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Abstract

Many universities are using lecture recording technology to expand the reach of their
teaching programs, and to continue instruction when face to face lectures are not possi-
ble. Increasingly, high-resolution 4K cameras are used, since they allow for easy reading of
board/screen context. Unfortunately, while 4K cameras are now quite affordable, the back-
end computing infrastructure to process and distribute a multitude of recorded 4K streams
can be costly. Furthermore, the bandwidth requirements for a 4K stream are exorbitant -
running to over 2GB for a 45-60 minute lecture. These factors mitigate against the use of
such technology in a low-resource environment, and motivated our investigation into meth-
ods to reduce resource requirements for both the institution and students. We describe the
design and implementation of a low resource 4K lecture recording solution, which addresses
these problems through a computationally efficient video processing pipeline. The pipeline
consists of a front-end, which segments presenter motion and writing/board surfaces from
the stream and a back-end, which serves as a virtual cinematographer (VC), combining
this contextual information to draw attention to the lecturer and relevant content. The
bandwidth saving is realized by defining a smaller fixed-size, context-sensitive ‘cropping
window’ and generating a new video from the crop regions. The front-end utilises compu-
tationally cheap temporal frame differencing at its core: this does not require expensive
GPU hardware and also limits the memory required for processing. The VC receives a
small set of motion/content bounding boxes and applies established framing heuristics to
determine which region to extract from the full 4K frame. Performance results coupled to
a user survey show that the system is fit for purpose: it is able to produce good presenter
framing/context, over a range of challenging lecture venue layouts and lighting conditions
within a time that is acceptable for lecture video processing.

Keywords: Presenter Tracking, Automated Lecture Recording Systems, Video Segmentation,4K
video post-processing, Virtual Cameraman

1 Introduction

Teaching methods at universities and colleges are constantly evolving, as new technologies
enable alternative ways of providing access to instruction. One area that has seen a slow but

A. Gerber (ed.), SAICSIT 2022 (EPiC Series in Computing, vol. 85), pp. 15–35



Low Resource, Post-processed Lecture Recording Fitzhenry, Khatieb, Marais and Marquard

steady advance is lecture capture — the recording of live lectures as an additional learning
resource [7]. Once a lecture has been recorded it can be reviewed by students, in their own
time, as a supplement to learning. Newer recordings are often based on very high definition 4K
video recording, which provides exceptionally crisp images and the ability to zoom in on details
(such as writing on a classroom board).

While this technology is convenient, it comes with additional overheads for both the student
and the institution. For the institution, the lecture capture hardware and any necessary video
processing infrastructure must be purchased and maintained, and this cost can be significant
for large institutions with many recordings per day. For the student, the bandwidth required to
download the videos — particularly full 4K definition videos — is an obstacle. A 4K recording
of a 45-minute lecture can easily run to 2GB, so over the course of a lecture week the data
required to download such content may not be affordable, especially when mobile data is used.
These issues are exacerbated in developing countries, where university budgets and disposable
income are often severely constrained. Indeed, this is the context within which this work was
undertaken.

One solution, explored in detail in this work, is to utilise a virtual cinematographer (VC),
which defines a much smaller, fixed-size cropping window, within the 4K frame, to provide a
context-centred view of the presenter. This smaller window should follow the presenter and
provide sensible framing as they move about the venue, interact with boards and so on. Our
results show that the output of this context-focused reduction results in a mean video file size
reduction of 81% over the 4K stream.

The VC is driven by an image processing front end that analyses video frames to extract
contextual information. In keeping with our need to reduce hardware costs for the institution,
we limit ourselves to frame processing algorithms that are computationally cheap and can run
on general-purpose commodity servers without requiring a Graphical Processing Unit (GPU).
GPUs are typically expensive components and form an integral part of many modern deep-
learning solutions in related domains. More specifically, we implement and evaluate a video
processing pipeline which is based on frame differencing, on the front-end, and fast VC fram-
ing algorithms and heuristics on the back-end. The algorithms are designed to support high
video throughput with a limited memory footprint, thus limiting the memory requirement for
processing 4K video clips.

This project builds on earlier development work in this area, which led to a prototype, open
source system TRACK4K 1. The earlier prototype system suffered from tracking inconsistencies
and only allows horizontal VC panning.

2 Background and Related Work

The design of a lecture capture system should aim to provide output videos that reduce the
cognitive load of the learner and direct the viewer’s attention to what is important [10]. Lec-
tureSight [24] is an open source live camera tracking system for lecture recording that requires
expensive Pan-Tilt-Zoom (PTZ) cameras. In our context, live broadcasting is not required and
the captured video can be post-processed and distributed. Post-processing also has the advan-
tage of looking ahead in the video to make better tracking decisions [11] and is often used in
conjunction with (one or more) high-resolution cameras to extract a smaller crop region from
the input frames enclosing the presenter [4]. Our work follows this approach, although the
framing decisions are not managed by the front-end tracking module, but deferred to the VC.

