 Double Pendulum

The double pendulum is an inverted two-link pendulum with equal point masses m at the end
of connected mass-less links of length L. The links are actuated with torques T1 and T2, and
we assume viscous friction exists with a coefficient of c. The governing equations of motion are
described by the following equations [51, eq. (3a-b)]:

2θ̈1 + θ̈2 cos(θ2 − θ1)− θ̇22 sin(θ2 − θ1)− 2
g

L
sin θ1 +

c

mL2
θ̇1 =

1

mL2
T1, (7a)

θ̈1 cos(θ2 − θ1) + θ̈2 + θ̇21 sin(θ2 − θ1)−
g

L
sin θ2 +

c

mL2
θ̇2 =

1

mL2
T2, (7b)

73

ARCH-COMP24 AINNCS Manzanas Lopez et al.

1

2 g

x

y

Figure 3: Inverted double pendulum. The goal is to keep the pendulum upright (dashed
schematics)

where θ1 and θ2 are the angles of the links concerning the upward vertical axis (see Figure 3)
and g is the gravitational acceleration. After defining the state vector as x = [θ1, θ2, θ̇1, θ̇2]

T ,
the dynamics in state-space form is

ẋ1 =x3, (8a)

ẋ2 =x4, (8b)

ẋ3 =
1

2
(

cos2(x1−x2)
2 − 1

) cos (x1 − x2)

(
x3

2 sin (x1 − x2)− cos (x1 − x2)

(
g sin (x1)

L
(8c)

−x4
2 sin (x1 − x2)

2
+
T1 − c x3
2L2m

)
+
g sin (x2)

L
+
T2 − c x4
L2m

)
(8d)

− x4
2 sin (x1 − x2)

2
+
g sin (x1)

L
+
T1 − c x3
2L2m

, (8e)

ẋ4 =
−1

cos2(x1−x2)
2 − 1

(
x3

2 sin (x1 − x2)− cos (x1 − x2)

(
g sin (x1)

L
− x4

2 sin (x1 − x2)

2
(8f)

+
T1 − c x3
2L2m

)
+
g sin (x2)

L
+
T2 − c x4
L2m

)
. (8g)

The controllers for the double pendulum benchmark are obtained using the same methods
as the controllers for the single pendulum benchmark; also here, the code as well as training
procedures are provided. The model parameters are chosen as in (6) The initial set is

x ∈ [1.0, 1.3]4.

Specification 1 ∀t ∈ [0, 1] : x ∈ [−1.7, 2]4 (analogously for k ∈ [0, 20] in discrete time) for
∆t = 0.05.

74

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Specification 2 ∀t ∈ [0, 0.4] : x ∈ [−1.5, 1.5]4 (analogously for k ∈ [0, 20] in discrete time)
for ∆t = 0.02.

We verify controller double pendulum less robust against specification 1 and controller double
pendulum more robust against specification 2.

3.7 Airplane

The airplane example consists of a dynamical system that is a simple model of a flying airplane
as shown in Figure 4. The state is

x = [sx, sy, sz, vx, vy, vz, ϕ, θ, ψ, r, p, q]
T , (9)

where (sx, sy, sz) is the position of the center of gravity, (vx, vy, vz) are the components of
velocity in (x, y, z) directions, (p, q, r) are body rotation rates, and (ϕ, θ, ψ) are the Euler angles.
The equations of motion are reduced to [51, eq. (7)]:

v̇x =− g sin θ +
Fx
m

− qvz + rvy, (10a)

v̇y =g cos θ sinϕ+
Fy
m

− rvx + pvz, (10b)

v̇z =g cos θ cosϕ+
Fz
m

− pvy + qvx, (10c)

Ixṗ+ Ixz ṙ =Mx − (Iz − Iy)qr − Ixzpq, (10d)

Iy q̇ =My − Ixz
(
r2 − p2

)
− (Ix − Iz)pr, (10e)

Ixz ṗ+ Iz ṙ =Mz − (Iy − Ix)qp− Ixzrq. (10f)

The mass of the airplane is denoted with m and Ix, Iy, Iz and Ixz are the moment of inertia
with respect to the indicated axis; see Figure 4. The control parameters include three force
components Fx, Fy and Fz and three moment componentsMx,My,Mz. Note that for simplicity,
we assume that the aerodynamic forces are absorbed in the force vector F . In addition to these
six equations, we have six additional kinematic equations [51, eq. (8,9)]:ṡxṡy

ṡz

 =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

vxvy
vz

 (11)

and ϕθ
ψ

 =

1 tan θ sinϕ tan θ cosϕ
0 cosϕ − sinϕ
0 sec θ sinϕ sec θ cosϕ

pq
r

 . (12)

As in the pendulum benchmarks, controllers are trained for the airplane problem using
behavior cloning. The system involves the model parameters

m = 1, Ix = Iy = Iz = 1, Ixz = 0, g = 1,

and the time step for the controller and the discrete-time model is ∆t = 0.1. The initial set is

x = y = z = r = p = q = 0, [vx, vy, vz, ϕ, θ, ψ] ∈ [0.0, 1.0]6.

75

ARCH-COMP24 AINNCS Manzanas Lopez et al.

x

z

top view

front view

x

y

y
z

Figure 4: The airplane example.

Specification ∀t ∈ [0, 2] : sy ∈ [−1, 1], [ϕ, θ, ψ] ∈ [−1.0, 1.0]3. Analogously for k ∈ [0, 20] in
discrete time.

We verify the airplane controller against the specification above.

3.8 Attitude Control

We consider the attitude control of a rigid body with six states and three inputs [58, 65]. The
system dynamics is given by [58, Sec. V]:

ω̇1 = 0.25(u0 + ω2ω3), ω̇2 = 0.5(u1 − 3ω1ω3), ω̇3 = u2 + 2ω1ω2,

ψ̇1 = 0.5
(
ω2(ψ

2
1+ψ

2
2+ψ

2
3−ψ3)+ω3(ψ

2
1+ψ

2
2+ψ2+ψ

2
3)+ω1(ψ

2
1+ψ

2
2+ψ

2
3+1)

)
,

ψ̇2 = 0.5
(
ω1(ψ

2
1+ψ

2
2+ψ

2
3+ψ3)+ω3(ψ

2
1−ψ1+ψ

2
2+ψ

2
3)+ω2(ψ

2
1+ψ

2
2+ψ

2
3+1)

)
,

ψ̇3 = 0.5
(
ω1(ψ

2
1+ψ

2
2−ψ2+ψ

2
3)+ω2(ψ

2
1+ψ1+ψ

2
2+ψ

2
3)+ω3(ψ

2
1+ψ

2
2+ψ

2
3+1)

)
,

wherein the state x = (ωT , ψT)T consists of the angular velocity vector in a body-fixed frame
ω ∈ R3 and the Rodrigues parameter vector ψ ∈ R3.

The control torque u ∈ R3 is updated every 0.1 s by a neural network with three hidden
layers, each of which has 64 neurons. The activations of the hidden layers are sigmoid and
identity, respectively. We train the neural-network controller using supervised learning methods
to learn from a known nonlinear controller [58]. The initial state set is:

ω1 ∈ [−0.45,−0.44], ω2 ∈ [−0.55,−0.54], ω3 ∈ [0.65, 0.66],

ψ1 ∈ [−0.75,−0.74], ψ2 ∈ [0.85, 0.86], ψ3 ∈ [−0.65,−0.64].

76

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Specification The system should not reach the following unsafe set in 3 s (30 time steps):

ω1 ∈ [−0.2, 0], ω2 ∈ [−0.5,−0.4], ω3 ∈ [0, 0.2],

ψ1 ∈ [−0.7,−0.6], ψ2 ∈ [0.7, 0.8], ψ3 ∈ [−0.4,−0.2].

We want to show that the above specification does not hold.

3.9 Quadrotor

This benchmark studies a neural-network controlled quadrotor (QUAD) with twelve state vari-
ables [10]. We have the inertial (north) position x1, the inertial (east) position x2, the altitude
x3, the longitudinal velocity x4, the lateral velocity x5, the vertical velocity x6, the roll angle
x7, the pitch angle x8, the yaw angle x9, the roll rate x10, the pitch rate x11, and the yaw rate
x12. The control torque u ∈ R3 is updated every 0.1 s by a neural network with 3 hidden layers,
each of which has 64 neurons. The activations of the hidden layers and the output layer are
sigmoid and identity, respectively. The dynamics are given by the following equations [10, eq.
(12-16)]:

ẋ1 =cos(x8) cos(x9)x4 + (sin(x7) sin(x8) cos(x9)− cos(x7) sin(x9))x5

+ (cos(x7) sin(x8) cos(x9) + sin(x7) sin(x9))x6,

ẋ2 =cos(x8) sin(x9)x4 + (sin(x7) sin(x8) sin(x9) + cos(x7) cos(x9))x5

+ (cos(x7) sin(x8) sin(x9)− sin(x7) cos(x9))x6,

ẋ3 =sin(x8)x4 − sin(x7) cos(x8)x5 − cos(x7) cos(x8)x6,

ẋ4 =x12x5 − x11x6 − g sin(x8,)

ẋ5 =x10x6 − x12x4 + g cos(x8) sin(x7),

ẋ6 =x11x4 − x10x5 + g cos(x8) cos(x7)− g − u1/m,

ẋ7 =x10 + sin(x7) tan(x8)x11 + cos(x7) tan(x8)x12,

ẋ8 =cos(x7)x11 − sin(x7)x12,

ẋ9 =
sin(x7)

cos(x8)
x11 −

cos(x7)

cos(x8)
x12,

ẋ10 =
Jy − Jz
Jx

x11x12 +
1

Jx
u2,

ẋ11 =
Jz − Jx
Jy

x10x12 +
1

Jy
u3,

ẋ12 =
Jx − Jy
Jz

x10x11 +
1

Jz
τψ,

where

g = 9.81, m = 1.4, Jx = 0.054,

Jy = 0.054, Jz = 0.104, τψ = 0.

The initial set is:

x1 ∈ [−0.4, 0.4], x2 ∈ [−0.4, 0.4], x3 ∈ [−0.4, 0.4], x4 ∈ [−0.4, 0.4],

x5 ∈ [−0.4, 0.4], x6 ∈ [−0.4, 0.4], x7 = 0, x8 = 0, x9 = 0, x10 = 0, x11 = 0, x12 = 0.

77

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Specification The control goal is to stabilize the attitude x3 to a goal region [0.94, 1.06] and
remain within these bounds with a time horizon of 5 s (50 time steps).

