
EPiC Series in Computing
Volume 51, 2017, Pages 46–50

ARCADE 2017. 1st International Workshop
on Automated Reasoning: Challenges, Appli-
cations, Directions, Exemplary Achievements

Beyond DRAT: Challenges in Certifying UNSAT∗

Bertram Felgenhauer

University of Innsbruck
bertram.felgenhauer@uibk.ac.at

Abstract

Contemporary SAT solvers are complex tools and may contain bugs. In order to in-
crease the trust in their results, SAT solvers may produce certificates that can be checked
independently. For unsatisfiability certificates, DRAT is the de facto standard. As long as
the checkers are not formalized, extending the certificate format would decrease the trust
in the checker because its code complexity increases. With the advent of formally verified
checkers for DRAT proofs, this is no longer the case. In this note I argue that symmetry
breaking is not adequately supported by DRAT proofs, and propose to have dedicated
certification for symmetry breaking instead.

1 Introduction

Modern SAT solvers are powerful tools with many applications, for example in software and
hardware verification and for combinatorial optimization and designs. Because SAT solvers have
become quite complex and applications serious, certification of their output is very important.
In fact, the SAT competitions since 2013 have required solvers to produce satisfiability and
unsatisfiability certificates in the main track. Since 2014, the DRAT format (Wetzler et al. [10])
is the de facto standard for unsatisfiability certificates.1

Before this year (2017), the unsatisfiability certificates had to be checked by an independent
program, DRAT-trim, which needed to be trusted. Now we have hybrid verifiers (by Cruz-
Filipe et al. [2] and Lammich [8], both presented at CADE-26), which are based on an untrusted
preprocessor that trims and annotates a DRAT proof, followed by a formally verified (in Coq or
ACL2 [2] respectively Isabelle [8]) checker that certifies that the preprocessed proof establishes
unsatisfiability of the input problem. Compared to DRAT-trim, which is written in C, this
increases the level of trust significantly, without significantly impact on the verification time.

A summary of the DRAT format is given in Section 2. One key advantage of the DRAT
format is that it is very simple and nevertheless covers most preprocessing (and inprocessing)
techniques used in SAT solving [7] in a straightforward manner. I discuss a notable exception,
symmetry breaking, in Section 3. My thesis, which I elaborate in Section 4, is that for techniques

∗This work was supported by Austrian Science Fund (FWF) project P27528
1In principle, a DRAT proof is a sequence of additions and deletion of clauses, and each step can be checked

rapidly. In practice, proofs are generally checked backwards for efficiency reasons, and verifiers like DRAT-trim
are not obviously correct.

G. Reger and D. Traytel (eds.), ARCADE 2017 (EPiC Series in Computing, vol. 51), pp. 46–50

Beyond DRAT: Challenges in Certifying UNSAT Bertram Felgenhauer

like symmetry breaking, encoding proofs into DRAT is inferior to having a standalone certifier
or an extension of the DRAT format for that purpose. Finally, Section 5 discusses the proposal,
based on the discussion during ARCADE.

2 Unsatisfiability and DRAT

A SAT instance is a propositional formula in conjunctive normal forms (CNFs); the objective
is to find an assignment of the propositional variables to true or false such that the formula
becomes true, or to demonstrate that no such assignment exists. Formally, a CNF F is a finite
set of clauses, where each clause C is a finite set of literals, and each literal is either a variable
x, y, . . . ∈ X or a negation of a variable ¬x,¬y, Given a valuation α : X → {T,F}, which
we extend to literals by letting α(¬x) = ¬α(x), the value of F is given by

α(F) =
∧
C∈F

∨
l∈C

α(l).

The CNF F is satisfiable if α(F) = T for some assignment α; otherwise, it is unsatisfiable. It
is very easy to verify satisfiability; all that is required is a satisfying assignment.

For certifying unsatisfiabilty, we need to prove the absence of satisfying assignments. DRAT
is a clausal proof format which works by modifying the CNF while maintaining satisfiability,
until a CNF containing the empty clause is reached, which is trivially unsatisfiable. Each step
consists of either deleting a clause, which trivially preserves satisfiability, or adding a clause that
is a resolution asymmetric tautology (RAT), which ensures that satisfiability is preserved. We
extract the following observation from the proof that adding a RAT clause preserves satisfiability
(cf. Järvisalo et al. [7, Proposition 1])

Observation 1. If α is a satisfying assignment for F and C has RAT on l ∈ C w.r.t. F , then
either α is a satisfying assignment for F ∪ {C}, or we obtain a satisfying assignment from α
by assigning the literal l the value T in α.

As a consequence of this observation, any clause addition step of a DRAT proof can update
at most one value of a satisfying assignment. (This restriction is not as severe as it may sound,
because clause additions can be used to define new variables that do not occur in F , covering
extended resolution [4].)