1https://github.com/LectureTracking/trackhd
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Presenter Detection: The significant successes of deep learning (DL) and other machine
learning approaches have led researchers to focus on exploring these state-of-the-art techniques
[23]. Unfortunately, deep learning applications typically depend on GPU acceleration to obtain
the full speed benefits for inference and learning. For example, in the pose estimation system
presented by Cao et al. [2], inference time using the GPU is 36ms compared to 10396ms for
the CPU-only version. While writing detection can be run infrequently (every nth frame, for
small n), presenter detection must run much more often to cope with a moving presenter. This
means a DL approach infeasible for our context, if used without a GPU.

In contrast, traditional motion detection approaches, do not require high performance hard-
ware or GPU acceleration and are often used on embedded processors of IP cameras which have
limited processing power [28].

To detect a presenter, an object detection scheme is typically used. Background subtraction,
temporal/frame differencing and optical flow are three prominent techniques used to perform
object detection [19].

Optical flow provides the best accuracy, but is computationally the most expensive. Tem-
poral differencing is faster than background subtraction [19] and suitable for scenarios with
changing backgrounds, which is required in our project since boards and screens can move.

In the approach of Mavlankar et al. [16], motion, skin colour and background subtraction
is used to track the presenter across frames. Using a fixed skin colour is problematic due to
varying lighting conditions and natural skin colour variability. Yokoi and Fujiyoshi [26] track
the presenter using temporal differencing and thresholding, which is a useful approach in our
context. The detected motion is clustered and the largest region is assumed to be the presenter.
This assumption poses a problem in venues where boards or projector screens can move, since
this will be detected as the largest motion. Furthermore, neither approach discusses the effects
of students walking into view and how that might affect the tracker.
Writing Detection: Writing detection in the context of this project includes detecting
writing on screen and blackboard surfaces, and is aimed at providing additional contextual
information to assist and improve the framing decisions of the VC. Segmentation by colour
[12], including adaptive variants [5] are not well suited to detecting and segmenting text in
lecture videos due to varying board types or colours, lighting conditions, handwriting style,
writing size and contrast of the writing on the background surface. Recent work favours the
u se of machine learning to solve some of these challenges [25]. The Efficient and Accurate
Scene Text Detector (EAST) [29] uses a Deep Neural Network (DNN) to detect text. The
authors claim it is capable of robustly detecting various forms of text in challenging scenarios
such as non-uniform lighting, low-resolution footage and varying orientations. The original
EAST model was pre-trained using the International Conference on Document Analysis and
Recognition (ICDAR) 2013 and 2015 2 training datasets.
Automatic Lecture Recording and Virtual Cinematography: Remote learning is a
term used to describe the practice of reviewing lecture recordings after the lecture as a supple-
ment to the lecture itself. The automation of this process is referred to as Automatic Lecture
Recording (ALR) [14], Virtual Videography [8] or Web-based Learning Technology (WLT) [22]
when the automation takes place over the internet. A key feature in ALR systems is the ability
to manage what is shown by the camera in a given context [8]. The way the lecture is por-
trayed is very different from the way a film or television series is recorded and edited. Guidelines
(“heuristics”), on the best practices in the lecture recording industry help ALR systems in this
regard [10, 15]. Real-time ALR systems do all the required processing as the lecture is being
recorded [27, 3]. To achieve fast turnaround time for camera changes, a real-time solution often

2https://iapr.org/archives/icdar2013/, https://iapr.org/archives/icdar2015/
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choose less accurate solutions. Typical implementations of real-time ALR systems have (one
or more) PTZ cameras installed in a venue and the decisions made are used to control them.
Post-processing ALR systems delay decision making until after the video is recorded and
then modify the footage to form a new video [9, 11]. Since the video is complete by the time
the ALR system runs, the program has access to all frames in the video and can thus make
more informed decisions than a real-time solution.

The Virtual Cinematographer is a part of the ALR system and must ensure the final
footage displays the most relevant information in an appealing way [10, 11]. The VC includes the
Virtual Director (VD) and the Virtual Camera Operator (VCO) to make its deductions about
the environment and modify the camera (or camera footage) accordingly. The VD performs
scene analysis and decides which areas of the camera footage are most relevant [20, 15]. It sends
instructions to the VCO or modifies the footage directly. The VCO manages the recording of
the video footage [13, 4].

3 Video Analysis and Virtual Cinematography Frame-
work

This section introduces the design goals of the system followed by the implementation details
of the individual modules.

