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Abstract

Algorithms for the numerical solution of contact quasi-static problems of deformable
solid mechanics were constructed. The contact interaction of the body system was con-
sidered using the mortar method (a variant of the Lagrange multiplier method). The de-
veloped algorithms were used to simulate the thermomechanical state of a fuel element
section, considering creep and cracking. The results of calculations for axisymmetric for-
mulation of the problem for the operation mode of a fuel element with constant heat release
in fuel pellets are presented.

1 Introduction

The assessment of the equipment critical components reliability and durability
is based on an analysis of the structure stress-strain state, considering the contact interac-
tion features. There is no analytical solution for most practically important contact prob-
lems, therefore numerical methods are used to determine the displacement and stress fields.
Among them, the following can be noted: the domain decomposition method [16, 6], the penalty
method [4, 11], various variants of the Lagrange multiplier method [19], in particular, the mor-
tar method [17], which offers a great facility for coupling different variational approximations
and therefore using mismatched grids at the subdomains interfaces.

The paper presents a general formulation of the quasi-static multicontact problem and
introduces the algorithm for the numerical solution of such problems, considering cracking
and creep. The mortar method was used to ensure that the boundary conditions were met
on the contact surfaces between the bodies.

This article continues a series of publications devoted to modeling various thermomechanical
processes in a fuel element section: in [1], a demonstration multicontact problem is solved
in a thermoelastic approximation. In [2], the creep effect was added to the material model, and
a section of fuel rod containing from 1 to 100 pellets was modeled. In this work, an account of the
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cracking of fuel pellets has been added, which is performed using the smeared crack model [5],
and the presence of a gap between the pellets and the cladding is also considered. This model
boils down to the fact that during the loading of a material, its elastic properties change, and
in different directions these changes occur unevenly. Thus, after considering cracking, it is
necessary to solve the creep problem for a material with anisotropic elastic properties.

In addition to using the mortar method to simulate the contact interaction of fuel elements,
the authors also used variants of the domain decomposition method (DDM). These methods
make it possible to reduce the solution of a global problem for a system of bodies to solving
a number of local problems for each body separately within the framework of an iterative pro-
cess. In this case, either kinematic (analogous to the Dirichlet condition) or force (Neumann
condition) boundary conditions are set on each contact surface. The effectiveness of the DDM
methods is determined by the convergence rate of the corresponding iterative process. In [8],
the rate of convergence of iterations in the Neumann — Dirichlet method for the problem
of modeling a fuel element section comprising from 1 to 100 fuel pellets in a thermoelastic
axisymmetric formulation is investigated. The paper [7] presents the results of solving a similar
problem in a three-dimensional formulation (for the sector 90◦). In [9], an axisymmetric prob-
lem is examined for a section of 10 pellets, considering cracking for pellets and the formation
of plastic deformations for the cladding, and in the thermal problem, the condition of ideal
thermal contact is set on the contacting surfaces.

2 Mathematical formulation of the problem

Consider that in the three-dimensional space R3 there is a group of contacting bodies occu-

pying the area G =
N⋃

α=1
Gα (α — index denoting the body number), bounded by a piecewise

smooth boundary ∂G =
N⋃

α=1
∂Gα.

Consider the following problem simulating some processes taking place in a fuel rod: in-
side the cylindrical cladding GN there is a column of several identical cylindrical pellets
G1, . . . , GN−1 stacked on top of each other, having an inner hole and chamfers at both ends.

We assume that the cladding temperature is constant, and to find the temperature in the
fuel pellets, the following initial boundary value problem is solved for the thermal conductivity
equation in the region Gp = G\GN [20]:

c(T )ρ
∂T

∂t
= (kij(T )T,j),i + q(x, t), x ∈ Gp, t > 0; (1)

T (x, 0) = T0(x), x ∈ Gp; (2)

−nikij(T )T,j

∣∣∣
∂Gp

= 0, x ∈ ∂Gp\ST3 t > 0; (3)

−nikij(T )T,j = h[T (x, t)− Tclad], x ∈ ST3, t > 0, (4)

where t is time, xi are the coordinates of the vector x ∈ Gα, T (x, t) is temperature at time t,
c(T ) is specific heat capacity of the medium, ρ is density of the medium, kij are the components

of the thermal conductivity tensor, T,j =
∂T

∂xj
, q(x, t) is power of internal heat sources, T0(x) is

initial temperature, ni are the components of the external normal vector to the boundary ∂G,
h is the coefficient of heat transfer on the surface ST3 (union of the outer surfaces of pellets),

26



Development of Numerical Algorithms for Multicontact Problems Aronov, Galanin and Rodin

on which the condition of heat exchange between pellets and the cladding is set, Tclad is the
cladding temperature.

