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Abstract

This paper presents the Adaptive Deep Learning-Enhanced Non-Terrestrial Network
(ADL-NTN), an innovative framework that combines satellites, High Altitude Platform
Stations (HAPS), and Unmanned Aerial Vehicles (UAVs). By integrating Free-Space Op-
tical (FSO) and Radio Frequency (RF) communications optimised for different altitudes,
this architecture aims to improve connectivity in remote and disaster-affected regions. The
ADL-NTN employs deep learning algorithms for dynamic power distribution and link opti-
misation, significantly enhancing the network’s robustness and adaptability to environmen-
tal conditions and varying demands. Simulations conducted in OMNeT++ demonstrate
substantial improvements, with throughput increasing by up to 37% and latency decreas-
ing by 42%, surpassing traditional NTN systems. The ADL-NTN architecture exhibits
exceptional resilience, ensuring high-quality service delivery under diverse conditions. This
research sets the stage for integrating future communication technologies and expanding
the framework for global implementation. The ADL-NTN offers groundbreaking solutions
for enhancing rural connectivity and providing rapid disaster response, significantly con-
tributing to global digital inclusion

1 Introduction

The rise of Non-Terrestrial Networks (NTNs) represents a major advancement in the quest
for worldwide connectivity [1]. NTNs play a crucial role in reducing the digital divide that
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affects isolated, rural, and underserved regions across the globe [2]. These networks address the
shortcomings of terrestrial infrastructures by overcoming geographical and structural obstacles
[3]. By delivering telecommunication and internet services from above, NTNs bypass traditional
barriers, expanding connectivity to every part of the world [4]. However, despite their promise,
current NTNs encounter several obstacles that limit their efficiency and broader adoption [5].
These issues include limited scalability and inefficient use of essential resources such as spectrum
and energy [6].

These limitations highlight the necessity for innovative strategies to improve the adaptabil-
ity, scalability, and efficiency of NTNs. To address these challenges, this study proposes a new
framework, the Adaptive Deep Learning-Enhanced Non-Terrestrial Network (ADL-NTN) archi-
tecture, designed to revolutionise global connectivity. The ADL-NTN employs a multi-layered
structure that incorporates diverse communication technologies that are optimised for different
operational altitudes and conditions. Integrating both Free-Space Optical (FSO) [7] and Ra-
dio Frequency (RF) communications, along with real-time dynamic resource management, this
architecture has the potential to significantly enhance NTNs.

Furthermore, this approach ensures more efficient utilisation of network resources, address-
ing core limitations in existing NTN designs. The proposed architecture offers immediate full
coverage, extending reliable connectivity to the most remote areas. Its adaptive nature al-
lows for dynamic scalability, effectively managing fluctuating demand patterns and new service
requirements. Additionally, integrating deep reinforcement learning (DRL) algorithms, specifi-
cally using the Rainbow algorithm, guarantees optimal resource utilisation, maximising network
throughput and minimising waste. Finally, the resilience and reliability of the ADL-NTN, stem-
ming from its multi-layered structure and diverse communication technologies, ensure robust
service delivery under a wide range of environmental conditions.

2 Literature Review

NTNs have been a primary area of research within telecommunications, largely due to their
potential to extend connectivity beyond the limitations of terrestrial infrastructures [8]. Early
investigations centred around satellite communications to achieve global coverage, particularly
targeting remote and underserved regions [9]. The emergence of HAPS and UAVs introduced
reduced latency and enhanced flexibility compared to traditional satellite systems [10]. These
advancements emphasize the critical role of NTNs in attaining comprehensive global connec-
tivity, a recurrent theme in academic literature [11].

Despite their promise, NTNs face several challenges. Key research identifies several signifi-
cant barriers, including limited scalability [11], rigid network architectures [10], and suboptimal
resource utilization [12]. For instance, NTNs’ scalability is frequently hindered by the static na-
ture of satellite orbits and the limited deployment flexibility of HAPS and UAVs [13]. Moreover,
the traditional network design approach, which lacks adaptability, fails to meet the dynamic
demands of global connectivity, leading to inefficiencies in resource allocation and usage [10].

Extensive research has explored the integration of advanced communication technologies into
NTNs [14, 15]. FSO communications, known for their high bandwidth and low latency, have
been investigated as a potential solution for high-throughput backhaul connections in NTNs
[16]. However, their reliability is challenged by atmospheric conditions [17]. In contrast, RF
communications offer broader coverage and greater resilience to environmental factors, although
they are constrained by bandwidth limitations [18]. The literature suggests various strategies
to balance these trade-offs, emphasizing the necessity for adaptive and hybrid communication
strategies within NTNs.