3.10 2D Spacecraft Docking

In the 2D spacecraft docking environment, the state of an active deputy spacecraft is expressed
relative to the passive chief spacecraft in Hill’s reference frame [31]. The dynamics are given
by a first-order approximation of the relative motion dynamics between the deputy and chief
spacecraft, which is given by Clohessy-Wiltshire [18] equations [60, eq. (12)],

ṡx
ṡy
s̈x
s̈y

 =


0 0 1 0
0 0 0 1

3n2 0 0 2n
0 0 −2n 0



sx
sy
ṡx
ṡy

+


0 0
0 0
1
m 0
0 1

m

u, (13)

where m = 12 (kg), n = 0.001027 (rad/s), and u ∈ R2.
The neural network controller was trained on the Docking 2D environment with reinforce-

ment learning using the training procedure described in [60]. However, the training procedure
differed in providing only the full state (position and velocity) as input and with hard clipping
of output actions replaced with soft tanh clipping. The neural network architecture was a shal-
low multilayer perceptron with 2 hidden layers of 256 neurons and tanh activation functions,
and a linear output layer. The pre-processing and post-processing of the controller have been
incorporated into the model as linear layers. The controller was trained with a sampling time
of 1 s.

Specification The spacecraft should satisfy the following safety constraints for 40 s:

(ṡ2x + ṡ2y)
1
2 ≤ 0.2 + 2n(s2x + s2y)

1
2 , (14)

given the initial set is

sx ∈ [70, 106], sy ∈ [70, 106], ṡx ∈ [−0.28, 0.28], ṡy ∈ [−0.28, 0.28].

3.11 Navigation Task

The navigation benchmark models a simplified model of a robot [19] navigating to a goal
region while avoiding an obstacle along its path. The state is four-dimensional consisting of the
horizontal and vertical position x, y, the angle θ of the robot, and velocity ν. The controller
gets all states as input and has an output u ∈ [−1, 1]2. The dynamics of the system are given
by:

ṡ =


ν cos θ
ν sin θ
u(1)
u(2)

 . (15)

This benchmark is designed to compare how different training schemes improve the verifia-
bility of a controller. As a baseline, the first controller was trained using standard (point-based)
reinforcement learning. We used adversarial training to obtain a second, more robust controller:
During training, uncertainties of a given state are modeled using sets, and the weights are up-
dated based on the entire input set rather than individual points. This approach was first

78

ARCH-COMP24 AINNCS Manzanas Lopez et al.

developed in the supervised learning setting [42], and has also been applied during reinforce-
ment learning [77]. Both networks have two hidden layers with 64 neurons each and ReLU
activation, with a final layer with tanh activation to match the benchmark description. The
controllers were trained with a sampling time of 0.2 s.

Specification The robot should avoid an obstacle during the entire time horizon (t ∈ [0, 6]s)
and reach the goal region at t = 6s. The initial set is given by:

x ∈ [2.9, 3.1], y ∈ [2.9, 3.1], θ ∈ [0, 0], ν ∈ [0, 0].

The obstacle is located at:

x ∈ [1, 2], y ∈ [1, 2], θ ∈ [−∞,∞], ν ∈ [−∞,∞].

The goal region is located at:

x ∈ [−0.5, 0.5], y ∈ [−0.5, 0.5], θ ∈ [−∞,∞], ν ∈ [−∞,∞].

3.12 CartPole

We consider an inverted pendulum (pole) mounted on a movable one-directional cart. The
controller’s goal is to balance the pendulum upright by moving the cart. The pole of length lp
has a total mass mp. The cart’s responsiveness is defined by its acceleration magnitude xacc.
By using cartpole equations [25] and the momentum inertia defined by I = 3

4mpl
2 we get a

physical description of the system. With x1 ∈ [−0.5, 0.5] being the carts position (with its
velocity x2 = ẋ1) and x3 ∈ R being the angle of the pendulum (with {2πz, z ∈ Z} being the
inverted state, x4 = ẋ3 the angular velocity) the state vector is defined by [x1, x2, x3, x4]

T . This
results into the following behaviour.

ẋ1 = x2 (16)

ẋ2 = xacc · f(x1, x2, sinx3, cosx3, x4) (17)

ẋ3 = x4 (18)

ẋ4 =
mp · lp · (g · sinx3 − xacc · f(x1, x2, sinx3, cosx3, x4) · cosx3)− µp · x4

I
(19)

with f(x1, x2, sinx3, cosx3, x4) being the output of the controller.

The system parameters are given by

lp = 0.41m, mp = 0.08 kg, I = 10.5 · 10−3 kgm2,

xacc = 2
m

s2
, µp = 2.1 · 10−3 kgm

2

s2
, g = 9.8

m

s1

The initial set is defined by

(x1, x2, x3, x4) ∈ [−0.1, 0.1]× [−0.05, 0.05]× [−0.1, 0.1]× [−0.05, 0.05]

The controller has a latency of τ = 0.02 s.

79

ARCH-COMP24 AINNCS Manzanas Lopez et al.

0 1 2 3 4 5
40

60

80

100

time

d
is
ta
n
ce

Distance

Safe distance

Simulations

Figure 5: CORA. Computed reachable set and simulations of the ACC benchmark.

Specification After a settling time of 8 seconds the controller is able to stabilize the pendulum
((x3, x4 ∈ [−0.001, 0.001]2)) in the middle of the rail (x1 ∈ [−0.001, 0.001]):

∀t ∈ [8 s, 10 s] : x1, x3, x4 ∈ [−0.001, 0.001]3

4 Verification Results

For each of the participating tools, we obtained verification results for some or all of the bench-
marks. This year’s competition (as in 2023) included the submission of the tools for repeatability
prior to the writing of the report to ensure a fairer competition. Reachable sets are shown for
those methods that are able to construct them. The published results are available on the
website of the submission system3 and in the repeatability repository4.

4.1 CORA

This subsection presents the results of CORA computed with the automatic verification algo-
rithm described in Sec. 2 if not stated otherwise. The exact parameters can be found in the
repeatability repository. An overview of the results is given in Tab. 1.

4.1.1 ACC

CORA is able to verify this benchmark. The computed reachable set as well as some simulations
are visible in Fig. 5.

4.1.2 TORA

CORA is able to verify both the remain and the reach instance for all controllers of this
benchmark. The computed reachable set as well as some simulations are visible in Fig. 6.

3Submission system: https://arch.repeatability.cps.cit.tum.de/frontend
4Repeatability repository: https://gitlab.com/goranf/ARCH-COMP/-/tree/master/2024/AINNCS

80

https://arch.repeatability.cps.cit.tum.de/frontend
https://gitlab.com/goranf/ARCH-COMP/-/tree/master/2024/AINNCS

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Table 1: CORA. Overview of results: Verified (✓), falsified (✗), and unknown (?).

Benchmark Instance Result Time [s]

Unicycle reach ✓ 7.910
ACC safe-distance ✓ 4.720
TORA remain ✓ 15.030
TORA reach-tanh ✓ 12.420
TORA reach-sigmoid ✓ 8.980
Single Pendulum reach ✓ 3.650
Double Pendulum less-robust ? 5.760
Double Pendulum more-robust ✗ 4.360
Airplane continuous ✗ 10.690
VCAS middle-19.5 ✓ 0.210
VCAS middle-22.5 ✓ 0.100
VCAS middle-25.5 ✗ 0.040
VCAS middle-28.5 ✗ 0.070
VCAS worst-19.5 ✓ 0.130
VCAS worst-22.5 ✗ 0.040
VCAS worst-25.5 ✗ 0.040
VCAS worst-28.5 ✗ 0.040
Attitude Control avoid ✓ 6.520
QUAD reach ✓ 214.890
Docking constraint ? 79.570
NAV standard ? 8.440
NAV robust ✓ 13.930
CartPole* reach ✓ 26.110

4.1.3 Unicycle

CORA is able to verify this benchmark. The computed reachable set as well as some simulations
are visible in Fig. 7.

4.1.4 VCAS

The VCAS benchmark has discrete time steps and multiple controllers, which is currently not
supported by CORA. Thus, a custom algorithm was built for this benchmark. To deal with
the discrete input set ḣ0(0) ∈ {−19.5,−22.5,−25.5,−28.5}, we run the algorithm with each
element of the input set individually. As proposed in the benchmark specifications, we show
the results when always the middle acceleration of the controllers is chosen and the results when
always the worst acceleration is chosen.

VCAS (middle acceleration) Here we always use the middle of the possible accelerations.
We are able to verify the benchmark for ḣ0(0) ∈ {−19.5,−22.5} and can show violations for
ḣ0(0) ∈ {−25.5,−28.5}. The computed reachable set along with some simulations are shown
in Figure 8.

81

ARCH-COMP24 AINNCS Manzanas Lopez et al.

−2 −1 0 1 2

−2

−1

0

1

2

x(1) (distance)

x
(2

)
(ẋ

(1
)
)

Safe set

Reachable set

Initial set

Simulations

−2 −1 0 1 2

−2

−1

0

1

2

x(3) (angle)

x
(4

)
(ẋ

(3
)
)

Safe set

Reachable set

Initial set

Simulations

−1 0 1

−1

0

1

x(1) (distance)

x
(2

)
(ẋ

(1
)
)

Goal set

Reachable set

Initial set

Simulations

−1 0 1

−1

0

1

x(1) (distance)

x
(2

)
(ẋ

(1
)
)

Goal set

Reachable set

Initial set

Simulations

Figure 6: CORA. Computed reachable set and simulations of the TORA benchmark: ReLU
contoller (top), tanh controller (bottom left), and sigmoid controller (bottom right).

−2 0 2 4 6 8 10

−4

−2

0

x

y

Goal set

Reachable set

Initial set

Simulations

Figure 7: CORA. Computed reachable set and simulations of the unicycle benchmark.

82

ARCH-COMP24 AINNCS Manzanas Lopez et al.

−24 −22 −20 −18 −16
−400

−300

−200

−100

0

100

Time −τ

h
(R

el
a
ti
v
e
P
o
si
ti
o
n
o
f
In
tr
u
d
er

to
O
w
n
sh

ip
) ḣ0(0) = -22.5

NMAC

Reachable set

Simulations

−24 −22 −20 −18 −16

−300

−200

−100

0

100

Time −τ

h
(R

el
a
ti
v
e
P
o
si
ti
o
n
o
f
In
tr
u
d
er

to
O
w
n
sh

ip
) ḣ0(0) = -28.5

NMAC

Simulations

Figure 8: CORA. Computed reachable set of the VCAS benchmark with middle acceleration.