The mathematical formulation of the quasi-static thermomechanics problem, considering
creep deformations, includes the following relations for each body α (i, j = 1, 3) [20]:

• equilibrium equations
σji,j(x, t) = 0, x ∈ Gα, t > 0; (5)

• kinematic boundary conditions

uz(x, t) = 0, x ∈ S1, t > 0; (6)

• force boundary conditions

σji(x, t)nj = gi(x, t), x ∈ S2, t > 0; (7)

• Cauchy relations for the linear full strain tensor

εij(x, t) =
1

2
(ui,j(x, t) + uj,i(x, t)), x ∈ Gα, t > 0; (8)

• defining equations (Hooke’s law)

dσij(x, t) = Cijkl(T )
(
dεkl(x, t)− dεTkl(x, t)− dεckl(x, t)

)
, x ∈ Gα, t > 0, (9)

where xi are the coordinates of the vector x ∈ Gα, ui are the displacement vector components;
σij are the Cauchy stress tensor components; εkl are the full tensor deformations components;
εTkl are the temperature strain tensor components; εckl are the creep strain tensor components;
Cijkl are the elastic tensor constants components; gi are the surface forces vector components.

The model considers that each pellet (except G1 and GN−1) comes into contact with two
adjacent (top and bottom) pellets and the cladding.

Consider a pair of potentially contact surfaces related to bodies with numbers α1 and α2.
To simplify the recording, we use the index ’1’ instead of ’α1’ and ’2’ instead of ’α2’. Then the
additional conditions on the S1

k surface for the case of frictionless contact look like this (for the
S2
k surface the conditions are written similarly) [6, 19]:

σ1
τ (x, t) = σ2

τ (x̄, t) = 0, (10)

σ1
n(x, t) = σ2

n(x̄, t) ⩽ 0, (11)

u1
n(x, t) + u2

n(x̄, t) ⩽ δ0n(x, t), (12)

σ1
n(x, t)

(
u1
n(x, t) + u2

n(x̄, t)− δ0n(x, t)
)
= 0. (13)

Here x is some point lying on the S1
k surface, x̄ is a similar point located opposite it on the

S2
k surface, δ0n(x, t) ⩾ 0 is the initial gap function (the surface sections could not touch each

other at the initial moment), uα
n = uα · nα, σα

τ = (σα · nα) · τα, σα
n = (σα · nα) · nα, α = 1, 2

(summation by α is not performed).
The conditions (10)–(13) guarantee that on some S12

k section S1
k and S2

k surfaces will coincide
(the configuration and position of this section are unknown in advance), in this case, compressive
contact forces will act on the contacting bodies. In the considered system, the set of contact
surfaces Sk includes N − 2 pellet/pellet contact pairs and N − 1 pellet/cladding contact pairs.

To model the creep process, the flow theory is used, the main provisions of which include [13]:
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• additive decomposition of the full strain tensor time derivative

dεij = dεeij + dεcij + dεTij ; (14)

• incompressibility of creep deformation

dεcii = 0; (15)

• relation for the creep strain tensor time derivative

ε̇cij = µ̇σ′
ij , (16)

where µ̇ =
3

2

ε̇ci
σi

, σi =

√
3

2
σ′
klσ

′
kl is stress intensity, ε̇ci = f(T, σi) is the dependence for creep

strain rate, σ′
kl = σkl −

1

3
σmmδkl.

To consider pellets cracking, the smeared crack model is applied, in which it is assumed
that the increment of elastic deformation is associated with the increment of stresses by the
following equation [15]

dεeij = C̃−1
ijkldσkl, (17)

moreover, the coefficients of the compliance tensor C̃−1
ijkl depend on total deformations or total

stresses (further in the article an example of a specific type C̃−1
ijkl is given).

Thus, the determining ratio in pellets can be written as

dσij = C̃ijkl

(
dεkl − dεTkl − dεckl

)
. (18)

To discretize the thermal conductivity problem (1)–(4) and the mechanics problem (5)–(18),
the finite element method (FEM) is used, and an algorithm based on the mortar method is built
to consider the contact interaction of bodies.