48



ADL-NTN for Global Connectivity Brempong, Muzamal, Agomuo and Zohaib

The application DRL in NTNs has gained significant attention, with techniques such as
Q-learning and its advanced variant, Rainbow, showing promising results. Rainbow, which
combines multiple improvements over standard Q-learning, including double Q-learning, prior-
itized experience replay, and duelling network architectures, provides a robust framework for
complex, dynamic environments. Studies have demonstrated the effectiveness of these algo-
rithms in optimizing network performance, resource allocation, and adaptability [19].

Numerous studies have proposed innovative methodologies to address the limitations of ex-
isting NTN designs. These include adaptive network architectures that dynamically adjust to
changing demand patterns and environmental conditions [19]. Additionally, real-time optimisa-
tion algorithms for efficient resource management have been suggested, alongside multi-layered
frameworks that integrate various types of NTNs and communication technologies. Such ap-
proaches aim to enhance the flexibility, scalability, and efficiency of NTNs, tackling the core
challenges identified in the literature [20].

3 System Model

The proposed ADL-NTN architecture features a multi-layered design, consisting of satellite,
HAPS, and UAV layers, each tailored for distinct operational altitudes and conditions. This
architecture integrates FSO and RF communications within these layers, leveraging advanced
deep reinforcement learning algorithms, such as Rainbow, for dynamic resource management.
Firstly, the satellite layer operates at altitudes above 20,000 km, primarily utilizing RF com-
munications due to their extensive range and robustness against atmospheric conditions. The
satellite-to-HAPS link can be expressed as:

Bsat-HAPS =
TsatAsatAHAPSµ

2

(4πdsat-HAPS)2Wloss
(1)

Where Bsat-HAPS is the link budget from the satellite to HAPS, Tsat is the satellite’s transmit
power, Asat and AHAPS are the antenna gains of the satellite and HAPS, respectively, µ is the
wavelength of the RF signal, dsat-HAPS is the distance between the satellite and HAPS, and
Wloss is the system loss factor.

In this layer, RF communications are preferred for their ability to cover vast distances and
their resistance to atmospheric disturbances. FSO communications are not utilized in this layer
due to challenges posed by atmospheric turbulence, cloud cover, and the considerable distances
involved. The HAPS layer operates at altitudes ranging from 17 km to 22 km, employing both
FSO and RF communications. The HAPS-to-ground RF link can be modeled as:

CRF
HAPS-ground =

EHAPSFHAPSFUAVν
2

(4πhHAPS)2Xloss
(2)

where CRF
HAPS-ground represents the RF link budget from HAPS to UAV, EHAPS is the trans-

mit power, FHAPS is the gain of the HAPS antenna, FUAV is the gain of the UAV antenna, ν is
the wavelength of the RF signal, hHAPS is the distance from the HAPS to the UAV, and Xloss

is the system loss factor.

The HAPS-to-ground FSO link, characterized by its high bandwidth and low latency, can
be described by the equation:

CFSO
HAPS-ground = EHAPS · τatm ·Arecv · ηopt · e−βd (3)
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where CFSO
HAPS-ground is the FSO link budget, τatm is the atmospheric transmittance, Arecv is

the receiver aperture area, ηopt is the optical system efficiency, β is the atmospheric attenuation
coefficient, and d is the link distance.

The HAPS layer combines FSO and RF communications to capitalize on their strengths.
FSO is used for high-bandwidth, low-latency links in dense areas, which is made possible by
shorter distances and less atmospheric interference at HAPS altitudes. RF communications
provide broader coverage and reliable connectivity, even in adverse weather that disrupts FSO.
The UAV layer, positioned closest to the Earth’s surface, operates at heights up to 2 km,
primarily relying on RF communications for their versatility and cost-efficiency. The UAV-to-
ground link budget can be modelled similarly to the HAPS RF model, but with adjustments
for the lower altitude:

QUAV-ground =
TUAVKUAVKgroundζ

2

(4πdUAV-ground)2Zloss
(4)

where QUAV-ground represents the link budget from UAV to ground, TUAV denotes the trans-
mit power of the UAV, KUAV and Kground are the antenna gains of the UAV and ground station,
respectively, ζ is the wavelength of the RF signal, dUAV-ground is the distance between the UAV
and the ground station, and Zloss is the system loss factor. In this layer, RF communications are
favored for their adaptability, low expense, and ease of setup. UAVs utilize RF links at lower
altitudes for direct interaction with ground stations, ensuring efficient last-mile connectivity
and quick response times.