−24 −22 −20 −18 −16

−300

−200

−100

0

100

Time −τ

h
(R

el
a
ti
v
e
P
o
si
ti
o
n
o
f
In
tr
u
d
er

to
O
w
n
sh

ip
) ḣ0(0) = -19.5

NMAC

Reachable set

Simulations

−24 −22 −20 −18 −16
−300

−200

−100

0

100

Time −τ

h
(R

el
a
ti
v
e
P
o
si
ti
o
n
o
f
In
tr
u
d
er

to
O
w
n
sh

ip
) ḣ0(0) = -28.5

NMAC

Simulations

Figure 9: CORA. Computed reachable set of the VCAS benchmark with worst acceleration.

VCAS (worst acceleration) Here we always use the worst possible acceleration. We
are able to verify the benchmark for ḣ0(0) ∈ {−19.5} and can show violations for ḣ0(0) ∈
{−22.5,−25.5,−28.5}. The computed reachable set along with some simulations are shown in
Figure 9.

4.1.5 Single Pendulum

CORA is able to verify this benchmark. The computed reachable set as well as some simulations
are visible in Fig. 10.

83

ARCH-COMP24 AINNCS Manzanas Lopez et al.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

time

th
et
a

Safe set

Unsafe set

Reachable set

Simulations

Figure 10: CORA. Computed reachable set and simulations of the single pendulum benchmark.

−2 −1 0 1

−1

0

1

θ̇1

θ̇ 2

Safe set

Reachable set

Initial set

Simulations

Figure 11: CORA. Verified simulation run using the more robust controller violating the
specification of the double pendulum benchmark.

4.1.6 Double Pendulum

CORA is able to falsify the instance using the more robust controller by providing a verified
simulation run going outside the safe set, whereas the result for the less robust controllers
remains unknown. The verified simulation run violating the specification is visible in Fig. 11.

4.1.7 Airplane

CORA is able to falsify this benchmark by providing a verified simulation run going outside
the safe set. The verified simulation run violating the specification is visible in Fig. 12.

84

ARCH-COMP24 AINNCS Manzanas Lopez et al.

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

y

ϕ
Safe set

Reachable set

Simulations

Figure 12: CORA. Verified simulation run violating the specification of the airplane bench-
mark.

0 1 2 3

−0.4

−0.2

0

0.2

time

ω
1

Unsafe set

Reachable set

Simulations

0 1 2 3
−0.6

−0.5

−0.4

−0.3

time

ω
2

Unsafe set

Reachable set

Simulations

Figure 13: CORA. Computed reachable set and simulations of the attitude control benchmark.

4.1.8 Attitude Control

CORA is able to verify this benchmark. The computed reachable set as well as some simulations
are visible in Fig. 13.

4.1.9 Quadrotor

CORA is able to verify this benchmark. The computed reachable set as well as some simulations
are visible in Fig. 14.

85

ARCH-COMP24 AINNCS Manzanas Lopez et al.

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

time

a
lt
it
u
d
e

Goal set

Reachable set

Simulations

Figure 14: CORA. Computed reachable set and simulations of the quadrotor benchmark.

0 10 20 30 40
−50

0

50

100

150

200

Time

x

Reachable set

Simulations

Figure 15: CORA. Computed reachable set and simulations of the 2D spacecraft docking
benchmark.

4.1.10 2D Spacecraft Docking

The spacecraft docking benchmark appeared difficult to verify for our approach. While the
simulations seem to be stable, the reachable set explodes over time and thus we are unable to
verify the benchmark. The computed reachable set along with some simulations are shown in
Figure 15.

4.1.11 Navigation Task

CORA is able to verify the instance with the controller obtained via set-based adversarial
training, while the standard controller could not be verified although no violating simulation
run was found. The computed reachable set along with some simulations are shown in Figure 16.

86

ARCH-COMP24 AINNCS Manzanas Lopez et al.

−1 0 1 2 3
−1

0

1

2

3

4

x

y

Goal set

Obstacle

Reachable set

Initial set

Simulations

−1 0 1 2 3
−1

0

1

2

3

4

x

y

Goal set

Obstacle

Reachable set

Initial set

Simulations

Figure 16: CORA. Computed reachable set and simulations of the navigation task benchmark:
Standard controller (left) and robust contoller (right).

−2 −1 0

·10−2

0

0.5

1

·10−2

x(1) (position)

x
(3

)
(a
n
g
le
)

Reachable set

Initial set

Goal set

Simulations

Figure 17: CORA. Computed reachable set and simulations of the cartpole benchmark.

4.1.12 CartPole

CORA is able to verify this benchmark for a smaller initial set. The computed reachable set
along with some simulations are shown in Figure 17.

4.2 CROWN-Reach

This subsection presents the results of CROWN-Reach. Here we briefly introduce the specific
setting for each benchmark. All the implementation and parameters can be found in the
repeatability repository. An overview of the results is given in Tab. 2.

4.2.1 ACC

CROWN-Reach is able to verified this benchmark. The reachable sets of both ”distance” Drel

and ”safe distance” Dsafe are shown in Fig. 18.

87

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Table 2: CROWN-Reach. Overview of results: Verified (✓), falsified (✗), and unknown (?).

Benchmark Instance Result Time [s]

ACC safe-distance ✓ 2.590
Airplane continues ✗ 6.580
Attitude Control avoid ✓ 3.320
Single Pendulum reach ✓ 0.630
TORA remain ✓ 2.750
TORA reach-sigmoid ✓ 6.230
TORA reach-tanh ✓ 5.810
Unicycle reach ✓ 9.650
CartPole reach ? 6.210
VCAS worst-19.5 ✓ 0.270
VCAS worst-22.5 ✗ 0.040
VCAS worst-25.5 ✗ 0.030
VCAS worst-28.5 ✗ 0.030
VCAS middle-19.5 ✓ 0.270
VCAS middle-22.5 ✓ 0.270
VCAS middle-25.5 ✗ 0.030
VCAS middle-28.5 ✗ 0.030
Double Pendulum more-robust ✗ 1.170
Double Pendulum less-robust ✓ 68.480
NAV robust ✓ 20.650
NAV standard ✓ 130.120
Quadrotor reach ✓ 3465.170

0 1 2 3 4 5

time

40

50

60

70

80

90

100

110

di
st

an
ce

Safe Distance
Distance

Figure 18: CROWN-Reach. Computed reachable sets of distance and safe distance in the
following 5 seconds.

88

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Figure 19: CROWN-Reach. Computed reachable sets of the TORA benchmark under the
ReLU controller (top), the ReLU/tanh controller (bottom left), and the sigmoid controller
(bottom right). For the instance with sigmoid controller, our result is based on the specification
used in the competition, where the output of the neural network f(x) is post-processed as
u = 22 · (f(x) − 0.5) instead of u = 11 · f(x) described in Sec. 3.2. All three instances are
verified.

4.2.2 TORA

CROWN-Reach is able to verify all three instances of this benchmark. The computed reachable
sets of the system are shown in Fig. 19. Note that for the instance under the ReLU controller
(with specification 1), the initial set of x1 and x2 is uniformly divided into 4× 3 subsets.

4.2.3 Unicycle

CROWN-Reach is able to verify this benchmark. The reachable sets are shown in Fig. 20.

89

ARCH-COMP24 AINNCS Manzanas Lopez et al.

-2 0 2 4 6 8 10

x1

-5

-4

-3

-2

-1

0

1

x2

Reachable set
Goal set
Initial set

Figure 20: CROWN-Reach. Computed reachable sets of the Unicycle benchmark. The target
set is proved to be reachable.

0 2 4 6 8 10 12

time

-350

-300

-250

-200

-150

-100

-50

0

50

100

h(
ve

rt
ic

al
 d

is
ta

nc
e)

Reachable set
Unsafe set

0 0.5 1 1.5 2 2.5 3 3.5 4

time

-200

-150

-100

-50

0

50

100

h(
ve

rt
ic

al
 d

is
ta

nc
e)

Reachable set
Unsafe set

0 0.5 1 1.5 2 2.5 3

time

-200

-150

-100

-50

0

50

100

h(
ve

rt
ic

al
 d

is
ta

nc
e)

Reachable set
Unsafe set

0 0.5 1 1.5 2 2.5 3

time

-200

-150

-100

-50

0

50

100

h(
ve

rt
ic

al
 d

is
ta

nc
e)

Reachable set
Unsafe set

0 2 4 6 8 10 12

time

-500

-400

-300

-200

-100

0

100

h(
ve

rt
ic

al
 d

is
ta

nc
e)

Reachable set
Unsafe set

0 2 4 6 8 10 12

time

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

h(
ve

rt
ic

al
 d

is
ta

nc
e)

Reachable set
Unsafe set

0 0.5 1 1.5 2 2.5 3

time

-200

-150

-100

-50

0

50

100

h(
ve

rt
ic

al
 d

is
ta

nc
e)

Reachable set
Unsafe set

0 0.5 1 1.5 2 2.5 3

time

-200

-150

-100

-50

0

50

100

h(
ve

rt
ic

al
 d

is
ta

nc
e)

Reachable set
Unsafe set

Figure 21: CROWN-Reach. Computed reachable sets (for verified instances) and simulation
trajectories (for falsified instances) of the VCAS benchmark. The strategy for choosing accel-
eration is fixed to either ”worst” (top) or ”middle” (bottom). The initial value of ḣ0 is chosen
from {−19.5,−22.5,−25.5,−28.5} (from left to right).

4.2.4 VerticalCAS

The VCAS benchmark has multiple controllers. To handle this benchmark, we treat the four
possible inputs ḣ0(0) ∈ {−19.5,−22.5,−25.5,−28.5} separately and fix the acceleration selec-
tion strategies between “always choosing the middle one” and “always choosing the worst one”.
At each control step, CROWN-Reach bounds the outputs of the neural network controller and
verifies that the advisory option is unique. To conclude, CROWN-Reach is able to show that
when using the “worst” strategy, instances with ḣ0(0) = −19.5 is verified. When using the
“middle” strategy, instances with ḣ0(0) = −19.5 or ḣ0(0) = −22.5 are verified. All other
instances are falsified by random simulation. The result visualizations are shown in Fig. 21.

90

ARCH-COMP24 AINNCS Manzanas Lopez et al.

0 0.2 0.4 0.6 0.8 1

time

0

0.2

0.4

0.6

0.8

1

1.2

3

Reachable set
Safe set
Initial set

Figure 22: CROWN-Reach. Computed reachable sets of the Single Pendulum benchmark.

Figure 23: CROWN-Reach. Result visualizations for the benchmark Double Pendulum,
including the instance under the less robust controller (left) and the one under the more robust
controller (right). For the falsified instance, we plot one counterexample trajectory. For the
verified one, we show its reachable sets.

4.2.5 Single Pendulum

CROWN-Reach is able to verify this benchmark. The reachable sets are shown in Fig. 22.