3 Using of mortar method for solving contact problems

There is no analytical solution for the problem under consideration, therefore it is neces-
sary to use numerical methods. To do this, we move from the initial differential formulation
to the weak one. This transition can be carried out in various ways. Here is a method based
on considering the energy of a system of N deformable bodies, which at time tm looks like this

Π(tm) =

N∑
α=1

Πα(tm) + Πc(tm), (19)

where

Πα(tm) =
1

2

∫
Gα

σT (ε− ε0) dG−
∫
S2

uTg dS, (20)

and Πc is responsible for the contribution to the potential energy of distributed contact forces
that act on the surfaces of contacting bodies; its specific type depends on the method used,
among which one can distinguish the classical and augmented Lagrange multiplier methods,
the penalty method, a combination of the Lagrange multiplier method and the penalty method,
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Neumann — Dirichlet methods, Nietzsche’s method, barrier function method, various combi-
nations of barrier function method and penalty method, and others [18].

The paper uses the Lagrange multiplier method, for which Πc looks like this:

Πc(tm) =

∫
Sk

(λn(x, tm)gn(x, tm) + λτ (x, tm)gτ (x, tm)) dS, (21)

where gn = (u2 − u1) · n, gτ = (u2 − u1) · τ are gap functions (in the three-dimensional case,
we need to consider the tangent plane, the function gτ will be vector). If the friction-free sliding
condition is set on the contact surfaces, then λτ = 0.

Solving the problem (5)–(13) at time tm is equivalent to minimizing the functional [14]

Π =
1

2

∫
G

σTε dG−
∫
S2

uTg dS +

∫
Sk

λn (u2n(x) + u1n(x)− δ0n(x)) dS (22)

when the kinematic boundary conditions (6) are met, where λn are Lagrange multipliers that
are projections of stress vectors to the directions of external normals, un = urnr + uznz.

Minimizing the functional (22), which includes the integral over the contact surface, leads
to the formation of the following system of linear algebraic equations with respect to the incre-
ment vectors over time ∆t = tm − tm−1 [19, 12]:[

K M
MT 0

]{
∆U
∆λ

}
=

{
R̂u

R̂λ

}
, (23)

where {
R̂u

}
=

{
R̂
}
−
{
F̂
}
− {λ}T [M ]

T
, (24){

R̂λ

}
= {R̂δ} − [M ]

T {U}, (25)

{∆U} is the nodal displacement increments vector, {∆λ} is the Lagrange multiplier increments

vector, [K] is stiffness matrix,
{
R̂
}

is the external forces vector,
{
F̂
}

is the internal forces

vector, [M ] is a matrix describing the interaction of various bodies with each other, {R̂δ} is
a vector considering the presence of an initial gap between the contacting surfaces.

The algorithm, some features of the mortar method application in relation to the problem
under consideration, as well as specific expressions for the introduced matrices and vectors are
described in [1, 2].

Since the configuration of the contact surfaces is unknown in advance, a cycle of external
iterations is carried out to account for its changes. On the outer iteration with the number
(i + 1) (i = 0, 1, 2 . . .) a mortar grid is used (and the matrix M formed on its basis), referring
to an already known configuration from the previous i-th iteration.

If the increment of inelastic deformations
{
∆ε0

}
depends on the current values of deforma-

tions and stresses (creep or cracking considering), then even for a fixed contact configuration,
the system of equations (23) is nonlinear and needs to be linearized with using one of the iter-
ative methods (we talk about the cycle of internal iterations).

In the problem under consideration, it can be assumed that the vector of inelastic deforma-
tions includes temperature deformations and creep deformations (

{
∆ε0

}
=

{
∆εT

}
+ {∆εc}).

For the cladding, the matrix of elasticity coefficients
[
D̂
]

has the standard form [12],
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and for fuel pellets, when using the smeared crack model, the matrix
[
D̂
]
considering the crack-

ing of the material and is set as follows [15]

[
D̂
]−1

=


1/Êr −ν/E −ν/E 0

−ν/E 1/Êz −ν/E 0

−ν/E −ν/E 1/Êφ 0
0 0 0 1/G

 (26)

Here, the modified Young modules Êi, depending on the current values of deformations εi
(i = r, φ, z), change from the nominal value of E (in the region of strong compression) up to
a certain limit value of E∞ (in the area of strong stretching). The calculations used the value
E∞ = E/10, and the arcctg function was used to set smooth transition between values.

Note that after the beginning of the cracking process, the pellet material acquires elas-
tic anisotropy, this is considered when constructing a numerical algorithm for finding creep
deformation.