3.1 Design Goals

The design requirements are informed by a current ALR implementation at a university. The
system design aims to maximise processing speed on middle-tier equipment without using a
GPU. The object detection stage consumes the bulk of the resources and we reduce the CPU and
memory footprint by using cheap image differencing-based techniques as our object detection
followed by heuristics to mitigate the shortcomings of this differencing approach. Furthermore,
the solution aims to be fit for purpose (i.e. should produce output which is sufficiently good
for use in an ALR system) and capable of processing any video resolution with support for
commonly used video file formats.

To reduce set-up complexities for easy implementation without requiring per-venue setup,
parameters should be self-calibrating as much as possible and additional parameters that are
configurable or non-trivial to self-calibrate should be stored in a central configuration file.
The code of this project will also be released with an open source license to enable further
development and usage.

Figure 1 shows the high-level flow of data through our system modules. To facilitate this
flow of data and reduce memory requirements, a pipe and filter architecture was identified as
the most advantageous for our design goals. The unidirectional flow of this architecture is
necessary since data produced by earlier modules is required by later modules in the pipeline.
The videos are processed in chunks by front-end modules that reduce the need for large amounts
of memory and allow any length video to be processed. These modules were not multi-threaded,
however, many of the OpenCV algorithms are already optimised to utilise multi-threading and
more than one instance of our system can be instantiated to process multiple videos in parallel,
depending on the number of available CPU cores. Lastly, modules can easily be modified, added
or removed using this architecture, for any future improvements.

A brief overview of the modules and containers shown in Figure 1 are discussed below. The
other core modules are discussed further in their own dedicated sections.
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Figure 1: Overview of the complete system architecture.

Configuration file: An external JSON file with customizable default parameter values.
Video processing loop: In this work, a typical 50min 4K, 3840x2160 (width by height in pix-
els) resolution lecture video recorded at 30fps, a maximum bit rate of 4Mbps and using the H264
codec has an average file size of 2.24GB. Decompressing all frames for analysis would inflate
this to an unacceptable 2.7TB of memory. Instead, a small bounded subset of uncompressed
frames (a segment) is retained in memory and sequentially processed. Memory is released at
the end of the loop and this process repeats until all frames in the input video file have been
processed.
Data container: This container (DataBundle in our implementation) is passed through all
modules providing input data and configuration parameters and stores MetaFrame objects to
hold the output data produced by each module. The DataBundle also contains helper functions
to interact with modules.
Meta frame: The MetaFrame is a sub-object of the DataBundle that stores the object and
writing detection output. It contains many helper functions that interface with other modules,
exports their data and manages their memory usage.
Video file reader: This module reads, decodes, and downscales the frames from the input
video file into memory. The workingDimension parameter specifies the target downscaling
resolution and skipFrames allow frames to be ignored to increase processing speed.
JSON file writer: All presenter, gesture and writing data from the MetaFrame objects stored
in the DataBundle are serialised into the output JSON file.
FFMPEG crop coordinates: The VC outputs a text file of cropping coordinates that are
then passed to an adapted version of the original cropvid 3 program that uses the ffmpeg 4

filters for cropping and rescaling the video frames.
Core modules: The object detection, writing detection, data filter and virtual

cinematographer modules are discussed in detail in the dedicated sections that follow.

3https://github.com/LectureTracking/trackhd/blob/master/cropvid/cropvid.c
4https://ffmpeg.org/ffmpeg-filters.html
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3.2 Presenter Detection

Object detection is achieved using temporal differencing between two frames, i and i +
(skipFrames+1) where skipFrames specifies the number of frames to ignore as an optimization
and a means of reducing foreground aperture. A second parameter, workingDimension, reduces
the input frame resolution to reduce the processing time further. Otsu thresholding [17] is used
to map this to a binary (foreground/background) image since it has low computational cost.
The noise in the binary image is suppressed using three iterations of a morphological opening
operation with a 3x3 rectangle-shaped structuring element. The presenter’s silhouette is not
solid and contains holes due to colour similarities or low motion between the two frames that
result in a zero difference. An efficient (8-)connected components analysis (CCA) is used to
isolate the blobs of pixels in the binary image corresponding to candidate objects. We then
create a bounding box for each blob. The method for storing the rectangles in the MetaFrame
recursively merges any overlapping rectangles (see Figure 2) using the same merging used for
the writing as shown in Figure 8, Appendix A.

Figure 2: Overlapping bounding boxes are merged recursively.

Data filtering heuristics use information from the three core modules and remove outlying
motion that has a low probability of being the presenter, repair missing data and refine the
overall output using adaptive thresholds.

(a) (b) (c) (d)

Figure 3: Examples scenarios targeted by the data filtering heuristics.

