
EPiC Series in Computing
Volume 45, 2017, Pages 83–95

SCSS 2017. The 8th International Symposium on
Symbolic Computation in Software Science 2017

Origami Folds in Higher-dimension

Tetsuo Ida1 and Stephen M. Watt2

1 Faculty of Engineering, Information and Systems
University of Tsukuba

Tsukuba 305-8573, Japan.
ida@cs.tsukuba.ac.jp

2 David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Canada N2L 2W1
smwatt@uwaterloo.ca

Abstract

We present a generalization of mathematical origami to higher dimensions. We briefly
explain Huzita-Justin’s axiomatic treatment of mathematical origami. Then, for concrete-
ness, we apply it to origami on 3-dimensional Euclidean space in which the fold operation
consists of selecting a half-plane and reflecting one half-plane across it. We finally revisit the
subject from an n-dimensional point of view.

1 Introduction

Origami, the Japanese art of paper folding, allows the creation of a wide range of beautiful
figures. Just as drawing with a straightedge and a compass define a class of idealized con-
structible figures, so do the fold operations of origami. The class of figures that may be so
formed strictly includes those that may be formed with a straightedge and a compass. For
example, it is possible to construct a regular heptagon with origami folds, while it has been
shown impossible by a straightedge and a compass(as a consequence of [17]). The mathemat-
ical properties of origami have been well-studied from several points of view, including plane
geometry, axiomatic systems and software implementation.

The basic operation of origami is the fold. From a mathematical point of view, a fold op-
eration may be defined by a reflection along an oriented line ℓ in the plane. Suppose that we
employ the right-handed system. The half-plane to the right of ℓ is reflected onto the the half-
plane to the left. The fold operation is viewed as a mapping from point sets to point sets need
not refer to any notion of an embedding space in which the fold takes place. This enables us to
reason origami more abstractly, and leads us to study origami in higher-dimensional settings.

We consider a generalization of mathematical origami to higher-dimensions. We first for-
malize Huzita-Justin’s pioneering works[9][14] on mathematical origami. Then for concrete-
ness, we begin our exploration with origami on 3-dimensional Euclidean space in which the
fold operation consists of selecting a half-plane and reflecting one half-plane across it. We then
revisit the subject from an n-dimensional point of view.
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2 Axiomatization of 2-dimensional Origami Geometry

2.1 Huzita-Justin Fold Operations

Huzita [9] and Justin [14] gave the set of elementary fold operations, independently in the
same proceedings1. It is based on the following two observations on the paper folds. (i) for
arbitrarily given distinct points on a sheet of paper, i.e., an origami, we can construct, by hand,
a line segment, to be called fold-line, that passes through them. (ii) we can superpose, by hand,
two distinct points on the origami by a single fold.

Each elementary fold operation in the set takes a form of a command-like expression, log-
ically equivalent to the geometric tool with its well-defined functionality. We call this set HO,
hereafter. When we compare the geometric construction power of HO with a straightedge
and a compass of Euclidean geometry in Subsection2.2, we will treat HO a tool of geometric
construction, as well.

HO has played a fundamental role in the formalization of the origami geometry [9, 7, 3],
just as the tools of a straightedge and a compass played in the construction of geometric objects
in classical Euclidean geometry. In the 2-dimensional (2D) Euclidean geometry, straightedges
and compasses are used, whereas HO relies only on fold operations of an origami by hand.

We will first extend HO to enable us to construct a class of 3D origamis. We focus on the
situations that all the points and lines that serve as the parameters to the HO folds lie on the
same plane P , and that the set F of the origami faces that we fold should lie on that plane. We
call P and F base plane and base face set of the folds, respectively.

(a) Points P and Q on the origami; red line
is a part of the fold line

(b) Origami folded along fold-line PQ

Figure 1: Fold along the line passing through two points

While constructing, by hand, a fold-line that passes through two distinct points is obvious
(see Fig. 1), the superposition (see Figs. 2 and 3) would need some explanation, before we
proceed. We consider the superposition of only lines and points. Let us use α and β to denote
a point, line or a half-line, generically. To express ”superpose α onto (or to) β and vice versa”,
we will also say ”superpose α and β”.

1The same paper by Justin appeared also in the local journal of APMEP of Alsace and the IREM of Strasbourg,
1936. In the paper, the author acknowledged the communication with Huzita.
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(a) Points P and Q on the origami (b) Origami folded to suprpose P and Q

Figure 2: Fold to superpose two points

Depending on the configuration of the points and lines under consideration, we distin-
guish the following six cases of the superposition.