If the simple iteration method is used for linearization, then by the (i+1)-th outer iteration
and the (s+ 1)-th internal iteration needs to solve the following system of linear equations:[

K(i,s) M (i)

M (i)T 0

]{
∆U (i+1,s+1)

∆λ(i+1,s+1)

}
=

{
R̂

(i,s)
u

R̂
(i)
λ

}
, (27)

where the vector of increments of inelastic deformations
{
∆ε0

(i,s)
}(e)

is used to determine

the local vectors of internal forces
{
F̂ (i,s)

}(e)

(which makes up the global vector of internal

forces
{
F̂
}
in the ratio (24)), and the matrices

[
D̂
]
set by (26) are used to determine the local

stiffness matrices
[
K(i,s)

](e)
in the elements related to fuel pellets.

Consider the general situation when the simulated system includes N bodies and q pairs
of contact surfaces. In this case, the matrices and vectors included in (27) allow the following
block representation (omit the indexes responsible for iteration numbers) [3]:

[K] = diag (K1, . . . ,KN ) , [M ] = [M1, . . . ,MN ]
T
, (28)

{∆U} = {∆U1, . . . ,∆UN}T , {∆λ} = {∆λ1, . . . ,∆λq}T , (29)

where the stiffness matrices for the i-th body Ki have dimension ni × ni, i = 1, . . . , N (ni are
the number of unknown displacements in the i-th body, n = n1 + . . .+ nN ), matrices Mi have
the dimension ni×m (m = m1+ . . .+mq is the total number of unknown Lagrange multipliers).

For the numerical solution of the (27) system, the LU decomposition algorithm for sparse
matrices was used, implemented as the SparseLU procedure from the Eigen library1.

4 Results of numerical solution

To assess the effect of the initial gap between the pellets and the cladding on the final stress-
strain state, a number of calculations were performed for the fuel element section, including
10 pellets (N = 11). Consider realistic material characteristics (zirconium alloy for the cladding
and uranium dioxide for fuel pellets), procedures from the MATPRO library were used [10].

1https://eigen.tuxfamily.org
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Figure 1: Graphs of radial displacements on the outer surface of the pellets and the inner
surface of the cladding at a time of 1 year: (a) — calculation 1; (b) — calculation 3.

In the calculations performed, it was assumed that in the thermal problem T0 = 300 K,

Tclad = 623 K, the heat dissipation power is given by the function q(x, t) = q0(t) sin
πz

L
, where

L is the fuel column height, and q0(t) changes over time as follows: in 1 hour it increases
linearly from 0 to the nominal value of qnom and then remains constant. In the mechanical
problem, the surface S1, on which the kinematic conditions are set, includes the lower ends
of the cladding and the lower pellet (they are fixed vertically), and the surface forces gi(x, t)
differ from zero only on the outer surface of the cladding (constant pressure 10 MPa) and on
the upper end of the upper pellet (constant pressure 50 MPa).

The initial gap δ0n between the pellets and the cladding in the calculation 1 was 0.01 mm,
in the calculation 2 — 0.025 mm, in the calculation 3 — 0.06 mm. In all calculations, a time
interval of 1 year was modeled (the typical operating time of the fuel element is several years).

A grid of second-order quadrangular finite elements is used in the calculations. After achiev-
ing the rated heat output power, the maximum temperature in the pellets reached a level
of about 1500 K, due to heating, the fuel column shifted significantly relative to its initial po-
sition, while in the pellet/pellet contact pairs, most of the surface elements left contact (except
for several elements located closer to the inner pellet surface). The development of creep de-
formations was considered only after the release of heat release in pellets at rated power (after
1 hour).

The graphs of stress and displacement distributions for various calculations are shown below,
the stresses are given in MPa, and the displacements and coordinates are given in meters.
The stress values are given in the Gauss points. To the values of radial displacements in the
nodes corresponding to the surface of the cladding, the initial gap value is added.

Figure 1 shows graphs of radial displacements on the outer surface of pellets and the inner
surface of the cladding for calculations 1 and 3 at the time of 1 year. As can be seen from the
above graphs, in the case of a small gap (calculation 1, δ0n = 0.01 mm, Fig. 1(a)) all 10 pellets
are in contact, the kinematic part of the contact conditions is fulfilled. If there is a sufficiently
large gap between the pellets and the cladding (calculation 3, δ0n = 0.06 mm, Fig. 1(b)) there
is no contact between the fuel column and the cladding.