Remark 1. The polynomial time checkable propagation redundancy (PR) property [6] (pre-
sented at CADE-26) is more versatile than the RAT property. Nevertheless, the way in which
assignments are affected is still rather restricted. To wit, if a clause C is added to a CNF F by
PR, and C is violated by an assignment α satisfying F , then α can be modified by updating a
fixed set of variables to predetermined values to obtain an assignment satisfying F ∧ C. (The
updated variables and their values are given by ω in the proof [6, Theorem 1].)

3 Symmetry Breaking and DRAT

Many SAT instances (for example those arising from graph coloring) exhibit symmetries: per-
muting the variables of an assignment and possibly changing their polarity results in another
satisfying assignment. For example, if α : {x, y} → {T,F} is a satisfying assignment of the CNF
F = (x ∨ ¬y) ∧ (¬x ∨ y), then α′ = {x 7→ ¬α(y), y 7→ ¬α(x)} satisfies F as well. The presence

47

Beyond DRAT: Challenges in Certifying UNSAT Bertram Felgenhauer

of symmetries may cause an exponential blowup in the size of the SAT solver’s search tree2,
and a similar blowup in the size of the resulting unsatisfiability certificates. In order to break
such symmetries, one can add so-called lex-leader constraints to the SAT instance that assert
that applying a given symmetry to the assignment represented in the CNF does not produce a
smaller assignment (see, for example, Devriendt et al. [3]). The resulting formula is equisatis-
fiable to the original one, i.e., if there is a satisfying assignment, but a lex-leader constraint for
a particular symmetry is violated, we may switch to the smaller satisfying assignment induced
by the symmetry; this process must terminate. The lex-leader constraints have the effect of
pruning the search tree, often resulting in faster solving time and smaller certificates.

The main point concerning symmetry breaking for this note is that symmetry breaking
relies on picking a lexicographically smallest assignment among a set of assignments that are
symmetric to a given one, by an iterative process that may completely change the assignment.
As a concrete example, the CNF F = (x∨¬y)∧(¬x∨y) allows adding a lex-leader constraint x∨y
(this is equivalent to (x, y) ≥lex (¬y,¬x)), but both x and y need to be updated simultaneously
in order to obtain a satisfying assignment for F ∧ (x ∨ y) when starting with the satisfying
assignment α = {x 7→ F, y 7→ F}.

Recall that each step of a DRAT proof may change at most one literal of a satisfying
assignment (cf. Observation 1), so the lex-leader constraint cannot be added directly with
DRAT steps. Nevertheless, Heule et al. [5] showed that it is possible to encode (some) symmetry
breaking with DRAT proofs, deriving lex-leader constraints for copies of the existing clauses
using fresh variables. In a nutshell, to break a single symmetry (which is restricted to be an
involution), one first defines a propositional variable z that is true if the desired lex-leader
constraint is violated, then defines copies for each variable affected by the symmetry as either
the original variable, if z is false, or the variable under the symmetry, if z is true. One then
derives, for each clause, the clause obtained by replacing each variable by the corresponding
copy, and the lex-leader constraint. Finally, one can delete the original clauses and the clauses
defining z. All these steps can be encoded without too much difficulty in DRAT, but overall the
process is anything but straightforward. Note that this is just for breaking a single symmetry;
handling multiple symmetries is even more involved.

Remark 2. As we saw in Remark 1, the PR property is less restricted than the RAT property.
In fact, it is possible to update α = {x 7→ F, y 7→ F} to α = {x 7→ T, y 7→ T} in a single step.
(A similar update is performed in the encoding of the pigeon hole principle using PR steps
in [6].) However, this does not scale to large symmetries; a simultaneous swap of x1, . . . , xn
with y1, . . . , yn without using fresh variables would have to be done one assignment at a time,
and therefore require an exponential number of PR steps.

4 Proposal

As we have seen in Section 3, there is a mismatch between DRAT, which is good at local
modification of satisfying assignments that change one variable at a time and at making infer-
ences that do not change the satisfying assignment at all, and global techniques like symmetry
breaking that rely on changing assignments in a holistic way, for example by focusing on the
lexicographically smallest one.

One motivation of encoding symmetry breaking in DRAT is that this way, only a DRAT
verifier needs to be trusted. But for a formally verified checker, the trust is not based on the

2In DPLL solvers with learning, the search tree gives rise to a resolution proof of unsatisfiability that is of
similar size as the search tree; it is known that for the pigeon hole principle (which exhibits many symmetries),
any resolution proof is of exponential size [9]. With symmetry breaking, polynomial sized proofs exist.

48

Beyond DRAT: Challenges in Certifying UNSAT Bertram Felgenhauer

simplicity and maturity of the code, but on having a machine checked correctness proof. There-
fore, incorporating checking and breaking of symmetries (and derivation of the corresponding
lex-leader constraints) can be accomplished without diminishing the trust.