(1) To superpose a point P and a point Q : We assume that it is feasible by hand (cf. Fig. 2(a)(b)).

(2) To superpose a point P onto a line m and vice versa: We assume that it is feasible by hand
since we can take an arbitrary point on m, and then apply Case (1).

(3) To superpose a half-line m and a half-line n, where the two half-lines are concurrent at a
point, say X. We assume that it is feasible by hand since we can take an arbitrary point
(other than X ) on m and superpose it on n with the X fixed. The fold-line is the bisector
of the angle at X.

(4) To superpose a line m onto a line n : We distinguish further the following cases:

(i) To superpose two distinct lines m and n :

(a) m and n are parallel: We can superpose them by folding along the line that
consists of the points equidistant from m and n.

(b) m and n are concurrent: There is a unique point, say X, incident on the two lines.
The point X splits each of the two lines into two half-lines. We take a pair of
half-lines m1 and n1, each taken from m and n, respectively, as shown in Fig. 3(a).
We can superpose the half-lines m1 and n1 by applying case (3). The fold-line ℓ

is the bisector of the angle at X. It is one of the fold-lines. The line ℓ is also the
bisector of the angle at X formed by the half-line pair (m2, n2). When we take
the other half-line pair (m2, n1), we get the other fold-line that is perpendicular
to ℓ.
When the point X is outside the origami, imagine to enlarge the origami to the
extent that it contains X. After the superposition, we clip the enlarged origami
to its original size.
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(ii) When we superpose a line m onto itself, we split the line m, at some point, say X, on
m, into two half-lines (m1, m2) as shown in Fig. 3(b). The fold-line is the orthogonal
to line m and is passing through X.

(a) Superposition of concurrent lines (b) Superposition of a line

Figure 3: Superposition of two lines, and superposition of one line

2.2 HO: Set of Huzita-Justin Elementary Folds

We are now ready to present HO, formally. HO consists of seven statements (O1) ∼ (O7) about
the fold operation on the abstract origami. Let O = (F ,≻,∽) denote an abstract origami [12].
We assume that it is placed on the base plane P . The abstract origami O is equipped with
the set of faces F with binary relations ≻ and ∽ on it, each called superposition and adjacent
relations, respectively. It suffices that we remain at this level of abstraction to continue our
discussion. Namely, we do not need more abstract or more concrete description about the
structures of the origamis in this paper.

We fold an origami O along a fold-line determined by the parameters of each elementary
operation. The parameters are lines each specified by a pair of distinct points on the faces, and
points on the faces.

(O1) Given two distinct points P and Q, both on F , fold O along the fold-line on P that passes
through P and Q.

(O2) Given two distinct points P and Q, both on F , fold O along the fold-line on P to super-
pose P on Q.

(O3) Given two distinct lines m and n, both on F , fold O along a fold-line on P to superpose
m on n.

(O4) Given a line m and a point P , both on F , fold O along the fold-line on P passing through
P to superpose m onto itself.
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(O5) Given a line m, a point P not on m, and a point Q, where m, P and Q are on F , fold O along
a fold-line on P passing through Q to superpose P and m.

(O6) Given two lines m and n, two point P and Q each not on m and not on n, respectively,
where m and n are distinct or P and Q are distinct, and furthermore m, n, P and Q are on
F , fold O along a fold-line on P to superpose P and m, and Q and n.

(O7) Given a line m, a point P not on m, and a line n distinct from m, where m, n and P are all
on F , fold O along the fold-line to superpose P and m, and n onto itself.

From HO, we will be able to define an origami geometry in a similar way laid down in the
classical Euclid geometry. In Huzita [9], he made an initial attempt to axiomatize an origami
geometry in Euclidean way. We will follow the path of his research.

We take the following statements (A1) and (A2) as the axioms of the origami geometry.

Axiom 2.1 (A1). Given two distinct points on F , we can fold O along the unique fold-line that passes
through both points. (cf. Fig. 1.)

Axiom 2.2 (A2). Given two distinct geometric objects α and β on F , we can fold O to superposes α
and β. (cf. Fig. 2, when α and β are points.)