Figure 2 shows graphs of radial displacements and stresses on the outer surface of the pellets
and the inner surface of the cladding corresponding to calculation 2 at the time of 1 hour
(Fig. 2(a) and Fig. 3(a)) and 1 year (Fig. 2(b) and Fig. 3(b)).
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Figure 2: Graphs of radial displacements on the outer surface of the pellets and the inner
surface of the cladding (calculation 2) at time: (a) — 1 hour; (b) — 1 year.
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Figure 3: Graphs of radial stresses on the outer surface of the pellets and the inner surface
of the cladding (calculation 2) at time: (a) — 1 hour; (b) — 1 year.

As can be seen from Fig. 2 and 3, if there is an initial gap δ0n = 0.025 mm, there are 4 pellets
in contact with the cladding (from the 4th to the 7th), as well as small areas of the surfaces
of the 3rd and 8th pellet. Graphs of radial displacements in Fig. 2 show the fulfillment of the
kinematic part of the contact conditions (10)–(13), and the graphs of radial stresses in Fig. 3
show the fulfillment of the force part of the conditions in the pellet/cladding contact pairs
for those surfaces that are in contact. The specified sinusoidal character of heat release leads to
a sinusoidal distribution of contact forces and corresponding displacements and stresses along
the fuel rod. Stress concentrators appear in the areas of the contact surfaces near the corners
of the pellet facets. Considering the creep effect leads to a decrease in the level of radial stresses
at the end of the calculation by 2.5 times compared to the time of 1 hour.

In Figures 4–5 graphs of the stress tensor components along the cross section drawn along the
center of the 2nd pellet (not in contact, Fig. 4) and the 5th pellet (completely in contact, Fig. 5)
at time points 1 hour and 1 year (the area corresponding to the coordinate r > 0.0039 m refers
to the cladding). As can be seen from the figures, considering creep allows to reduce the level
of tensile stresses several times. Comparison of Fig. 4(a) and 4(b), as well as Fig. 5(a) and 5(b)
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Figure 4: Graphs of radial stresses along the cross section of the 2nd pellet (calculation 2)
at the time: (a) — 1 hour; (b) — 1 year.
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Figure 5: Graphs of radial stresses along the cross section of the 5th pellet (calculation 2)
at the time: (a) — 1 hour; (b) — 1 year.

shows that the level of compressive stresses occurring in pellets closer to the inner surface is also
significantly reduced. Considering cracking using the smeared crack model makes it possible
to reduce the level of tensile stresses several times compared to the thermoelastic calculation
(see, for example, [2]).

In Figure 6 graphs of radial displacements on the outer surface of pellets at the end of three
calculations with different initial gaps are presented. These results demonstrate that with
an increase in the initial gap, the values of radial displacements on the surface of the pellets
also increase.

Figure 7 shows two-dimensional distributions of stress intensities at time points 1 hour and
1 year (calculation 2). Fragments of distributions related to the upper part of the 3rd pellet, the
entire 4th pellet, the lower part of the 5th pellet and the corresponding portion of the cladding
are shown, while when constructing deformed bodies, the applied displacements are increased
10 times for pellets and 50 times for the cladding for greater clarity.
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Figure 6: Graphs of radial displacements on the outer surface of pellets at t = 1 year
for calculations 1, 2, 3.
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Figure 7: Two-dimensional stress intensity distributions, calculation 2: (a) — 1 hour (pellets);
(b) — 1 hour (cladding); (c) — 1 year (pellets); (d) — 1 year (cladding).

5 Conclusion

The paper presents the formulation of a quasi-static problem of multicontact interaction
of axisymmetric thermoelastic bodies under thermomechanical loading, considering the effects
of cracking and creep. An algorithm for the numerical solution of such problems based on the
finite element method is constructed. The mortar method was used to account for bound-
ary conditions on contact surfaces. The results of applying the described algorithm to solve
a demonstration problem simulating the thermomechanical state of a fuel element section in-
cluding 10 fuel pellets for a mode with a given heat dissipation capacity, as well as the presence
of an initial gap between the pellet and the cladding at a time interval of 1 year are shown.
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Realistic models of materials were used in the calculations. The presence of a gap, as well as
the sinusoidal nature of the heat dissipation power, leads to the fact that only a part of the
surfaces of the fuel pellets comes into contact with the cladding. The results of the calculations
showed that considering the creep effect made it possible to reduce the stress level in the fuel
pellets and cladding several times.
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