The Aspect and area ratio is used to flag objects that have abnormal area ratios
( object area
frame area ) as shown in Figure 3a and aspect ratios as seen on the projector screens in Fig-

ure 3b. Clustering the non-deleted current and previous MetaFrame object bounding boxes
reduces fragmented objects and improves the effects of low presenter motion (see Figure 3b).
However, using too many previous frames resulted in oversized clustered boxes. Vertical limits
are calculated using the vertical position (y-coordinate) of the remaining (unflagged) objects
(see yellow lines in Figure 3c). Any unflagged objects whose centroid is outside this region
is flagged. These objects are typically produced by small amounts of motion such as student
heads in view. Interpolation of the last known (undeleted) object (A) is used to bridge the
sequence of frames where there is no valid object (commonly due to low presenter motion as
shown in Figure 3). An interpolated box is substituted between (A) and the frame where a valid
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object (B) reappears in future. This is also only done if boxes (A) and (B) overlap (potentially
indicating a stationary presenter).

3.3 Writing Detection

Text detection is achieved using the EAST text detector with the pre-trained model proposed
by Zhou et al. [29]. Since we do not use the GPU accelerated version, run-times are no longer
real-time, but we need only run the detection infrequently since writing/text changes slowly
over time. The writingDetectionSkipTime parameter specifies the frequency (in seconds) of
detections. The output produced by the EAST network are rotated rectangles which typically
bound individual words. However, board writing generally consists of collections of words. We
thus use a clustering algorithm to group words that are close to each other. These cluster regions
and the number of rotated rectangles in each cluster are output by this module, indicating
regions of potential text. DBSCAN clustering [6] was chosen to cluster the words since it does
not require the number of clusters to be specified upfront. Good clustering results are obtained
by using the four vertices of the boxes. Clustering based on word box vertices often results in
word boxes belonging to two separate clusters or not fully enclosed by the cluster boundary.
These clusters are merged using the approach shown in Figure 8, Appendix A.

3.4 Virtual Cinematographer

The VC (see Figure 1) must read in the information from the front-end of the pipeline (JSON
format) and build its own internal memory representation. This reduces the run time of the
VC and allows it to manipulate the data later without modifying the source. The VC must
identify and locate the presenter in each 4K frame. This is not always possible, however, since
the presenter can walk out of the camera’s field of view at the time of recording or the front of
the venue may become too crowded for the front-end to identify the presenter. In these cases
the frame will contain no presenter data. Before anything else can be done, the VC must fill in
these “gaps” in the recording. The VC does this by (first) writing the last known position of
the presenter into the frame containing no presenter data.

The VC uses information about the boards in the lecture venue to identify what is most
important in the scene. This step in the pipeline is where the VC analyses the tracking infor-
mation about the boards to see which boards were used in the venue and at what times in the
video. The VC identifies which boards were used by tracking the number of features on each
board over time: a large change in the number of features on a board over a small number of
frames suggests that a board is in use. It may also be that the presenter has moved in front of
the board, but the board would still be important since the presenter could refer to (or modify)
the board content during this time. If the presenter is moving past the board to get to another
area of the venue, then it is still useful to include the board as part of the context for as long
as the presenter is in front of it.

Once the VC has identified the presenter in every frame and highlighted active boards and
the usage frame intervals, the VC can separate the video into sections we called contexts. These
contexts are rectangles that represent the position and size of the cropping window for a section
of the video. They represent a change in the framing choice made by the VC. The VC includes
the presenter and any active boards as part of the context for each frame in the video. An
example of a context can be seen in the third image of Figure 2 where the presenter is standing
in front of the board as it is being used. The Presenter has occluded some of the features on
the board and is also actively modifying them. This requires both the presenter and the board
to be highlighted as important venue elements on this frame in the video.
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Once the VC has created the contexts for each frame, it must find a way to move the
cropping window from one context to the next such that the resultant video does not appear
jarring to viewers. It does this by creating transitions which move or resize the cropping window
gradually so viewers perceive it as camera motion when, in fact, the video was recorded using
a stationary camera. Each transition has 4 movements to make:
1. The horizontal motion for the top left corner of the cropping window.
2. The vertical motion for the top left corner of the cropping window.
3. The horizontal motion for the bottom right corner of the cropping window.
4. The vertical motion for the bottom right corner of the cropping window.
With these 4 movements the VC is able to pan horizontally, vertically, and zoom in or out with
a single movement of the cropping window to minimise the conspicuousness of the transition to
the viewer. Each of these movements take place on every transition where the VC interpolates
the cropping window across all the frames of the transition (including the frames that were
skipped by the front-end). This interpolation is done using the function cos (x+ π) + 1 using
the domain [0, π] radians. This curve allows a gradual acceleration and deceleration of the
cropping window across the frames in the transition. Once the VC has finalised all transitions,
this information is recorded in the output file (JSON format) for a third-party cropping process.
These crop coordinates are the final output of the VC.