4.2.6 Double Pendulum

CROWN-Reach is able to falsify the instance under the more robust controller by running a
simulation starting from the initial point (1.3, 1.3, 1.3, 1.3), and is able to verify the instance
under the less robust controller by uniformly dividing the initial set into 5× 5× 3× 3 subsets.
The result visualizations are shown in Fig. 23.

91

ARCH-COMP24 AINNCS Manzanas Lopez et al.

-1 -0.5 0 0.5 1

y

-1

-0.5

0

0.5

1

?

Reachable set
Safe set
Initial set

Figure 24: CROWN-Reach. A trajectory from an initial point reaches out of the safe set,
falsifying the Airplane benchmark.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

x1

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

x2

Reachable set
Unsafe set
Initial set

Figure 25: CROWN-Reach. Computed reachable sets of the Attitude Control benchmark.

4.2.7 Airplane

CROWN-Reach is able to falsify this benchmark by showing that the trajectory starting from
a counterexample initial state reach out of the safe set, as shown in Fig. 24.

4.2.8 Attitude Control

CROWN-Reach is able to verify this benchmark. The computed reachable sets are shown in
Fig. 25.

4.2.9 Quadrotor

CROWN-Reach is able to verify this benchmark with input splits. The initial set is uniformly
divided into 8× 8× 8× 2× 1× 1 subsets and verified in parallel. The reachable sets are shown
in Fig. 26.

92

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Figure 26: CROWN-Reach. Computed reachable sets of the Quadrotor benchmark. Here
for visualization, reachable sets are sampled on the dimension time.

Figure 27: CROWN-Reach. Computed reachable sets of the Navigation Task benchmark.
Both the standard instance (left) and the robust one (right) are verified.

4.2.10 Navigation Task

CROWN-Reach is able to verify both instances of this benchmark with input splits. For the
standard instance, the initial set is uniformly divided into 40× 16× 1× 1 subsets and verified
in parallel. For the robust instance, the initial set is uniformly divided into 5×5×1×1 subsets
and verified in parallel. The reachable sets are shown in Fig. 27.

93

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Table 3: GoTube v2.0. Overview of results: Verified (✓), falsified (✗), and unknown (?).

Benchmark Instance Result Time [s]

ACC ✓ 90.450
Attitude-Control ✓ 10.820
QUAD ✓ 7.900
Airplane ✗ 1.940
Docking full initial set trajectories only ✓ 4.100
Docking half initial set with safety property ✓ 54.220
Double Pendulum less robust controller ✓ 5.650
Double Pendulum more robust controller ✗ (tube) 1.170
Single Pendulum ✓ 2.170
Benchmark9-Tora ✓ 4.980
Tora Heterogeneous sigmoid controller ✓ 1.410
Tora Heterogeneous relu tanh controller ✓ 2.580
Benchmark9-Unicycle ✓ 3.530
VCAS mid acceleration h0 19p5 ✓ 3.010
VCAS mid acceleration h0 22p5 ✓ 3.070
VCAS mid acceleration h0 25p5 ✗ 3.560
VCAS mid acceleration h0 28p5 ✗ 2.220
VCAS worst acceleration h0 19p5 ✓ 3.200
VCAS worst acceleration h0 22p5 ✗ 3.820
VCAS worst acceleration h0 25p5 ✗ 2.230
VCAS worst acceleration h0 28p5 ✗ 2.260
CartPole ✓ 39.870
NAV less robust controller ✓ 5.020
NAV more robust controller ✓ 4.990

4.3 GoTube v2.0

We present the results for all benchmarks utilizing GoTube v2.0. We were able to specify
all benchmarks except Spacecraft Docking 2D, were the specification could only be done on
an input set with half the radius of the original one. The verification for all benchmarks
were done with a confidence level of 90% (γ = 0.1). For all other details and parameters
used in the reachability and validation of all benchmarks (e.g. tightness factor µ) we refer to
the submission package code available at https://gitlab.com/goranf/ARCH-COMP/-/tree/

master/2024/AINNCS/GoTube. An overview of the results is given in Tab. 3.

4.3.1 ACC

GoTube is able to verify the specifications automatically. Figure 28 shows the reachable values
of the safety function f = Dsafe−Drel plotted over time (where f ≥ 0 indicates a safe behaviour
as described in the benchmarks specifications).

94

https://gitlab.com/goranf/ARCH-COMP/-/tree/master/2024/AINNCS/GoTube
https://gitlab.com/goranf/ARCH-COMP/-/tree/master/2024/AINNCS/GoTube

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Figure 28: GoTube. Analysis results for the ACC benchmark with reachable values of the
safety function f over time. ≥ 0 verifies the controller.

Figure 29: GoTube. Reachable set (calculated only at the given time steps) and specifications
for the TORA benchmark.

4.3.2 TORA

All specifications can be verified by GoTube automatically. The reachable set, the specifications
and 25 simulations can be seen in Figure 29 for the ReLU controller with specification 1 as well
as in Figure 30 for both the sigmoid and tanh controllers for specification 2. The simulations
were only calculated correctly for the given time steps. Their connections (plotted in gray) are
only linear interpolations. Also the reachable set is only calculated for the given time steps.

95

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Figure 30: GoTube. Reachable set (calculated only at the given time steps) and specifications
for the TORA (Heterogeneous) benchmark. Sigmoid controller (top) and Tanh controller (bot-
tom) as well as plots zoomed in on the goal set (right).

4.3.3 Unicycle

GoTube is able to fully verify the specifications automatically. Figure 31 illustrates the reachable
set, the specifications as well as 25 simulations. The simulations were only calculated correctly
for the given time steps. Their connections (plotted in gray) are only linear interpolations. Also
the reachable set is only calculated for the given time steps.

4.3.4 VCAS

For GoTube to handle the discrete initial set of ḣ0(0) the analysis was run separately for every
starting value.

VCAS (middle acceleration) The middle of all possible accelerations is used. GoTube is
able to verify the specification of this benchmark for ḣ0(0) ∈ {−19.5,−22.5} and falsify them
for ḣ0(0) ∈ {−25.5,−28.5}. Figure 32 illustrates the reachable sets, the specifications as well
as 25 simulations for each starting value ḣ0(0).

96

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Figure 31: GoTube. Reachable set and specifications for the Unicycle benchmark.

Figure 32: GoTube. Reachable set and specifications for the VCAS benchmark with the
controller selecting the middle acceleration for ḣ0(0) = 19.5, ḣ0(0) = 22.5, ḣ0(0) = 25.5 and
ḣ0(0) = 28.5 (from left to right).

VCAS (worst acceleration) The worst of all possible accelerations is used. GoTube is able
to verify the specification of this benchmark for ḣ0(0) = −19.5 and falsify them for ḣ0(0) ∈
{−22.5,−25.5,−28.5}. Figure 33 illustrates the reachable sets, the specifications as well as 25
simulations for each starting value ḣ0(0).

4.3.5 Single Pendulum

GoTube is able to fully verify the specifications automatically. Figure 34 illustrates the reachable
set, the specifications as well as 25 simulations.

4.3.6 Double Pendulum

GoTube is able to fully verify the specifications for the less robust controller and falsify the
specifications of the more robust controller automatically. Figure 35 illustrates the reachable set,
the specifications as well as 25 simulations each. The simulations were only calculated correctly
for the given time steps. Their connections (plotted in gray) are only linear interpolations. Also
the reachable set is only calculated for the given time steps.

97

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Figure 33: GoTube. Reachable set and specifications for the VCAS benchmark with the
controller selecting the middle acceleration for ḣ0(0) = 19.5, ḣ0(0) = 22.5, ḣ0(0) = 25.5 and
ḣ0(0) = 28.5 (from left to right).

Figure 34: GoTube. Reachable set (calculated only at the given time steps) and specifications
for the Single Pendulum benchmark.

4.3.7 Airplane

GoTube is able to falsify the specifications automatically. Figure 36 illustrates the reachable
set, the specifications as well as 25 simulations. The reachable set is only plotted until the first
violation of the specifications.

4.3.8 Attitude Control

GoTube is able to fully verify the specifications automatically. Figure 37 illustrates the reachable
set, the specifications as well as 25 simulations. The simulations were only calculated correctly
for the given time steps. Their connections (plotted in gray) are only linear interpolations. Also
the reachable set is only calculated for the given time steps.

4.3.9 Quadrotor

GoTube is able to fully verify the specifications automatically. Figure 38 illustrates the reachable
set, the specifications as well as 25 simulations.

98

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Figure 35: GoTube. Reachable set (calculated only at the given time steps) and specifications
for the Double Pendulum benchmark with the less robust (left) and the more robust (right)
controllers.

Figure 36: GoTube. Reachable set and specifications for the Airplane benchmark. The reach-
able set is only constructed for the first time step, as the set already violates the specification.

4.3.10 2D Spacecraft Docking

GoTube was not able to verify this benchmark for the full initial set. It was however possible to
construct the reachable set at every time step by using a larger tightness factor. The benchmark
could be verified automatically for an initial set with half the radius of the original initial set.
The reachable set of the original initial set is plotted in Figure 39.

4.3.11 Navigation Task

Both controllers could automatically be verified by GoTube. Figure 40 illustrates the reachable
set, the specifications as well as 25 simulations each. The simulations were only calculated cor-
rectly for the given time steps. Their connections (plotted in gray) are only linear interpolations.
Also the reachable set is only calculated for the given time steps.

99

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Figure 37: GoTube. Reachable set (calculated only at the given time steps) and specifications
for the Attitude Control benchmark.

Figure 38: GoTube. Reachable set (calculated only at the given time steps) and specifications
for the Quadrotor benchmark.

4.3.12 CartPole

GoTube is able to fully verify the specifications automatically. Figure 41 illustrates the reachable
set, the specifications as well as 25 simulations.

100

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Figure 39: GoTube. Reachable set for the Docking benchmark using the whole initial set.

Figure 40: GoTube. Reachable set (calculated only at the given time steps) and specifications
for the Navigation benchmark with the less robust (left) and the more robust (right) controllers.

101

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Figure 41: GoTube. Reachable set for the Cartpole benchmark.

102

ARCH-COMP24 AINNCS Manzanas Lopez et al.

4.4 JuliaReach

This subsection presents the results of JuliaReach. For each problem, JuliaReach uses slightly
different settings as described below. An overview of the results is given in Tab. 4.

4.4.1 ACC

Figure 42: JuliaReach. Analysis results for the ACC benchmark under the ReLU controller
(left) resp. the tanh controller (right). The plots additionally show simulations.

Using the parameters abstol=1e-3, orderT=5, orderQ=1, JuliaReach verifies the specifi-
cation in 0.8 and 0.4 s, respectively. Figure 42 shows the reach sets of Drel and Dsafe.