Depending on the configurations of the point(s) and the line(s) that are the parameters
of each operation (O3)∼(O7), its operability, i.e., foldability, is determined, and can be given
as propositions. The number of possible fold-lines of each operation is easily determined by
algebraic analysis [8]. The well-known results are summarized in Table 1. Note that 0 in the
column “number of fold-lines” implies that it is impossible to perform the specified fold.

The powers of HO used in the origami geometry and the power of the tool of a straightedge
and a compass used in the classical Euclidean geometry have been extensibly studied in the
past. Wantzel showed that trisecting an arbitrary angle is impossible by a straightedge and
a compass [17]. This is due to the inability of finding a cubic root of degree 3 polynomial
equations by a straightedge and a compass. A decade later Piazzola Beloch [4] showed that the
cubic root of 2 is constructible by the elementary fold operation, which we called (O6) of HO.
Martin’s work[16], more than 60 years later than Beloch’s solidified the significance of (O6).
We compare the powers of the two pairs of the tools by the following way. We inductively
define the set of constructible points that the both tools can generate. It is easy to convert
those points to constructible numbers. The algebraic properties of the constructible number
sets are easily characterized. The set of constructible points by HO is a proper superset of the
set of constructible points by a straightedge and a compass [10, 2]. See, also, Cox [5](Theorem
10.3.4, page 276) for concise summary on this subject).

fold operation number of fold-lines

(O3) 1, 2
(O4) 1
(O5) 0, 1, 2
(O6) 0, 1, 2, 3
(O7) 0, 1

Table 1: Number of possible fold-lines in HO
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2.3 Example: Trisecting an Angle

We show how HO is used to construct the trisectors of an arbitrarily given angle. Let E be an
arbitrary point on the edge DC (see Fig. 4(a)). We construct two lines that trisect ∠ EAB. This
construction is a variant (slightly more general) of Abe’s method [1]. We put an arbitrary point
F on the edge DA (see Fig. 4(a)). We name this step as Step 1. Then we apply the following ele-
mentary operations in sequence. Note that we omit the unfold operation after each execution
of Steps 2 and 3. The shown figures are the ones obtained after unfolding. The dashed lines
are so-called creases made after the valley-folds.

Step 2: (O4) with m = AD and P=F (see Fig. 4(a))

Step 3: (O2) with P = A and Q = F (see Fig. 4(b))

Step 4: (O6) with P = F, Q = A, m = AE and n = HI (see Fig. 5(a))
There are three possible fold-lines, each trisecting π −∠EAB, 2π −∠ EAB and ∠EAB,. We
choose the third one. Recall that in Table 1, we have three possible fold-lines in the row
(O6).

Step 5: (O1) with P= A2 and Q = A (see Fig. 5(b))

Step 6: (O1) with P = A2 and Q = H (see Fig. 6(a))

After Step 6, we unfold the origami twice and obtain the the crease pattern with marked points
as shown in Fig. 6(b). For clarity, the two trisectors are drawn in bold and red.

(a) Origami after Step 2 (b) Origami after Step 3

Figure 4: Trisection of ∠EAB (Steps 2 and 3)

The construction shown above was performed by computational origami system Eos[13].
The automated proof for arbitrary point E, and point F on line AD is performed by Eos. The
prover in this case resorts to Gröbner basis computation of the set of the polynomials whose
coefficient domain is rational functions. The set of polynomials is generated automatically
from the construction.
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(a) Origami after Step 4 (b) Origami after Step 5

Figure 5: Trisection of ∠EAB (Steps 4 and 5)

(a) Origami after Step 6 (b) Origami after Step 7

Figure 6: Trisection of ∠EAB (Steps 6 and 7)

3 Origami of Euclidean 3-dimensional Space

3.1 Fold Operations for 3-dimensional Origami

By analogy of a fold of the plane being a choice of line and reflection of a half-plane, we define
a fold of Euclidean 3-dimensional space. In this section, we describe generalizations of HO
to 3-dimensional space. In this generalization, a fold-line corresponds either to a fold-line in
a plane, i.e., as a (0 + 1)-dimensional object, or as a half-plane, i.e., as a (3 − 1)-dimensional
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(a) Fold-plane (b) Result of (3D-O1)

Figure 7: (3D-O1) with P1, P2 and P3

object.

In 2D origami, the fold consists of two sub-operations:

1. To determine the fold-line. The fold-line divides the origami base plane into two half-
planes, and some faces on the base plane.

2. To rotate one of the half-planes by degree π (or −π). The faces on the rotated half-space
are also rotated accordingly. The choice of the half-plane and the direction of the rotation
remains parametric, i.e., being left to the origami designer.