3.5 Implementation Language and Libraries

For efficiency, the project is implemented in C++. We used the Open Computer Vision
(OpenCV) library 5 for image processing. Additional algorithms were drawn from the Ml-
pack 6 open source library and statistical functions from the Boost 7 library.

4 Experimental Setup

Figure 4: Images showing a sample of different venue layouts.

Data Source: The dataset consists of 25 lecture videos (each about 45− 50 minutes long)
from different venues. An example of the diversity of lecture venue layouts can be seen in Figure
4.
Evaluation Hardware: Intel® Core™ i5-4670K CPU @ 3.40GHz x 4 with a Western Digital
WDC WD10EZEX 1TB HDD @ 7200rpm and 2 x 8GB DDR3 RAM (16GB total).
Ground truth (GT) data: Using a purposeful sampling approach, we selected 100 (each
roughly 2-minute length) video clips from the dataset covering a diverse range of behaviours
and environments. These clips were annotated frame-by-frame using the Computer Vision

5https://opencv.org/
6https://www.mlpack.org/
7https://www.boost.org/
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Annotation Tool (CVAT) 8. The ground truth dataset is further partitioned into training (n =
76) and testing (n = 24) sets such that both sets have a similar distribution of objects and
attributes. The training set is used to explore and calibrate system parameters while the test
set is reserved for evaluating the accuracy of our system after parameter calibration. Each
frame was annotated with good (e.g. Figure 5a) or low (e.g. Figure 5b) lighting. All person
objects were annotated and the presenter was labelled. The tightest bounding box enclosing
all content on a board/screen was used and the attributes shown in Table 2, Appendix A were
assigned to each box where applicable.

Frame A

Frame B

Merged Frame

(a) (b)

Figure 5: (a) Ground truth MetaFrame creation for evaluation. (b) Example of IOU = 0.3
between ground truth (green) and system (yellow) detections. Last two images show examples
of “low” and “high” presenter motion respectively.

Presenter Detection: All the MovingEntity objects in each MetaFrame are compared to the
equivalent GT MetaFrame. Since all the GT videos were labelled per frame, the final ground
truth presenter bounding box is the union of bounding boxes (between the two frames that
were used to produce the original MetaFrame object in our system) as illustrated in Figure 5a.

We use the popular Intersection over Union (IOU) metric [18] to compare the system pre-
dictions to the GT for each MetaFrame. We have adapted and integrated their evaluation
code 9 into our evaluation implementation. A minimum IOU threshold of 0.5 is typically used,
however, we do not require precise overlap but rather an approximate location of the object.
Using an IOU of 0.3 achieves this goal for evaluation and Figure 5b shows two examples of an
IOU = 0.3. Furthermore, our implementation does not provide a frame-by-frame prediction
but instead over a time-slice since each system prediction is a region of motion across a few
frames determined by the skipFrames parameter. The GT presenter motion is calculated using
the x coordinate of the bounding box centroid between frames A and B in Figure 5a.
Writing detection: We followed the evaluation protocol proposed by Wolf and Jolion [21] for
evaluating our writing detection module, since it accounts for fragmented detection (one-to-one,
one-to-many and many-to-one). Our method does not aim to achieve 100% correct overlaps
and the annotated frames only provide the tightest bounding box per board, and are likely to
fail stringent overlap tests.
Virtual cinematographer: The user evaluation layout was designed to display two video
clips side-by-side to participants. Both video clips were taken from the same timestamp in the
same lecture video, but the VC’s configuration settings were altered to produce different camera
movements in the final output video.

Participants were prompted to select the video from the pair which they preferred based
only on watching the videos. Once a video was chosen, participants were then asked eight
questions (see Table 4 of Appendix A). These questions were gathered from previous studies

8https://github.com/openvinotoolkit/cvat
9https://github.com/rafaelpadilla/review_object_detection_metrics/blob/main/src/evaluators/

pascal_voc_evaluator.py
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in the literature [15, 20] and were used to determine why participants chose one video and not
the other. These questions were phrased as affirmations and participants were provided with a
fixed scale of discrete responses ranging from ‘Strongly Disagree’ to ‘Strongly Agree’.

Figure 6: Images showing the different venue layouts used in the user evaluation of the VC

The VC is forced to accommodate a variety of venue layouts. In the user evaluation we
focused on the four layouts in figure 6 to judge the VC’s output across a range of challenging
inputs. These venues show a combination of bright projection surfaces, movable blackboards,
variable lighting conditions and ‘distractor’ motion (such as student heads). The venues are
detailed in Table 5 of Appendix A. Note that the video inputs include a privacy mask to protect
the identity of the audience and to remove parts of the venue that are not relevant to the lecture.
This constrains the VC’s framing decisions, as aspect ratio must be maintained.