Table 4: JuliaReach. Overview of results: Verified (✓), falsified (✗), and unknown (?).

Benchmark Instance Result Time [s]

ACC ReLU ✓ 0.800
ACC tanh ✓ 0.420
TORA ReLU ✓ 184.330
TORA ReLUtanh ✓ 0.240
TORA sigmoid ✓ 1.320
Unicycle constant w ✓ 36.720
VCAS central acceleration h’(0) = -19.5 ✓ 0.010
VCAS central acceleration h’(0) = -22.5 ✓ 0.000
VCAS central acceleration h’(0) = -25.5 ✗ 0.000
VCAS central acceleration h’(0) = -28.5 ✗ 0.000
SinglePendulum ✓ 14.040
DoublePendulum less robust ✓ 1520.120
DoublePendulum more robust ✗ 0.980
Airplane ✗ 2.440
AttitudeControl ✓ 4.450
Quadrotor small X0 ✓ 10.410
Spacecraft small X0 ✓ 4.030
NAV robust ✓ 4.490

103

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Figure 43: JuliaReach. Analysis results for the TORA benchmark under the ReLU controller
(top), the sigmoid controller (bottom left), and the ReLU/tanh controller (bottom right), re-
spectively. The plots additionally show simulations.

4.4.2 TORA

The TORA benchmark problem has three different controllers. For the ReLU controller, the
approximation error is hard to tame for the JuliaReach approach. To maintain enough precision
for verification, the initial states are split into 4× 4× 3× 5 boxes. While each box spawns an
independent analysis that could be parallelized, the sequential verification took 184 s. We use
the parameters abstol=3e-2, orderT=3, orderQ=1. Figure 43 shows the reach sets of all 240
runs, projected to x1/x2 and x3/x4, respectively.

For the sigmoid and ReLU/tanh controllers, we do not require to split the initial states
and use the parameter abstol=2e-2 instead. The specifications are verified in 1.3 s and 0.2 s,
respectively. Figure 43 shows the reach sets, projected to x1/x2.

4.4.3 Unicycle

Wemodel the disturbance w as a constant with an uncertain initial value. Simulations show that
the target set is reached only at the last moment, so the analysis requires high precision to prove
containment of the last reach set. Using the parameters abstol=1e-1, orderT=3, orderQ=1

and splitting the initial states into 3× 1× 7× 1 boxes, JuliaReach verifies the specification in
37 s. Figure 44 shows the reach sets of all 21 runs, projected to x1/x2 and x3/x4, respectively.
JuliaReach can evaluate the Taylor polynomial at the time point t = 10 (rather than the last
time interval), which results in a more precise result (as shown in the plots).

104

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Figure 44: JuliaReach. Analysis results for the Unicycle benchmark. The orange subset of
the last reach set is obtained at time point t = 10. The first plot additionally shows simulations.

Figure 45: JuliaReach. Analysis results for the VerticalCAS benchmark.

4.4.4 VerticalCAS

The VerticalCAS benchmark problem differs from the other problems in that it uses multiple
controllers and discrete time. There is currently no native support for this setting in JuliaReach;
instead, we used a custom algorithm that always chooses the central acceleration. JuliaReach
achieves the following results for the different initial values ḣ(0). ḣ(0) = −19.5: verified in
0.01 s; ḣ(0) = −22.5: verified in 0.001 s; ḣ(0) = −25.5: falsified in 0.0005 s; ḣ(0) = −28.5:
falsified in 0.0005 s; Figure 45 shows the vertical distances over time.

4.4.5 Single Pendulum

Using the parameters abstol=1e-9, orderT=5, orderQ=1, and splitting the initial states into
3× 4 non-uniform boxes, JuliaReach verifies the new specification in 14 s. Figure 46 shows the
reach sets projected to time and θ.

4.4.6 Double Pendulum

For the less robust controller, using the parameters abstol=1e-9, orderT=5, orderQ=1 and
splitting the initial states into 2× 2× 3× 6 boxes, JuliaReach verifies the new specification in
25 minutes. Figure 47 shows the reach sets of all 72 runs, projected to θ1/θ2 resp. θ̇1/θ̇2.

105

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Figure 46: JuliaReach. Analysis results for the Single Pendulum benchmark. The plot
additionally shows simulations.

Figure 47: JuliaReach. Analysis results for the Double Pendulum benchmark under the less
robust controller (top) and the more robust controller (bottom). The plots additionally show
simulations.

The more robust controller violates the specification; hence it suffices to start the analysis
from a subset of the initial states and interrupt when a violation is detected. When starting from
the highest value in each dimension, a violation occurs within eighteen control periods. Using
the parameters abstol=1e-2, orderT=3, orderQ=1, JuliaReach falsifies the specification in
1 s. Figure 47 shows the simulation with a validated reach set around, projected to θ̇1/θ̇2.

106

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Figure 48: JuliaReach. Analysis results for the Airplane benchmark until time t = 0.7. The
plot additionally shows a simulation.

Figure 49: JuliaReach. Analysis results for the Attitude Control benchmark. The plot
additionally shows simulations.

4.4.7 Airplane

This system violates the specification. When starting from the highest coordinate in each di-
mension, a violation occurs within seven control periods in dimension sy. Using the parameters
abstol=2e-2, orderT=3, orderQ=1, JuliaReach falsifies the specification in 2.4 s. Figure 48
shows the simulation with a validated reach set around, projected to y/ϕ.

4.4.8 Attitude Control

Using the parameters abstol=1e-4, orderT=5, orderQ=1, JuliaReach verifies the specifica-
tion in 4.5 s. Figure 49 shows the reach sets projected to ω1/ω2.

4.4.9 Quadrotor

Although simulations indicate that the controller is safe, the precision of JuliaReach is
not high enough to prove it. The specification can be proven for a smaller initial set
[−0.004, 0.004]6×{0}6. Using the parameters abstol=1e-1, orderT=3, orderQ=1, JuliaReach
verifies the specification in 10 s. Figure 50 shows the reach sets, projected to x3 over time.

107

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Figure 50: JuliaReach. Analysis results for the Quadrotor benchmark. The plot additionally
shows a simulation.

Figure 51: JuliaReach. Analysis results for the 2D Spacecraft Docking benchmark. The plot
additionally shows simulations.

4.4.10 2D Spacecraft Docking

Although simulations indicate that the controller is safe, the precision of JuliaReach is not
high enough to prove it. The specification can be proven for a smaller initial set [70, 106]2 ×
[−0.14, 0.14]2. Using the parameters abstol=5e-1, orderT=3, orderQ=1, JuliaReach verifies
the specification in 4 s. Figure 51 shows the reach sets, projected to x1 over time. Since the
specification is four-dimensional, it cannot be illustrated in the plot.

4.4.11 NAV

JuliaReach cannot verify the standard controller. For the robust controller, using the pa-
rameters abstol=1e-3, orderT=3, orderQ=1, JuliaReach verifies the specification in 4.5 s.
Figure 52 shows the reach sets projected to x1/x2.

108

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Figure 52: JuliaReach. Analysis results for the NAV benchmark (robust controller). The plot
additionally shows simulations.

4.5 NNV

This subsection presents the results of JuliaReach. For each problem, NNV uses slightly different
settings, which can be found in the repeatability repository. An overview of the results is given
in Tab. 5.

Table 5: NNV. Overview of results: Verified (✓), falsified (✗), and unknown (?).

Benchmark Instance Result Time [s]

ACC safety ✓ 25.000
Airplane continuous ✗ 8.270
AttitudeControl avoid ? 0.000
Cartpole reach ? 0.000
Docking constraint ? 0.000
DoublePendulum more robust ? 0.000
DoublePendulum less robust ? 0.000
NAV standard ? 0.000
NAV robust ✓ 1903.240
QUAD reach ? 0.000
SinglePendulum reach ✓ 471.310
TORA remain ✓ 19.590
TORA reach-tanh ✓ 282.020
TORA reach-sigmoid ✓ 410.500
Unicycle reach ? 0.000
VCAS middle19 ✓ 3.470
VCAS middle22 ✓ 3.420
VCAS middle25 ✗ 2.840
VCAS middle28 ✗ 3.380
VCAS worst19 ✓ 2.720
VCAS worst22 ✗ 3.430
VCAS worst25 ✗ 3.370
VCAS worst28 ✗ 3.220

109

ARCH-COMP24 AINNCS Manzanas Lopez et al.

4.5.1 ACC

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

40

50

60

70

80

90

100

110

D
is

ta
nc

e
(m

)

Figure 53: NNV. Safety analysis results for the ACC benchmark. Distance between cars (Drel)
is depicted against the safety distance (Dsafe).

NNV successfully verifies the safety property Drel ≥ Dsafe. The results are depicted in
Figure 53, which shows the reach sets of Drel and Dsafe.

4.5.2 TORA

NNV is able to verify all three controllers for the TORA benchmark. NNV partitions the
initial sets of the specifications corresponding to the ReLU-tanh and sigmoid controllers, into
4×8×6×4, and 4×4×6×4, respectively. The reach sets are shown in Figure 54.

4.5.3 VerticalCAS

NNV successfully verifies the NMAC safety property for the whole time horizon for each of the
cases. There are 5 cases where we prove that the system is unsafe and 3 where the system is
safe, which corresponds to [middle, 19.5], [middle, 22.5], and [worst, 19.5]. These results are
depicted in Figures 55 and 56.

4.5.4 Single Pendulum

For the single pendulum, NNV successfully verifies the benchmark after partitioning the input
set into 35×40 regions. The reach sets are depicted in Figure 57.

4.5.5 Airplane

NNV is able to show that the property is violated by computing the reach sets from a smaller
initial region. The results are depicted in Figure 58.

4.5.6 NAV

By partitioning the input set, NNV is able to verify the safety (avoid obstacle) and reach (green
goal region) properties of the robust controller, but not of the standard one. The results are
depicted in Figure 59.

110

ARCH-COMP24 AINNCS Manzanas Lopez et al.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

x1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x2

-0.1 -0.05 0 0.05 0.1 0.15 0.2

x1

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

x2

-0.1 -0.05 0 0.05 0.1 0.15 0.2

x1

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

x2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x4

Figure 54: NNV. Analysis results for the Tora benchmark showing the TORA sets in blue
and the goal region in green. The left figures correspond to the sigmoid controller, the middle
two to the ReLU-tanh controller, and the two on the right to the ReLU controller. For the
sigmoid and ReLU-tanh controllers only the reach sets at every control period are shown in the
top row. The corresponding zoomed-in pictures of the goal region are depicted in the bottom
row.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-300

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-350

-300

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-300

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

Figure 55: NNV. Analysis results for the VerticalCAS benchmark, showing the aircraft sets in
blue and the unsafe region in red, when selecting the middle acceleration value at each control
period

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-300

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

Figure 56: NNV. Analysis results for the VerticalCAS benchmark, showing the aircraft sets in
blue and the unsafe region in red, when selecting the worst possible acceleration value at each
control period.