This rotation realizes the 3D-reflection of faces across the half-plane normal to the base plane
and on which the fold-line lies. In 3D origami, we generalize the notion of the fold-line from
the rotation by an angle ±π along the fold-line to the rotation about the fold–plane.

In 3D origami, the reflection is made explicit, rather than hidden behind the fold opera-
tions. As a consequence, the fold is the reflection across the fold-plane that is determined by
the parameters to the elementary 3D fold operations. The fold-plane is now a mirror, and the
fold is to obtain the image faces in front of the mirror and then to compose them with the
faces on the backside of the mirror. To see this more clearly, let us discuss the extension of
(O1) to 3D. We will call this elementary fold operation extended to 3D by prefixing ”3D-”, e.g.
(3D-O1).

(3D-O1) Given three distinct points P1, P2 and P3 on F , that are not collinear, fold O across a
fold-plane on which the three points lie.

When the three points are not collinear, there exists a unique half-plane on which P1, P2

and P3 lie. Figure 7(a) shows the fold-plane specified by points P1, P2 and P3. Line EF is
the intersection of the origami ABCD and the fold-plane. Figure 7(b) shows the combined
figure of the result of the (3D-O1) fold and the fold-plane.
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(a) Fold-plane (b) Result of (3D-O2)

Figure 8: (3D-O2) with P and Q

(3D-O2) Given two distinct points P and Q, fold O across the fold-plane to superpose P onto
Q.

The fold-plane is the plane whose normal (vector) is
−→
PQ or

−→
QP, and on which the mid-

point of P and Q lie (See Figs. 8(a) and 8(b)). Note that the fold planes shown in light
blue in Fig. 7(b) and Fig. 8(b) are only for the illustrative purpose. It is not a part of the
origami.

(3D-O3) Given two distinct lines m and n, that are coplanar, fold O across a fold-plane to
superpose m onto n.

The construction of the fold-planes will be discussed in Subsection 3.2 after we intro-
duce (3D-O4), (3D-O5), (3D-O6) and (3D-O7), since we use the same technique of the
construction that resorts to the method of the 2D-origami construction.

(3D-O4) Given a line m and a point P , fold O across the fold-plane passing through P to
superpose m onto itself.

There is a unique half-plane which is orthogonal to line m and on which point P lies
(Figs. 9(a)(b)). This half-plane is the desired fold-plane.

(3D-O5) Given a line m, a point P not on m, and a point Q, where m, P and Q are on the same
plane, fold O along a fold-plane passing through Q to superpose P and m.

(3D-O6) Given two lines m and n, two point P and Q each not on m and not on n, respectively,
where m and n are distinct or P and Q are distinct, and furthermore m, n, P and Q are on
the same plane, fold O across a fold-plane to superpose P and m, and Q and n.

(3D-O7) Given a line m, a point P not on m, and a line n distinct from m, where m, n and P are
all on the same plane, fold O across the fold-plane to superpose P and m, and n onto
itself.
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Using these operations, it is possible to construct complex figures such as regular poly-
topes [6], perform dihedral angle divisions, and so on.

3.2 Extension of 3-dimensional Elementary Fold Operations

The construction of the fold-plane for the cases of (3D-O3), (3D-O5), (3D-O6) and (3D-O7) are
similar to the one for (3D-O4). Let i denote an index of 3, 5, 6 or 7. For each i, we construct the
fold-plane as follows. We define the plane, say W , where all the geometric parameters to (3D-
Oi) lie. We consider that W is the base plane of 2D origami. Then we apply (Oi) to (3D-Oi),
and obtain the fold-line. We take a plane that passes through the fold line and is orthogonal
to plane W . We split this plane by W into upper and lower half-planes. The fold-plane is
unique for each fold line. Finally, we take one of the half-plane, depending on how we fold
the origami (mountain or valley). This half-plane is the desired fold-plane. By construction,
the numbers of fold-planes are the same as those for (Oi) given in Table 1.