The session lasted less than an hour (in total) for each participant. The evaluation included
20 video pairs with the follow-up questions after each pair (making a total of 40 questions).
The evaluation was hosted online, so participants could take part remotely and could pause
the evaluation to return later. We collected 55 complete submissions from participants and
extracted the data (CSV) to process our results.

5 Results

This section discusses the results and observations for the the detection and VC modules.

5.1 Presenter Detection

Parameter calibration: The training dataset was used to empirically select default param-
eter values. We chose skipFrames = 28 as the default (see Figure 9a, Appendix A). Figure 9b
in Appendix A shows the effect of downscaling the input 4K frame resolution on runtime and
F1-score. The runtime averages are with respect to the 2-minute video clips in our dataset.
The video read time includes the downscaling operation time and there is a gradual increase
in this time as we reduce the video size, which is expected. The downscaling operation adds
minimal time with a great reduction in runtime of the other processing modules. We selected
workingDimension = 720p as it provided a balance between presenter detection and writing
detection outcome as shown in Figure 9c, Appendix A.
Observations: A Bayesian Multivariate Binary Logistic Regression Model with the Bernoulli
family using the brms package [1] in R 10 was used to evaluate the association between environ-
mental factors and observing an F1-score of 1 for each frame. In Appendix A, the odds ratios
are shown in Table 1 and the overall F1-score under each condition is shown in Table 3a. The
odds ratio indicates the likelihood of observing an F1-score = 1 (perfect outcome) for a frame
under each condition. We observed the filter module improved the results under all scenarios
except scenes with multiple objects. The overall results improved from F1-score = 0.51 to

10https://www.R-project.org/
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F1-score = 0.78. Low lighting and distractors (student heads) had minimal to no effect on our
detection as most cases were mitigated by the filter heuristics. Frames with multiple objects
significantly reduced detection accuracy and were not improved by the filter. These occurrences
are typically short in duration due to students entering/leaving the venue and does not have
any substantive effect on the VC, since it resorts to a wider zoom in persistently busy scenes.
The filter heuristics were also able to improve low motion, however, high presenter motion nat-
urally produced better detection results due to better silhouettes being produced during the
differencing operation.

5.2 Writing Detection:

Parameter calibration: Figure 9d, Appendix A shows the effect of the writingDetection-
SkipTime parameter on the average runtime and F1-score. There is a marginal difference in
F1-score which is expected, since the writingDetectionSkipTime parameter only influences the
frequency of detection and any variations in F1-score are just due to different text at those
times. We empirically selected an interval of 30 seconds for writing detection. We also com-
pared the outcome of the writing detection F1-score when using the auto calibrated threshold
discussed in Section 3.3 as opposed to manually selecting an optimal threshold. The manual
calibration only produces a very small improvement from 0.554 to 0.557, indicating that the
chosen method works well.
Observations: The odds ratios for the writing detection factors can be seen in Table 1 and
overall F1-score scores in Table 3b of Appendix A. We observe an very large positive impact of
projector text on the outcome, while poor writing contrast and diagrams have a significantly
negative impact on outcome (see Figure 7 in Appendix A for example output). EAST only
detects text and the improvement with projector text and the degradation with diagrams is
expected. Projector text is typically high contrast, unlike handwriting on dusty boards and
is expected to perform better. Figure 10b and Figure 10a in Appendix A show the overall
performance graphs of the writing detection. A recall of 49 − 57% is achieved (tr = 0.8) and
only declines rapidly after about 70% of the precision constraint is reached. As tr → 1, object
recall does not reach 0 indicating that many detected boxes are smaller than the ground truth
boxes. This is expected: the GT data only provides a single bounding box enclosing all text on
each board.

The writing information is supplementary input to the VC to enhance framing decisions
and there is minimal impact on the VC output when writing detection degrades. In such cases
the VC resorts to focusing on the presenter.