111

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Figure 57: NNV. Analysis results for the single pendulum benchmark showing the sets in blue
and the unsafe region in red.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x
2

-1

-0.5

0

0.5

1

1.5

x 7

-0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04

x
2

0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01
x 7

Figure 58: NNV. Analysis results for the airplane benchmark, showing the reach sets in blue
and the goal region in green.

(a) Robust Controller (V) (b) Standard Controller (?)

Figure 59: NNV. Analysis results for the NAV benchmark.

112

ARCH-COMP24 AINNCS Manzanas Lopez et al.

5 Category Status and Challenges

Year-over-year comparison. We have observed an immense improvement in the area in the
6 years the competition has been hosted. In 2019, when the competition began, there were only
5 benchmarks, out of which the 3 participants were only able to verify an average of less than
2 benchmarks per tool – including the 2 instances where the controller was modified (ReLU vs
tanh) to be supported by one of the tools. Over the next few years (2020-2023), there were
a total of 8 different tools that participated in the competition, increasing the complexity of
the benchmarks along with the quality improvement of the participating tools. Continuing this
trend, this year presented the largest community interest, with 5 tools participating, including
2 newcomers. The results, although not directly comparable to last year’s as some existing
benchmarks were modified to make them more challenging, demonstrate the lengths the field
is growing.

Automatic evaluation. For the second year in a row, we run all tools on the same hard-
ware using docker images for further comparison, using the platform introduced in the 2023
competition. The docker images allow an automatic evaluation of the tools on the submission
server, thus, giving researchers immediate feedback on the results of their submission. Run-
ning all tools on the same hardware helps to compare the computation time between the tools,
however, one has to factor in the efficiency of the programming language of the tools. We can
objectively compare computation results and evaluate the improvements made by the tools in
this aspect. We observed improvements by up to 1 order of magnitude in computation time
in some benchmarks for both JuliaReach and NNV. The submission server specifications are
given in Appendix A. In future iterations, we plan to further automate the competition by
automatically generating the results section, including tables and figures for all participants.

“Out of the box” comparison. As the community grows and improves, more and more
tools are developed. However, as described in this report, many of them require manual tuning
of hyperparameters for an optimal computation of the benchmarks. In the future, we would like
to add a comparison where participants are not allowed to tune their hyperparameters, provided
with unseen benchmarks/specifications, to get a better understanding on the user-friendliness
of the tools, as well as on the automated verification capabilities of these.

Statistical approaches. For the first time in the competition, a statistical verification tool
has participated: GoTube. The results obtained by this tool are impressive, but the comparison
to the sound approaches (all other 4 tools) may not be fair, as GoTube can only ascertain that a
benchmark is verified up to a pre-determined percentage (confidence level). In this competition,
GoTube uses a confidence level of 90%.

New benchmarks. This year’s competition has introduced 2 new benchmarks: NAV and
CartPole. The first one demonstrates that that neural networks obtained via adversarial train-
ing (more robust controller or set-trained instance) help to ease the verification process, in
comparison with the standard or less robust controller, which utilized standard RL training
procedures. The latter one demonstrated the challenges that a frequent control step presents,
as only GoTube was able to verify it.

113

ARCH-COMP24 AINNCS Manzanas Lopez et al.

Activation Function Types (controllers): For this year’s set of benchmarks, all neural
network controllers contain one or more of the following activation functions: ReLU, linear,
sigmoid, and tanh. The tools have support for the types: linear, piecewise linear (ReLU), and
nonlinear activation functions. In the future, we will consider adding other variations of the
existing activation functions, such as LeakyReLU or PReLU.

Plant Models: This and last year’s competition have considered linear and nonlinear plants,
both in discrete and continuous time. In future iterations, we plan to add hybrid automata
plants as we look to report a more complete analysis of the participating verification tools.
Hybrid automata plants will be especially interesting because combined continuous and discrete
dynamics are complex, which is very challenging for current AINNCS verification tools. We
will also consider adding neural ODEs as in [53], which will also increase the complexity of the
benchmarks and may require a more general encoding of NNCS by most participating tools to
verify them.

Neural Network Architectures and Parameterization: The neural network architec-
tures presented in this work are fairly simple. Similar to last year, they have no more than a
thousand neurons and no more than 5 hidden layers in their architecture, unlike some of the
networks that can be analyzed without the plant. Also, the maximum number of inputs and
outputs of the controllers are 12 and 6, respectively, both in the airplane benchmark. Consid-
ering the VCAS benchmark, these networks have 9 outputs, although these are translated into
a single input to the plant model. However, for some benchmarks, there are still state-space
explosion and scalability issues to address in both the neural network controllers and plant
analysis. These issues could come from the repeated interaction between the network and the
states, as we can observe the CartPole benchmark being challenging for most tools. The high
frequency of the control steps may lead to an increased conservativeness of the approaches,
preventing most tools from successfully analyzing the benchmark.

Model Formats: Following previous iterations, we have found it more useful and convenient
to simply share the plant models in a plain format, such as MATLAB functions, where the
participants could easily extract the ODEs. As for the neural network models, we provide
them in the ONNX format5, .mat format6, and the original format used by the proposer of
the benchmark. A few years ago, we began providing the neural network controllers in the
ONNX format, as it was very convenient to have a standard exchange format that most of the
participating tools supported. However, we have found that there are still discrepancies among
the different versions and frameworks these ONNX models were created from (e.g., different
input/output transformations are not always supported by every framework as experienced on
the Docking spacecraft benchmark). Thus, having a standard format easily imported by all
participants without local modifications, such as a unified ONNX version, remains a challenge.
Initiatives more focused on neural network verification, such as VNN-LIB7 and VNN-COMP8,
may help toward this goal. In the future, we will consider other options to improve specification

5Open Neural Network Exchange: https://github.com/onnx/onnx
6Direct input format used by NNV without transformation.
7http://www.vnnlib.org/
8https://github.com/verivital/vnncomp2024

114

https://github.com/onnx/onnx
http://www.vnnlib.org/
https://github.com/verivital/vnncomp2024

ARCH-COMP24 AINNCS Manzanas Lopez et al.

description for benchmarks, as a plain text file is now being used. The creation of a standard
format like VNNLIB for AINNCS may help formalize the benchmarks, clearly specifying the
input set as well as the AINNCS property (safety, reach, avoid, etc), hopefully lowering the
entry barrier for new tools.

6 Conclusion and Outlook

This report presents the results of the sixth ARCH friendly competition for closed-loop systems
with neural network controllers. For this edition, five tools have participated and attempted to
solve 12 benchmarks: CORA, CROWN-Reach, GoTube, JuliaReach, and NNV. The problems
elucidated in this paper are challenging and diverse; the presented results probably provide the
most complete assessment of current tools for the safety verification in AINNCS. The report
provides a good overview of the intellectual progression of this rapidly growing field, and it is our
hope to stimulate the development of efficient and effective methods capable of use in real-world
applications. Since its inception, the complexity of the benchmarks has consistently increased
along with the capabilities of the participant tools, leading to the most challenging competition
and the best verification results thus far, which is a good indicator for this growing and maturing
field. This has been achieved thanks to the continuous development and improvements in
existing formal verification frameworks, including CORA, JuliaReach, and NNV, and new ones
such as CROWN-Reach and GoTube We would also like to encourage other tool developers
to consider participating next year, as well as new benchmark proposals are highly welcome.
Authors agree that although participation consumes time, we have gained unique insights that
have allowed us to improve in each iteration and will allow us to improve in the future, as
demonstrated by the yearly improvements by repeating participants. Finally, as we continue to
reuse and build upon previous participations, we encourage anyone interested to begin analyzing
the benchmarks presented in this iteration, available at: https://github.com/verivital/ARCH-
COMP2024. The reports of other categories can be found in the proceedings and on the ARCH
website: cps-vo.org/group/ARCH.

7 Acknowledgments

The material presented in this paper is based upon work supported by the National Science
Foundation (NSF) through grant numbers 1910017, 2028001, 2220418, 2220426, 2220401, and
2331967 the Defense Advanced Research Projects Agency (DARPA) under contract numbers
FA8750-23 C-0518 and FA8750-18-C-0089, and the Air Force Office of Scientific Research
(AFOSR) under contract number FA9550-22-1-0019 and FA9550-23-1-0135. Luis Benet ac-
knowledges support from PAPIIT-UNAM project IG-101122. Christian Schilling acknowledges
support from the Independent Research Fund Denmark under reference number 10.46540/3120-
00041B, DIREC - Digital Research Centre Denmark under reference number 9142-0001B,
and the Villum Investigator Grant S4OS under reference number 37819. Tobias Ladner and
Matthias Althoff gratefully acknowledge financial support from the project FAI funded by the
German Research Foundation (DFG) under project number 286525601. Xiangru Zhong and
Huan Zhang acknowledge the support from the AI2050 program at Schmidt Sciences (Grant
#G-23-65921).

115

https://github.com/verivital/ARCH-COMP2024
https://github.com/verivital/ARCH-COMP2024
http://cps-vo.org/group/ARCH

ARCH-COMP24 AINNCS Manzanas Lopez et al.

A Specification of Used Machines

This year, we run all tools on the same hardware using tool-specific docker images. The spec-
ifications for the server used for the evaluation are given below. For details on the submission
system, we refer to the repeatability report of this year’s ARCH competition [44].

• Processor: AMD EPYC 7742 64-Core

• Memory: 995 GB

• OS: Ubuntu 22.04

• Docker: 20.10.21

References

[1] Michael E. Akintunde, Elena Botoeva, Panagiotis Kouvaros, and Alessio Lomuscio. Formal verifi-
cation of neural agents in non-deterministic environments. In Proceedings of the 19th International
Conference on Autonomous Agents and Multiagent Systems, AAMAS, pages 25–33, 2020.

[2] M. Althoff. An introduction to CORA 2015. In Proc. of the Workshop on Applied Verification for
Continuous and Hybrid Systems, pages 120–151, 2015.

[3] M. Althoff and D. Grebenyuk. Implementation of interval arithmetic in CORA 2016. In Proc.
of the 3rd International Workshop on Applied Verification for Continuous and Hybrid Systems,
pages 91–105, 2016.

[4] M. Althoff, D. Grebenyuk, and N. Kochdumper. Implementation of Taylor models in CORA
2018. In Proc. of the 5th International Workshop on Applied Verification for Continuous and
Hybrid Systems, 2018.