There are interesting situations where two distinct line parameters are involved in (3D-
O3), (3D-O6) and (3D-O7). In these cases, obviously, we cannot always assume that the two
lines are coplanar. Even in the case that two lines are skew, we can make the 3D fold possible,
provided that we allow pre-processing of a rotation of one of the lines such that the rotated
line and the non-rotated line lie on the same plane and that the point type parameters become
to lie on the same plane. We will discuss this extension for (3D-O3). In (3D-O3), we have no
point parameter and the treatment is easier than the other cases. The algorithm is as follows.
See Fig. 10 for the referred graphic objects:

1. Take an arbitrary point X that lies on m and does not lie on n. See Fig. 9(a).

2. Point X and n form a plane Q (shaded in green in the sub-figures). Define a location

vector
−→
V that is normal to Q and whose footing is X. Vector

−→
V and m form a plane R

(shaded in red in the sub-figures). See Fig. 9(b).

3. Rotate m along
−→
V on R anchored at X by an appropriate degree θ such that the moved m

and n be coplanar (i.e., m’ will be moved to be on R).

4. Let m’ denote the rotated line m. Apply (O3) with line parameters m’ and n.

4 The n-dimensional Fold

We used the word fold-line for 2D origami and fold-plane for 3D origami. To extend this
usage to higher dimensions, we need to introduce yet another more general terminology for
higher dimension origami. We define a fold-hyperplane in n-dimensional origami to be a (n-
1)-dimensional hyperplane. The fold operation reflects one of the half-plane onto the other
half-plane across the fold-hyperplane.

(nD-O1) Given n points in general position in n-dimensional space, fold O across the fold-
hyperplane of (n-1)-dimension that passes through all of them.

(nD-O2) Given two distinct points P and Q, fold O across a unique fold-hyperplane that su-
perposes P onto Q.

Operation (nD-O2) remains true as stated. The construction is as follows: Let ℓ be the
fold-line that passes through P and Q. Construct the (n-1)-dimensional hyperplane or-
thogonal to ℓ and passing through the midpoint of P and Q.
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(a) Plane with coplanar parameters in (3D-O4) (b) Fold-plane of (3D-O4)

Figure 9: Fold-plane in (3D-O4)

(a) Fold-plane with skew line parameters (b) Coplanar line parameters m’ and n

Figure 10: (3D-O3) with m and n

(nD-O3) Given two lines m and n, fold O across a fold-line that superposes m and n. There
are two ways to generalize (O3) to n-dimensional case: leaving line parameters m and
n as fold-lines, or treating them as (n-1)-dimensional hyperplanes. Let us first consider
the case of two fold-lines (2D-hyperplane). We can make the two fold-lines coplanar
included in (n-1)-fold-hyperplane as we treated in (3D-O3). Next we consider the case
that m and n are hyper-half-planes. Roughly speaking, they will generally intersect in a
fold-line. The hyperplane that bisects this dihedral angle is the desired fold-hyperplane.

(nD-O4) Given a point P and a line m, fold O across a unique (n-1)-dimensional hyperplane
orthogonal to m that passes through point P.

This rule remains correct as stated for n-dimension case. There is a one parameter fam-
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ily of hyperplanes orthogonal to m. As the fold-hyperplane passes through P, the fold-
hyperplane is made unique.

(nD-O5) Given a line m, a point P not on m, and a point Q, where m, P and Q are on the same
plane, fold O along a fold-plane passing through Q to superpose P and m.

This is the same as (3D-O5). If we supposed that m, P and Q are on the same (n-1)-
hyperplane, we could have (n-1) parameter family of fold-(n-1)-hyperplane. It is not a
hyperplane eligible for fold operation. The same consideration is applicable for the rest
of the elementary fold operations. Thus we have the following.

(nD-O6) the same as (3D-O6)

(nD-O7) the same as (3D-O7)

5 Concluding Remarks

By extending Huzita-Justin fold operations, we presented a new fold principle for three- and
higher-dimensional origami. The next step of our research is algebraic formulation of all the
explained statements as is done in [8]. Then we will be able to precise the constraints in alge-
braic terms on the parameters of each statement.

Another interesting topics of research in this context is to explore more fold operations for
higher-dimension origamis. Even with 3D origami, classical fold methods for recreational and
artistic origami, such as inside (and outside) reverse fold and squash fold, can be given a new
interpretation in our 3D origami. It would be natural to expect more fold operations for 3D
and higher-dimensional origami.

As for the realization of the higher-dimensional origami, a work is in progress to incor-
porate the 3D origami based on this new principle in the computational origami system Eos.
As a computation and proof engines, we introduced a layer of geometric algebra for system-
atic implementation[11]. Computer assisted construction of 3-dimensional origami examples
using conformal geometric algebra is reported [15], where Huzita-Justin fold principle for 2D
Origami is used.
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