5.3 Virtual Cinematographer

We tested 2 aspects of the video which affect the final video created from the VC’s cropping
data. The VC’s configuration settings affected its decision making and the venue layout affected
the VC’s cropping data and the resultant video indirectly.
Tables and figures: The results are visualised in the graphs of Figure 11 for changing
VC configurations and Figure 12 for changing venue types (in Appendix A). The questions
participants were asked after each video choice is included in Table 4 in Appendix A.
Observations: We notice that, for the first 3 questions regardless of configuration type
or the venue layout, the majority of participants (more than 75%) responded either “Stongly
Agree”, “Agree”, or “Neutral”. This means that the VC tracked the presenter smoothly, showed
participants what they wanted to watch, and changed shots at an acceptable frequency for most
participants (according to the questions in Table 4). We also notice that, for questions 4 - 8, the
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majority (more than 62.5%) of participants responded either “Strongly Disagree”, “Disagree”,
or “Neutral” regardless of VC configuration or venue type. Question 4 is phrased generally (as
it was phrased in the original papers [20, 15]), and was used to gauge the general impressions of
participants regarding the VC’s camerawork. The remaining questions were based on specific
venue layouts which affected the results accordingly. We see for Question 5 that there is a
better reception in Venue 3 than in any other venue. This is because the presenter was writing
in a large print on the boards and participants could follow along more easily.
We tested the runtime of the VC from the time it reads in the tracking information until it
produces cropping information as output and we found that it takes an average of 40.3 ms to
run a 2-minute test video (and, given the linear nature of the process, we can expect a runtime
of approximately 1.4 seconds for a 45-minute lecture video). We also tested the reduction in
filesize from the original 4K video to the cropped 720p video and found that the mean reduction
was 81.3%, which means the output video is only 18.7% of the input video (on average).

Figure 13 in Appendix A shows a box plot of runtimes for each of the modules (produced
from a smaller sample of videos, n = 88, to save time). Since the VC only generates and exports
cropping rectangles and does not read in video frames, it has an extremely fast runtime. The
detection and cropping modules process video frames and a large portion of time is used for
disk read/write operations. Using an solid state disk could reduce these runtimes. From the
data in the plot, we can conclude that the worst case total runtime is less than 145 seconds to
fully process a 2-minute video via the full pipeline (or an additional 50% overhead on top of
the input video length).
Caveat on participants: We also notice from Figure 14 in Appendix A that many partic-
ipants had little experience with lecture videos, and thus were not sure what to choose. We
can therefore attribute some of the negative reception to the lack of experience with watching
lecture videos in our participant pool, since many of these participants would not know what
to expect from lecture recordings and, therefore, gave the VC a bad score based on their expo-
sure to other kinds of videos. Further work is required to elaborate on this aspect of the user
evaluation.

6 Conclusions

This work presents a system that post-processes 4K video streams to a reduced size, suitable for
lower bandwidth environments using only middle tier hardware with no GPU. The front-end
extracts presenter motion and writing surfaces and feeds these to the back-end VC to allow
sensible framing decisions.

Presenter detection was shown to be sufficient for our application (F1-score = 0.78) even
under low lighting conditions. While multiple moving objects (student’s moving through venue)
reduce presenter tracking accuracy, these events are typically transient and the VC is able to
gracefully zoom out to a wider field of view. Although student heads were constant distractors
in the predecessor system, the new system is largely unaffected. This success is attributed to
the data filter heuristics for ignoring the distractors. Writing detection achieved satisfactory
results: while poor contrast and diagrams were a major factor reducing accuracy, the VC was
not negatively affected and defaulted to a presenter-only focus. Poor detection of diagrams is
a limitation of EAST and scenes with text only produced significantly better results.

The Virtual Cinematographer took tracking information from the front-end and pro-
duced cropping information that was used to produce the output video. Our user evaluation of
the VC determined that the questions that received a largely negative reception were specific
to the varying factors in a venue. The overall impressions, however, were that it was fit for
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purpose. Videos produced by the VC show viewers what is most important, while changing
shots at a satisfactory frequency, and moved the camera without jarring the view. We also
found that the majority of participants in the user evaluation had little experience with lecture
videos, which could be a contributing factor to the VC’s poor reception. We expect the VC to
operate in ≈ 1.4 seconds for a 45-minute input lecture video (as mentioned in our observations
above) and the file size of the output video is greatly reduced from that of the input file size.

The system can be improved in several ways. Additional heuristics could be developed to
improve the robustness of segmentation of the temporal differencing output. Pointing gesture
detection could also be explored, to provide additional context to the VC. Further VC user
studies with more experienced lecture audiences could be conducted to obtain more conclusive
results.
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A Appendix

Presenter detection Writing detection
Est. Est.Error Q2.5 Q97.5 Est. Est.Error Q2.5 Q97.5

Intercept 5.98 1.20 4.17 8.52 Intercept 0.21 1.98 0.05 0.69
LightingLow 0.42 1.29 0.26 0.69 ProjectorTextYes 32.88 2.97 4.69 341.18
PMLevelHigh 2.18 1.06 1.94 2.46 PoorContrastYes 0.01 6.50 0.00 0.14
MultipleObjectsYes 0.04 1.54 0.01 0.08 DiagramsYes 0.07 2.49 0.01 0.40
StudentHeadsYes 1.05 1.20 0.74 1.50

Table 1: Exponentiated parameter estimates with the estimated error, lower and upper 95%
credibility interval for the presenter (Left) and writing (right) detection environmental factors.