[5] M. Althoff, M. Koschi, and S. Manzinger. CommonRoad: Composable benchmarks for motion
planning on roads. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 719–726, 2017.

[6] S. Bak, S. Bogomolov, T. A. Henzinger, T. T. Johnson, and P. Prakash. Scalable static hybridiza-
tion methods for analysis of nonlinear systems. In Proc. of the 19th ACM International Conference
on Hybrid Systems: Computation and Control, pages 155–164, 2016.

[7] Stanley Bak. nnenum: Verification of relu neural networks with optimized abstraction refinement.
In NASA Formal Methods Symposium, pages 19–36. Springer, 2021.

[8] Stanley Bak, Sergiy Bogomolov, and Taylor T. Johnson. Hyst: A source transformation and
translation tool for hybrid automaton models. In Proceedings of the 18th International Conference
on Hybrid Systems: Computation and Control, HSCC ’15, pages 128–133, New York, NY, USA,
2015. ACM.

[9] Stanley Bak, Changliu Liu, and Taylor Johnson. The second international verification of neural
networks competition (vnn-comp 2021): Summary and results. 2021.

[10] Randal W. Beard. Quadrotor dynamics and control. Technical report, 2008.

[11] Luis Benet, Marcelo Forets, David P. Sanders, and Christian Schilling. TaylorModels.jl: Taylor
models in Julia and its application to validated solutions of ODEs. In SWIM, 2019.

[12] Luis Benet and David P. Sanders. TaylorSeries.jl: Taylor expansions in one and several variables
in Julia. Journal of Open Source Software, 4(36):1043, 2019.

[13] Luis Benet and David P. Sanders. JuliaDiff/TaylorSeries.jl. https://github.com/JuliaDiff/

TaylorSeries.jl, 2021.

[14] Luis Benet and David P. Sanders. JuliaIntervals/TaylorModels.jl. https://github.com/

JuliaIntervals/TaylorModels.jl, 2021.

116

https://github.com/JuliaDiff/TaylorSeries.jl
https://github.com/JuliaDiff/TaylorSeries.jl
https://github.com/JuliaIntervals/TaylorModels.jl
https://github.com/JuliaIntervals/TaylorModels.jl

ARCH-COMP24 AINNCS Manzanas Lopez et al.

[15] Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin, and Christian Schilling.
JuliaReach: a toolbox for set-based reachability. In HSCC, pages 39–44. ACM, 2019.

[16] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for non-linear
hybrid systems. In Computer Aided Verification: 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings 25, pages 258–263. Springer, 2013.

[17] Arthur Clavière, Eric Asselin, Christophe Garion, and Claire Pagetti. Safety verification of neu-
ral network controlled systems. In 2021 51st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W), pages 47–54, 2021.

[18] W. H. CLOHESSY and R. S. WILTSHIRE. Terminal guidance system for satellite rendezvous.
Journal of the Aerospace Sciences, 27(9):653–658, 1960.

[19] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan. Reachability analysis for neural
feedback systems using regressive polynomial rule inference. In Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control, HSCC 2019, Montreal,
QC, Canada, April 16-18, 2019., pages 157–168, 2019.

[20] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Learning and ver-
ification of feedback control systems using feedforward neural networks. IFAC-PapersOnLine,
51(16):151 – 156, 2018. 6th IFAC Conference on Analysis and Design of Hybrid Systems ADHS
2018.

[21] Michael Everett, Golnaz Habibi, and Jonathan P. How. Efficient reachability analysis of closed-
loop systems with neural network controllers. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 4384–4390, 2021.

[22] Jiameng Fan, Chao Huang, Wenchao Li, Xin Chen, and Qi Zhu. ReachNN*: A tool for reacha-
bility analysis ofneural-network controlled systems. In to appear on International Symposium on
Automated Technology for Verification and Analysis (ATVA), 2020.

[23] James Ferlez, Haitham Khedr, and Yasser Shoukry. Fast BATLLNN: fast box analysis of two-
level lattice neural networks. In Ezio Bartocci and Sylvie Putot, editors, HSCC ’22: 25th ACM
International Conference on Hybrid Systems: Computation and Control, Milan, Italy, May 4 - 6,
2022, pages 23:1–23:11. ACM, 2022.

[24] Marc Fischer, Christian Sprecher, Dimitar Iliev Dimitrov, Gagandeep Singh, and Martin Vechev.
Shared certificates for neural network verification. In Sharon Shoham and Yakir Vizel, editors,
Computer Aided Verification, pages 127–148, Cham, 2022. Springer International Publishing.

[25] Razvan V Florian. Correct equations for the dynamics of the cart-pole system. Center for Cognitive
and Neural Studies (Coneural), Romania, page 63, 2007.

[26] Marcelo Forets and Christian Schilling. LazySets.jl: Scalable symbolic-numeric set computations.
Proceedings of the JuliaCon Conferences, 1(1):11, 2021.

[27] Marcelo Forets and Christian Schilling. The inverse problem for neural networks. In AISoLA,
volume 14380 of LNCS, pages 241–255. Springer, 2023.

[28] Eric Goubault and Sylvie Putot. Rino: Robust inner and outer approximated reachability of neu-
ral networks controlled systems. In Sharon Shoham and Yakir Vizel, editors, Computer Aided
Verification, pages 511–523, Cham, 2022. Springer International Publishing.

[29] Sophie Gruenbacher, Ramin Hasani, Mathias Lechner, Jacek Cyranka, Scott A. Smolka, and Radu
Grosu. On the verification of neural odes with stochastic guarantees. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 11525–11535, 2021.

[30] Sophie A. Gruenbacher, Mathias Lechner, Ramin Hasani, Daniela Rus, Thomas A. Henzinger,
Scott A. Smolka, and Radu Grosu. Gotube: Scalable statistical verification of continuous-depth
models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 6755–
6764, 2022.

[31] G. W. Hill. Researches in the lunar theory. American Journal of Mathematics, 1(1):5–26, 1878.

117

ARCH-COMP24 AINNCS Manzanas Lopez et al.

[32] Chao Huang, Jiameng Fan, Xin Chen, Wenchao Li, and Qi Zhu. POLAR: A polynomial arith-
metic framework for verifying neural-network controlled systems. In To appear on International
Symposium on Automated Technology for Verification and Analysis (ATVA), 2022.

[33] Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee. Verisig: verifying
safety properties of hybrid systems with neural network controllers. CoRR, abs/1811.01828, 2018.

[34] M. Jankovic, D. Fontaine, and P. V. Kokotovic. Tora example: cascade- and passivity-based
control designs. IEEE Transactions on Control Systems Technology, 4(3):292–297, May 1996.

[35] Taylor T. Johnson, Diego Manzanas Lopez, Luis Benet, Marcelo Forets, Sebasti\’an Guadalupe,
Christian Schilling, Radoslav Ivanov, Taylor J. Carpenter, James Weimer, and Insup Lee. ARCH-
COMP21 category report: Artificial intelligence and neural network control systems (AINNCS)
for continuous and hybrid systems plants. In Goran Frehse and Matthias Althoff, editors, 8th
International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH21),
volume 80 of EPiC Series in Computing, pages 90–119. EasyChair, 2021.

[36] Taylor T Johnson, Diego Manzanas Lopez, Patrick Musau, Hoang-Dung Tran, Elena Botoeva,
Francesco Leofante, Amir Maleki, Chelsea Sidrane, Jiameng Fan, and Chao Huang. Arch-comp20
category report: Artificial intelligence and neural network control systems (ainncs) for continuous
and hybrid systems plants. In Goran Frehse and Matthias Althoff, editors, ARCH20. 7th Interna-
tional Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH20), volume 74
of EPiC Series in Computing, pages 107–139. EasyChair, 2020.

[37] K. D. Julian and M. J. Kochenderfer. A reachability method for verifying dynamical systems with
deep neural network controllers. CoRR, abs/1903.00520, 2019.

[38] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In Rupak Majumdar and Viktor Kunčak,
editors, Computer Aided Verification, pages 97–117, Cham, 2017. Springer International Publish-
ing.

[39] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth
Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, David L. Dill, Mykel J. Kochenderfer, and
Clark Barrett. The marabou framework for verification and analysis of deep neural networks. In
Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification, pages 443–452, Cham, 2019.
Springer International Publishing.

[40] Niklas Kochdumper and Matthias Althoff. Sparse polynomial zonotopes: A novel set representa-
tion for reachability analysis. IEEE Transactions on Automatic Control, 66(9):4043–4058, 2020.

[41] Niklas Kochdumper, Christian Schilling, Matthias Althoff, and Stanley Bak. Open-and closed-loop
neural network verification using polynomial zonotopes. In NASA Formal Methods Symposium,
pages 16–36. Springer, 2023.

[42] Lukas Koller, Tobias Ladner, and Matthias Althoff. End-to-end set-based training for neural
network verification. arXiv preprint arXiv:2401.14961, 2024.

[43] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
CoRR, abs/1607.02533, 2016.

[44] Tobias Ladner. ARCH-COMP24 repeatability evaluation report. 2024.

[45] Tobias Ladner and Matthias Althoff. Automatic abstraction refinement in neural network verifi-
cation using sensitivity analysis. HSCC’23: Proceedings of the 26th International Conference on
Hybrid Systems: Computation and Control, 2023.

[46] Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark Barrett, and Mykel J.
Kochenderfer. Algorithms for verifying deep neural networks. Foundations and Trends in Opti-
mization, 4(3-4):244–404, 2021.

118

ARCH-COMP24 AINNCS Manzanas Lopez et al.

[47] Diego Manzanas Lopez, Matthias Althoff, Luis Benet, Xin Chen, Jiameng Fan, Marcelo Forets,
Chao Huang, Taylor T Johnson, Tobias Ladner, Wenchao Li, Christian Schilling, and Qi Zhu.
ARCH-COMP22 category report: Artificial intelligence and neural network control systems (AIN-
NCS) for continuous and hybrid systems plants. In Goran Frehse, Matthias Althoff, Erwin
Schoitsch, and Jeremie Guiochet, editors, Proceedings of 9th International Workshop on Applied
Verification of Continuous and Hybrid Systems (ARCH22), volume 90 of EPiC Series in Comput-
ing, pages 142–184. EasyChair, 2022.

[48] Diego Manzanas Lopez, Matthias Althoff, Marcelo Forets, Taylor T. Johnson, Tobias Ladner,
and Christian Schilling. ARCH-COMP23 category report: Artificial intelligence and neural net-
work control systems (AINNCS) for continuous and hybrid systems plants. In Goran Frehse and
Matthias Althoff, editors, 10th International Workshop on Applied Verification of Continuous and
Hybrid Systems (ARCH23), EPiC Series in Computing, pages 89–125. EasyChair, 2023.