Variable Value Description
Tsat 1 Watt Transmit power of the satellite
EHAPS 1 Watt Transmit power of the HAPS
TUAV 1 Watt Transmit power of the UAV
Asat 20 dBi Gain of the satellite antenna
FHAPS 20 dBi Gain of the HAPS antenna
KUAV 15 dBi Gain of the UAV antenna
µ 2 GHz Wavelength of the RF signal
Dsat-HAPS 35,766 km Distance from the satellite to HAPS
hHAPS 20 km Distance from HAPS to the ground
dUAV-ground 2 km Distance from UAV to the ground
Xloss 3 dB System loss factor
τatm 0.8 (Clear Skies) Atmospheric transmittance for FSO
Arecv 0.01 m2 Receiver aperture area for FSO
ηopt 0.8 Optical system efficiency for FSO
β 0.2 dB/km Atmospheric attenuation coefficient for FSO
dlink 20 km Link distance for FSO and RF

Table 1: Summary of Communication Link Variables

4 Methodology

4.1 Power Allocation Optimization

The power allocation optimisation dynamically distributes power across the satellite, HAPS,
and UAV layers to maximise network throughput, ensure Quality of Service (QoS), and comply
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with power constraints. Let T = [Tsat, EHAPS, TUAV] denote the vector of transmit powers
for the satellite, HAPS, and UAV layers respectively, subject to maximum power constraints
Tmax = [Tsat,max, EHAPS,max, TUAV,max]. The optimisation problem is formulated as follows:

max
T

∑
j∈{sat,HAPS,UAV}

Γj(Tj) (5)

subject to 0 < Tj ≤ Tj,max ∀j (6)

where Γj(Tj) represents the throughput function for layer j, which is a function of the
allocated power Tj .

This optimisation is vital, using Γj(Tj) to model the complex, nonlinear relationship between
power and network throughput. Guided by empirical data and theoretical models, this process
accurately predicts layer performance under varying power levels. A Gradient Descent-based
algorithm iteratively adjusts power allocations to maximise throughput. The update rule for
power allocation at iteration k is given by:

T
(k+1)
j = T

(k)
j + α

∂Γj

∂Tj

∣∣∣∣
Tj=T

(k)
j

(7)

where α is the learning rate, typically determined through empirical testing or adaptive
methods.

4.2 Link Selection Optimization

The link selection optimization aims to choose the most suitable communication link (FSO
or RF) for each layer based on current environmental conditions and network demands. Let
Q = [Qsat, QHAPS, QUAV] represent the link choices for the satellite, HAPS, and UAV layers,
where Qk ∈ {FSO,RF}. The optimization problem is formulated as:

max
Q

∑
k∈{sat,HAPS,UAV}

Ψk(Qk) (8)

subject to Qk ∈ {FSO,RF} ∀k (9)

where Ψk(Qk) denotes the performance metric (such as throughput or reliability) for layer
k using link type Qk.

To refine the link selection optimization, the performance metric Ψk(Qk) incorporates envi-
ronmental conditions and network demands. A genetic algorithm (GA) is employed to optimize
link choices. The GA is structured around a fitness function:

Fitness(Q) =
∑

k∈{sat,HAPS,UAV}

Ψk(Qk) (10)

4.3 Integration

The goal is to maximize the weighted sum of network throughput across all layers. The through-
put of each layer is a function of the power allocation and the link selection. The objective
function can be expressed as:
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max
T,Q

∑
k∈{sat,HAPS,UAV}

wk · Ξk(Tk, Qk) (11)

where:

• k iterates over the satellite (sat), HAPS (HAPS), and UAV (UAV) layers.

• wk represents the weight assigned to each layer, reflecting its relative importance or pri-
ority in the network.

• Ξk(Tk, Qk) denotes the throughput function for layer k, which depends on the power
allocation Tk and the link type Qk.

Integrating different communication technologies and layers leads to a complex, non-convex
optimization problem requiring sophisticated solution techniques. The problem can be com-
pactly written as:

max
T,Q

∑
k∈{sat,HAPS,UAV}

wk · Ξk(Tk, Qk)

subject to:

0 < Tk ≤ Tk,max ∀k
QRF(Tk, Qk) ≥ Qmin,RF ∀k where Qk = RF

QFSO(Tk, Qk) ≥ Qmin,FSO ∀k where Qk = FSO

Rk(Tk, Qk) ≥ Rmin,k ∀k
Qk ∈ {FSO,RF} ∀k

4.4 Rainbow Learning method

The Rainbow Learning method is an advanced deep reinforcement learning algorithm that com-
bines several improvements over standard Q-learning, including double Q-learning, prioritized
experience replay, and dueling network architectures. This method is used to optimize power
allocation and link selection in the ADL-NTN architecture by learning from the dynamic en-
vironment and adjusting the variables accordingly. The Rainbow Learning framework for the
ADL-NTN optimization problem can be structured as follows:

A balance between computational efficiency and solution precision is essential for selecting
Kmax and ϵ in the Rainbow Learning Algorithm. Kmax determines the algorithm’s iteration
limit, affecting the depth of solution refinement. A higher Kmax increases the chance of reaching
an optimal solution but requires more computational resources. The convergence threshold ϵ
defines the sensitivity to changes between iterations, where a smaller ϵ demands a closer ap-
proximation to the optimal solution, potentially increasing computational time. This approach
leverages the advancements in Rainbow Learning to dynamically adapt to environmental con-
ditions and optimize network performance efficiently.

5 Results

The simulation of the ADL-NTN architecture was conducted using the OMNeT++ simulation
framework to evaluate its performance. The simulation was designed to replicate a realistic

52



ADL-NTN for Global Connectivity Brempong, Muzamal, Agomuo and Zohaib

Algorithm 1 Rainbow Learning Algorithm for Power Allocation and Link Selection

1: Initialization:
2: Initialize the replay buffer D and the Q-networks Qθ and Qθ′ with random weights.
3: Initialize power allocation variables T 0 = T 0

sat, E
0
HAPS, T

0
UAV and link selection variables

Q0 = Q0
sat, Q

0
HAPS, Q

0
UAV with feasible starting points.

4: Set iteration counter k = 0.
5: Rainbow Learning Iterations:
6: while not converged and k < Kmax do
7: Experience Replay:
8: Store the current state, action, reward, and next state in the replay buffer D.
9: Sample a mini-batch of experiences from D.

10: Power Allocation Optimization:
11: for each layer j ∈ {sat,HAPS,UAV} do
12: Compute the target Q-value using the target network Qθ′ and the Bellman equation:
13: y = r + γmaxT ′

j
Qθ′(s′, T ′

j)
14: Update the Q-network Qθ by minimizing the loss:
15: L(θ) = E[(y −Qθ(s, Tj))

2]
16: Adjust power allocation based on the learned Q-values:
17: T k+1

j = argmaxTj Qθ(s, Tj)
18: end for
19: Link Selection Optimization:
20: for each layer j ∈ {sat,HAPS,UAV} do
21: Compute the target Q-value using the target network Qθ′ and the Bellman equation:
22: y = r + γmaxQ′

j
Qθ′(s′, Q′

j)
23: Update the Q-network Qθ by minimizing the loss:
24: L(θ) = E[(y −Qθ(s,Qj))

2]
25: Adjust link selection based on the learned Q-values:
26: Qk+1

j = argmaxQj∈{FSO,RF} Qθ(s,Qj)
27: end for
28: Convergence Check:
29: Check for convergence by evaluating the change in the objective function or the variables

T and Q.
30: If the change is below a predefined threshold ϵ, or if k reaches Kmax, terminate the

algorithm.
31: Otherwise, increment k and repeat from step 5.
32: end while

global communication network, with geostationary satellites representing the satellite layer and
dynamic coverage provided by the HAPS and UAV layers. We use API by [21] to integrate the
rainbow Learning module.

The Kim model for atmospheric attenuation was used to model FSO links under clear (0.2
dB/km), overcast (0.5 dB/km), and rainy conditions (2 dB/km), impacting the FSO link budget
calculated using the Beer-Lambert law. RF links were configured using the Hata-Okumura
model for urban environments and the COST 231 model for suburban and rural settings. Path
loss exponents were set at 3.5 for urban areas, 3.7 for suburban areas, and 4.0 for rural areas,
with a carrier frequency of 2 GHz. The shadow fading standard deviation was 8 dB, and the
Ricean K-factor for fading was 6 dB to simulate line-of-sight conditions.
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Power allocation limits were set at 5 W for satellites, 2 W for HAPS, and 0.5 W for UAVs.
Link selection dynamically adjusted based on real-time algorithmic analysis, considering current
atmospheric conditions and network demand. User densities ranged from 100 to 1000 users per
km² in urban areas, 50 to 500 users per km² in suburban areas, and 10 to 100 users per km²
in rural areas, with geographic coverage spanning a 100 km² area for each environment type.
Weather conditions were simulated using a stochastic model with probabilities of 70% for clear,
20% for overcast, and 10% for rainy conditions in each simulation cycle.