Figure 7: Ground truth is shown with the green rectangle and system with yellow. Poor visibility
and diagrams affects the detection (first three images). Good detections and fragmentation can
be seen in the last three images.

1

2
3 3

2
3

Merged (1,2 & 4) Merged (1,2,3 & 4)

New (4)
Merged (1 & 4)

Figure 8: When a newly added cluster rectangle (green) intersects with an existing cluster (1)
they are merged as shown by the dashed red rectangle. This newly created merge intersects
with existing rectangle (2) and the process is repeated until all intersections are merged.
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Attribute Values Description
Writing type Text/Handwriting Projector text or handwriting on a board.
Poor contrast Yes/No Low text visibility.
Shadow Yes/No If a shadow is cast onto any of the enclosed text.
Characters Yes/No Standalone letters, symbols or equations/expressions.
Diagrams Yes/No Contains diagrams, drawings or images.

Table 2: Attributes used for annotating writing in the ground truth data.

Attribute Value F1

Lighting
Low 0.70
Good 0.82

Student Heads
No 0.79
Yes 0.74

Multiple Objects
No 0.80
Yes 0.43

Presenter Motion
Low 0.68
High 0.88

(a) Presenter detection

Attribute Value F1

Poor Contrast
No 0.62
Yes 0.19

Diagrams
No 0.62
Yes 0.39

Projector Text
No 0.51
Yes 0.57

(b) Writing detection

Table 3: Overall F1-score for the presenter and writing detection under various conditions
reported individually.

1 The camera operator tracked the presenter smoothly
2 I could see what I wanted to watch
3 I like the frequency with which the camera shots changed
4 Overall, I liked the way the operator controlled the camera
5 I was able to follow with what was written on the board
6 The camera view was zoomed and centred appropriately
7 I was able to see the presenter’s facial expressions
8 I was able to see the presenter’s gestures

Table 4: Questions used in the VC User Evaluation after each video pair
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Figure 9: Effects of (a) skipFrames vs. overall front-end runtime and F1-score. (b) work-
ingDimension vs. module runtime and F1-score. (c) workingDimension parameter vs. writing
detection runtime and F1-score. (d) writingDetectionSkipTime vs. writing detection runtime
and F1-score.
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Figure 10: Overall performance graph of the writing detection module. Figure (a) shows varying
area recall constraint tr while fixing tp = 0.4 and (b) varying area precision constraint tp while
fixing tr = 0.8.
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Figure 11: Responses from participants during the evaluation of the VC pertaining to the VC
configuration type
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Figure 12: Responses from participants during the evaluation of the VC pertaining to the VC
venue type
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Figure 13: Distribution of runtime per module and the combination of them all on a sample
set (n = 88) of 2-minute video clips.

0
2
4
6
8

10
12
14
16

1st Year 2nd Year 3rd Year Postgrad Staff Member Other No Answer

Participant Background

P
a
rt
ic
ip
an

t
C
ou

n
t Average Viewing

Time per Week
(Hours)

t < 2

t = 2

t = 3

t > 3

Participant Background and Average Viewing Time per Week

Figure 14: Participant background and average viewing time per week

34



Low Resource, Post-processed Lecture Recording Fitzhenry, Khatieb, Marais and Marquard

See Figure 6. Left to right Venues 1, 2, 3, and 4
Venue 1 There are 2 projector screens, a wide space for pacing, 2 large projectors

which affect the camera’s lighting, and a few students in the front row.
Privacy masks protect student identities and remove irrelevant regions of
the venue. The VC can no longer zoom out fully because the height is
reduced by the privacy masks and the aspect ratio must be preserved.

Venue 2 This layout is similar to Venue 1, but the projector screen content is small
and hard to read. The audience is also more active, which makes it difficult
to identify the presenter reliably.

Venue 3 This layout has a narrower space for the presenter to pace. The boards
are large and close to the camera, which makes the writing easier to read.
No students are visible in this venue. The boards can move vertically, which
gives the front-end difficulty (both) with board usage detection and in main-
taining the continuity of the boards when they are moved.

Venue 4 This layout has 2 large, bright projectors in view and a thick privacy mask at
the top of the venue. The presenter also does not pace in this video despite
having space for it. By staying near the podium, the presenter’s bounding
box is combined with that of the podium every time they overlap, forcing
the VC to remain zoomed out far enough to include both.
All these layouts were chosen because they posed a unique set of challenges
for the VC which we could use to test how the VC copes with varying venue
layouts.

Table 5: Here we describe the Venue Layouts shown in the user evaluation
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