[49] Diego Manzanas Lopez, Sung Woo Choi, Hoang-Dung Tran, and Taylor T. Johnson. NNV 2.0: The
neural network verification tool. In 35th International Conference on Computer-Aided Verification
(CAV), July 2023.

[50] Diego Manzanas Lopez, Patrick Musau, Hoang-Dung Tran, Souradeep Dutta, Taylor J. Carpen-
ter, Radoslav Ivanov, and Taylor T. Johnson. Arch-comp19 category report: Artificial intelligence
and neural network control systems (ainncs) for continuous and hybrid systems plants. In Goran
Frehse and Matthias Althoff, editors, ARCH19. 6th International Workshop on Applied Verifica-
tion of Continuous and Hybrid Systems, volume 61 of EPiC Series in Computing, pages 103–119.
EasyChair, 2019.

[51] Amir Maleki and Chelsea Sindrane. Benchmark examples for ainncs-2020, 2020.

[52] Diego Manzanas Lopez, Taylor T. Johnson, Stanley Bak, Hoang-Dung Tran, and Kerianne L.
Hobbs. Evaluation of neural network verification methods for air-to-air collision avoidance. Journal
of Air Transportation, 31(1):1–17, 2023.

[53] Diego Manzanas Lopez, Patrick Musau, Nathaniel Hamilton, and Taylor Johnson. Reachability
analysis of a general class of neural ordinary differential equation. In Proceedings of the 20th
International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS 2022),
Co-Located with CONCUR, FMICS, and QEST as part of CONFEST 2022., Warsaw, Poland,
September 2022.

[54] MathWorks. Adaptive Cruise Control System block. https://www.mathworks.com/help/mpc/

ref/adaptivecruisecontrolsystem.html, 2018.

[55] Mark Niklas Müller, Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The
third international verification of neural networks competition (vnn-comp 2022): Summary and
results, 2022.

[56] K. S. Narendra and K. Parthasarathy. Identification and control of dynamical systems using neural
networks. IEEE Transactions on Neural Networks, 1(1):4–27, March 1990.

[57] Jorge A. Pérez-Hernández and Luis Benet. PerezHz/TaylorIntegration.jl. https://github.com/

PerezHz/TaylorIntegration.jl, 2021.

[58] S. Prajna, P.A. Parrilo, and A. Rantzer. Nonlinear control synthesis by convex optimization.
volume 49, pages 310–314, 2004.

[59] S. Joe Qin and Thomas A. Badgwell. An overview of nonlinear model predictive control appli-
cations. In Frank Allgöwer and Alex Zheng, editors, Nonlinear Model Predictive Control, pages
369–392, Basel, 2000. Birkhäuser Basel.

[60] Umberto J. Ravaioli, James Cunningham, John McCarroll, Vardaan Gangal, Kyle Dunlap, and
Kerianne L. Hobbs. Safe reinforcement learning benchmark environments for aerospace control
systems. In 2022 IEEE Aerospace Conference (AERO), pages 1–20, 2022.

119

https://www.mathworks.com/help/mpc/ref/adaptivecruisecontrolsystem.html
https://www.mathworks.com/help/mpc/ref/adaptivecruisecontrolsystem.html
https://github.com/PerezHz/TaylorIntegration.jl
https://github.com/PerezHz/TaylorIntegration.jl

ARCH-COMP24 AINNCS Manzanas Lopez et al.

[61] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F.
Frangi, editors, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015,
pages 234–241, Cham, 2015. Springer International Publishing.

[62] Stuart Russell, Daniel Dewey, and Max Tegmark. Research Priorities for Robust and Beneficial
Artificial Intelligence. AI Magazine, 36(4):105, 2015.

[63] Christian Schilling, Marcelo Forets, and Sebastián Guadalupe. Verification of neural-network
control systems by integrating Taylor models and zonotopes. In AAAI, pages 8169–8177. AAAI
Press, 2022.

[64] Zhouxing Shi, Qirui Jin, J Zico Kolter, Suman Jana, Cho-Jui Hsieh, and Huan Zhang. Formal
verification for neural networks with general nonlinearities via branch-and-bound. 2nd Workshop
on Formal Verification and Machine Learning, 2023.

[65] Malcolm D. Shuster. Survey of attitude representations. Journal of the Astronautical Sciences,
41(4):439–517, October 1993.

[66] Chelsea Sidrane and Mykel J. Kochenderfer. OVERT: Verification of nonlinear dynamical systems
with neural network controllers via overapproximation. Safe Machine Learning workshop at ICLR,
2019.

[67] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin T. Vechev. Fast
and effective robustness certification. In NeurIPS, pages 10825–10836, 2018.

[68] Peter Stone, Rodney Brooks, Erik Brynjolfsson, Ryan Calo, Oren Etzioni, Greg Hager, Ju-
lia Hirschberg, Shivaram Kalyanakrishnan, Ece Kamar, Kevin Leyton-Brown, David C. Parkes,
William Press, AnnaLee Saxenian, Julie Shah, Milind Tambe, and Astro Teller. ”artificial intelli-
gence and life in 2030.” one hundred year study on artificial intelligence: Report of the 2015-2016
study panel, 2016.

[69] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. CoRR, abs/1312.6199, 2013.

[70] Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T. Johnson. Verification of deep
convolutional neural networks using imagestars. In 32nd International Conference on Computer-
Aided Verification (CAV). Springer, July 2020.

[71] Hoang-Dung Tran, Feiyang Cai, Manzanas Lopez Diego, Patrick Musau, Taylor T. Johnson, and
Xenofon Koutsoukos. Safety verification of cyber-physical systems with reinforcement learning
control. ACM Trans. Embed. Comput. Syst., 18(5s), October 2019.

[72] Hoang Dung Tran, SungWoo Choi, Tomoya Yamaguchi, Bardh Hoxha, and Danil Prokhorov.
Verification of recurrent neural networks using star reachability. In The 26th ACM International
Conference on Hybrid Systems: Computation and Control (HSCC), May 2023.

[73] Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet Nguyen,
Weiming Xiang, and Taylor T. Johnson. Star-based reachability analysis of deep neural networks.
In Maurice H. ter Beek, Annabelle McIver, and José N. Oliveira, editors, Formal Methods – The
Next 30 Years, pages 670–686. Springer International Publishing, 2019.

[74] Hoang-Dung Tran, Neelanjana Pal, Patrick Musau, Xiaodong Yang, Nathaniel P. Hamilton,
Diego Manzanas Lopez, Stanley Bak, and Taylor T. Johnson. Robustness verification of seman-
tic segmentation neural networks using relaxed reachability. In 33rd International Conference on
Computer-Aided Verification (CAV). Springer, July 2021.

[75] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen,
Weiming Xiang, Stanley Bak, and Taylor T. Johnson. NNV: The neural network verification
tool for deep neural networks and learning-enabled cyber-physical systems. In 32nd International
Conference on Computer-Aided Verification (CAV), July 2020.

[76] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
Beta-CROWN: Efficient bound propagation with per-neuron split constraints for complete and
incomplete neural network verification. Advances in Neural Information Processing Systems, 2021.

120

ARCH-COMP24 AINNCS Manzanas Lopez et al.

[77] Manuel Wendl, Lukas Koller, Tobias Ladner, and Matthias Althoff. Training verifiably robust
agents using set-based reinforcement learning. arXiv preprint, 2024.

[78] Weiming Xiang, Patrick Musau, Ayana A. Wild, Diego Manzanas Lopez, Nathaniel Hamilton,
Xiaodong Yang, Joel A. Rosenfeld, and Taylor T. Johnson. Verification for machine learning,
autonomy, and neural networks survey. CoRR, abs/1810.01989, 2018.

[79] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic perturbation analysis for scalable certified
robustness and beyond. Advances in Neural Information Processing Systems, 33:1129–1141, 2020.

[80] Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verification with rapid and massively parallel
incomplete verifiers. In International Conference on Learning Representations, 2020.

[81] Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico
Kolter. General cutting planes for bound-propagation-based neural network verification. Advances
in Neural Information Processing Systems, 2022.

[82] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. Advances in neural information
processing systems, 31, 2018.

121

	1 Introduction
	2 Participating Tools
	3 Benchmarks
	3.1 Adaptive Cruise Controller (ACC)
	3.2 TORA
	3.3 Unicycle
	3.4 VerticalCAS
	3.5 Single Pendulum
	3.6 Double Pendulum
	3.7 Airplane
	3.8 Attitude Control
	3.9 Quadrotor
	3.10 2D Spacecraft Docking
	3.11 Navigation Task
	3.12 CartPole

	4 Verification Results
	4.1 CORA
	4.1.1 ACC
	4.1.2 TORA
	4.1.3 Unicycle
	4.1.4 VCAS
	4.1.5 Single Pendulum
	4.1.6 Double Pendulum
	4.1.7 Airplane
	4.1.8 Attitude Control
	4.1.9 Quadrotor
	4.1.10 2D Spacecraft Docking
	4.1.11 Navigation Task
	4.1.12 CartPole

	4.2 CROWN-Reach
	4.2.1 ACC
	4.2.2 TORA
	4.2.3 Unicycle
	4.2.4 VerticalCAS
	4.2.5 Single Pendulum
	4.2.6 Double Pendulum
	4.2.7 Airplane
	4.2.8 Attitude Control
	4.2.9 Quadrotor
	4.2.10 Navigation Task

	4.3 GoTube v2.0
	4.3.1 ACC
	4.3.2 TORA
	4.3.3 Unicycle
	4.3.4 VCAS
	4.3.5 Single Pendulum
	4.3.6 Double Pendulum
	4.3.7 Airplane
	4.3.8 Attitude Control
	4.3.9 Quadrotor
	4.3.10 2D Spacecraft Docking
	4.3.11 Navigation Task
	4.3.12 CartPole

	4.4 JuliaReach
	4.4.1 ACC
	4.4.2 TORA
	4.4.3 Unicycle
	4.4.4 VerticalCAS
	4.4.5 Single Pendulum
	4.4.6 Double Pendulum
	4.4.7 Airplane
	4.4.8 Attitude Control
	4.4.9 Quadrotor
	4.4.10 2D Spacecraft Docking
	4.4.11 NAV

	4.5 NNV
	4.5.1 ACC
	4.5.2 TORA
	4.5.3 VerticalCAS
	4.5.4 Single Pendulum
	4.5.5 Airplane
	4.5.6 NAV

	5 Category Status and Challenges
	6 Conclusion and Outlook
	7 Acknowledgments
	A Specification of Used Machines
	References