The ADL-NTN architecture is compared with AMLT-NTN by Brempong et al. [22] and
traditional Non-NTN models implemented by Li et al. [23] using metrics like throughput,
latency, coverage, and network resilience. The study also examined how varying environmental
conditions affect the effectiveness of FSO and RF communications.

Figure 1 shows the throughput comparison among the ADL-NTN, AMLT-NTN, and tra-
ditional NTN systems over 10 seconds. The ADL-NTN starts around 120 Mbps, peaking at
130 Mbps, and ends slightly above 125 Mbps, demonstrating enhanced and stable performance.
The AMLT-NTN begins at around 100 Mbps, peaks at 110 Mbps, and ends slightly above 100
Mbps, indicating stable performance with minor fluctuations. In contrast, the traditional NTN
starts at about 75 Mbps, with more variability, fluctuating between just below 70 Mbps and
above 90 Mbps, and ends around 70 Mbps. Throughout the observation period, the ADL-NTN
consistently outperforms both the AMLT-NTN and traditional NTN systems.

Figure 1: A line graph depicting the average network throughput over time for ADL-NTN,
AMLT-NTN, and traditional NTN systems

Figure 2 compares the latency between the ADL-NTN, AMLT-NTN, and traditional NTN
systems. The ADL-NTN shows the lowest latency at about 15.76 ms, indicating the most
efficient data handling and routing. The AMLT-NTN has a latency of approximately 20.98 ms,
while the traditional NTN’s latency is the highest at 36.21 ms. This comparison highlights the
significant improvements in latency provided by the ADL-NTN and AMLT-NTN systems over
the traditional NTN.

Figure 3 shows the coverage areas as percentages for ADL-NTN, AMLT-NTN, and tradi-
tional NTN systems across four region types. ADL-NTN provides the highest coverage in urban
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Figure 2: A bar chart comparing the average end-to-end latency between ADL-NTN, AMLT-
NTN, and traditional NTN systems

areas at 95%, followed by suburban at 80%, rural at 72%, and remote at 65%. AMLT-NTN
coverage is highest in urban areas at 92%, then suburban at 75%, rural at 67%, and remote at
58%. Traditional NTN follows a similar trend in urban and suburban areas at 90% and 75%
respectively but drops to 60% in rural areas and significantly to 21% in remote areas.

Figure 4 shows that while FSO link performance dips in cloudy and foggy conditions, both
ADL-NTN and AMLT-NTN architectures maintain overall network performance through adap-
tive switching to RF links. The ADL-NTN demonstrates better performance stability compared
to AMLT-NTN, which in turn performs significantly better than the traditional NTN system.

5.0.1 Network Resilience

Figure 5 shows the resilience of ADL-NTN, AMLT-NTN, and traditional NTN systems un-
der varying user demands on a logarithmic scale. Initially, all systems start at nearly 100%
resilience. The ADL-NTN maintains the highest resilience as demand increases, followed by
AMLT-NTN, which declines more slowly compared to traditional NTN. The traditional NTN’s
resilience falls sharply, indicating faster performance degradation with rising demand.

6 Conclusion

The research demonstrated the potential of ADL-NTN architecture to significantly enhance
global connectivity, especially in remote and underserved areas. Experimental results validated
the superior capabilities of ADL-NTN over traditional and AMLT-NTN systems. The ADL-
NTN throughput began at 120 Mbps, peaking at 130 Mbps, and maintained stability. Latency
measurements showed ADL-NTN achieving 15.76 ms, outperforming AMLT-NTN’s 20.98 ms
and traditional NTN’s 36.21 ms. Coverage evaluations indicated ADL-NTN reached up to 95%
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Figure 3: A heatmap illustrating the total coverage areas provided by ADL-NTN, AMLT-NTN,
and traditional NTN systems.

Figure 4: A series of line graphs showing the performance of FSO and RF links under various
weather conditions, such as clear, cloudy, and foggy weather.

in urban settings, surpassing traditional NTN’s 21% in remote areas. Network resilience under
varying user demand confirmed ADL-NTN’s robustness, with a slow decline in resilience across
all demand levels. These results reflect a transformative leap in NTN capabilities. Future

56



ADL-NTN for Global Connectivity Brempong, Muzamal, Agomuo and Zohaib

Figure 5: A line graph demonstrating the network’s ability to maintain service levels under
scenarios of high user demand for ADL-NTN, AMLT-NTN, and traditional NTN systems.

work will focus on refining the architecture, testing at larger scales, and proposing enhanced
algorithms to address scalability challenges.
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