I believe that there is value in direct certification of global techniques. This could be done
by separate certifiers, or by extending the DRAT format and the corresponding verification
toolchains. For symmetry breaking, the main benefit would be that producing certificates
becomes much easier and more compact than encoding them in DRAT format.

As a minimal proposal, consider breaking syntactical symmetries3. In that case, the cer-
tificate contains a list of permutations, and list of literals defining a lexicographic order of
assignments. The certifier would check that the permutations are indeed syntactic symmetries
of the input formula, and add lex-leader constraints corresponding to the given permutations in
a predetermined order and encoding. I expect that if a solver wants to use a different encoding,
it can produce additional DRAT steps to derive it.

5 Discussion

Extending the DRAT format has costs and benefits, which should be weighed. For each ex-
tension, a format needs to be specified, checkers have to be extended or possibly new check-
ers written, and solvers respectively preprocessors that want to use the extension have to be
adapted.

There is also the question, raised by M. Heule during the discussion at ARCADE, whether
DRAT should be extended at all. Currently, a great advantage of the DRAT format is that it
is a very simple, fixed format. If we start extending the format, we move away from this sweet
spot and there is a danger that the process of adding extensions will never stop. There have
been requests to extend the DRAT format in the past. These requests concerned

1. symmetry breaking (as discussed above);

2. cutting planes for cardinality and pseudo-boolean constraints; and

3. Gaussian elimination for XOR constraints.

I believe that symmetry breaking stands out from this list in two ways. First, it is applicable
to plain CNF, while a proper treatment of cutting planes and Gaussian elimination would require
dealing with pseudo-boolean or XOR constraints, or somehow recognizing their encodings in
a CNF. Secondly, the latter two extensions are about inferences that do not affect satisfying
assignments, so we can realistically expect that they can be encoded in DRAT economically.
In contrast, as argued earlier, symmetry breaking requires making copies of all affected clauses
with new variables, which is expensive.

A final question that should be asked of extensions is whether they are useful. In the case
of symmetry breaking, BreakIDCOMiniSatPS won No-Limit track in SAT 2016 competition [1]
but didn’t participate in the main track because no DRAT output for symmetry breaking was
implemented, presumably because the procedure for doing that is very complex. This indicates
that dedicated support for symmetry breaking would be helpful.

3A syntactical symmetry is one that if applied to the input formula under consideration, results in the same
formula again, modulo associativity and commutation of ∨ and ∧.

49

Beyond DRAT: Challenges in Certifying UNSAT Bertram Felgenhauer

References

[1] T. Balyo, M. Heule, and M. Järvisalo. SAT competition 2016: Recent developments. In Proc.
33rd AAAI Conference on Artificial Intelligence, pages 5061–5063, 2017.

[2] L. Cruz-Filipe, M. Heule, W.A. Hunt, M. Kaufmann, and P. Schneider-Kamp. Efficient certified
RAT verification. In Proc. 26th International Conference on Automated Deduction, pages 220–236,
2017.

[3] J. Devriendt, B. Bogaerts, M. Bruynooghe, and M. Denecker. Improved static symmetry breaking
for SAT. In Proc. 19th International Conference on Theory and Applications of Satisfiability
Testing (SAT 2016), volume 9710 of Lecture Notes in Computer Science, pages 104–122, 2016.

[4] M. Heule, W.A. Hunt, and N. Wetzler. Verifying refutations with extended resolution. In Proc.
24th International Conference on Automated Deduction, pages 345–359, 2014.

[5] M. Heule, W.A. Hunt, and N. Wetzler. Expressing symmetry breaking in DRAT proofs. In
Proc. 24th International Conference on Automated Deduction, volume 9195 of Lecture Notes in
Computer Science, pages 591–606, 2015.

[6] M. Heule, B. Kiesl, and A. Biere. Short proofs without new variables. In Proc. 26th International
Conference on Automated Deduction, pages 130–147, 2017.

[7] M. Järvisalo, M.J.H. Heule, and A. Biere. Inprocessing rules. In Proc. 6th International Joint
Conference on Automated Reasoning, volume 7364 of Lecture Notes in Computer Science, pages
355–370, 2012.

[8] P. Lammich. Efficient verified (UN)SAT certificate checking. In Proc. 26th International Confer-
ence on Automated Deduction, pages 237–254, 2017.

[9] T. Pitassi, P. Beame, , and R. Impagliazzo. Exponential lower bounds for the pigeonhole principle.
Computational Complexity, 3(2):97–140, 1993.

[10] N. Wetzler, M.J.H. Heule, and W.A. Hunt. DRAT-trim: Efficient checking and trimming using
expressive clausal proofs. In Proc. 17th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2014), volume 8561 of Lecture Notes in Computer Science, pages
422–429, 2014.

50

	Introduction
	Unsatisfiability and DRAT
	Symmetry Breaking and DRAT
	Proposal
	Discussion

