On the constant domains principle and its weakened versions in the Kripke sheaf semantics

Dmitrij Skvortsov*

All-Russian Institute of Scientific and Technical Information (VINITI), Molodogvardejskaja 22, korp.3, kv.29, Moscow, RUSSIA, 121351 skvortsovd@yandex.ru

We consider superintuitionistic predicate logics understood in the usual way, as sets of predicate formulas (without function symbols) containing all axioms of Heyting predicate logic \mathbf{Q} - \mathbf{H} and closed under modus ponens, generalization, and substitution of arbitrary formulas for atomic ones (we are mainly interested in logics without equality, and only sometimes we mention logics with equality).

1 We consider the semantics of predicate Kripke frames with equality (called *I*-frames, for short), which is equivalent to the semantics of Kripke sheaves (see [3]). Namely, a *(predicate) Kripke frame* is a pair M = (W, U) formed by a poset W with the least element 0_W and a domain map U defined on W such that $U(u) \subseteq U(v)$ for $u \leq v$. An *I*-frame is a triple M = (W, U, I), in which (W, U) is a Kripke frame and I is a family of equivalence relations I_u on U(u) for $u \in W$ such that $I_u \subseteq I_v$ for $u \leq v$.

A valuation $u \vDash A$ (for $u \in W$ and formulas A with parameters replaced by elements of U(u)) satisfies the monotonicity: $u \le v, u \vDash A \Rightarrow v \vDash A$

and the usual inductive clauses for connectives and quantifiers, e.g.

 $u\vDash (B\to C) \ \Leftrightarrow \ \forall v\!\ge\! u\,[(v\vDash B)\Rightarrow (v\vDash C)],$

 $u \models \forall x B(x) \Leftrightarrow \forall v \ge u \forall c \in U(v) [v \models B(c)],$ etc. (for the case with equality, a = b is interpreted by aI_ub in an *I*-frame and by a = b in a usual Kripke frame, for $a, b \in U(u)$). For an *I*-frame we admit only the valuations preserving I_u (on every $U(u), u \in W$), i.e.,

$$(a_i I_u b_i) \Rightarrow (u \models A(a_1, \dots, a_n) \Leftrightarrow u \models A(b_1, \dots, b_n)).$$

A formula $A(\mathbf{x})$ is valid in M if it is true under any valuation in M, i.e., if $u \models A(\mathbf{a})$ for any $u \in W$ and $\mathbf{a} \in (D_u)^n$. The predicate logic $\mathbf{L}(M)$ of an (I-)frame M is the set of all formulas valid in M.

We consider the constant domains principle

$$D = \forall x (P(x) \lor Q) \to \forall x P(x) \lor Q$$

(where P and Q are unary and 0-ary symbols, respectively), and two its weakened versions, namely:

$$D^{-} = \forall x (\neg P(x) \lor Q) \to \forall x \neg P(x) \lor Q, \quad \text{and} \quad$$

$$D^* = \forall x (P(x) \lor Q) \to Q \lor \forall x \exists y (P(y) \& \neg \neg [R(x, x) \to R(x, y)]);$$

here D^* simulates the following formula with equality:

$$D_{=}^{*} = \forall x (P(x) \lor Q) \rightarrow Q \lor \forall x \exists y (P(y) \& \neg \neg [x = y])$$

^{*}The work on this paper was supported by the Russian Foundation for Basic Research (project no. 11-01-93107)

Weakened versions of constant domains principle

Dmitrij Skvortsov

(i.e., $[\mathbf{Q}\cdot\mathbf{H}^{=}+D^{*}] = [\mathbf{Q}\cdot\mathbf{H}^{=}+D^{*}_{=}]$). The formula D states (in an (I-)frame) that $U(u) = U(0_{W})$ for every $u \in W$, i.e., $\forall a \in U(u) [a \in U(0_{W})]$. Now, D^{*} states that

any individual $a \in U(u)$ has a $\neg \neg$ -ancestor in 0_W ,

i.e., there exists $b \in U(0_W)$ such that $u \models \neg \neg (a=b)$. Similarly, D^- states that $\forall a \in U(u) \exists b \in U(0_W) [u \not\models \neg (a=b)].$

Clearly, $D \vdash D^* \vdash D^-$ (we write $A \vdash B$ for $[\mathbf{Q} \cdot \mathbf{H} + A] \vdash B$).

The logic $[\mathbf{Q}-\mathbf{H}+D^-]$ is incomplete w.r.t. *I*-frames (as well as some its natural extensions); its completion (which is not finitely axiomatizable) is described in [5]. On the other hand, [7] proved the completeness w.r.t. *I*-frames (i.e., the Kripke sheaf completeness) for the following logics: $[\mathbf{Q}-\mathbf{H}+D^*]$, $[\mathbf{Q}-\mathbf{H}+D^*\&K]$, $[\mathbf{Q}-\mathbf{H}+D^*\&K\&J]$,

and the incompleteness for $[\mathbf{Q}-\mathbf{H}+D^*\&J],$

where $K = \neg \neg \forall x \left(P(x) \lor \neg P(x) \right)$ (Kuroda's formula)

and $J = \neg Q \lor \neg \neg Q$ (weak excluded middle).

This shows that in some sense the axiom D^* for the Kripke sheaf semantics behaves like the axiom D for the usual Kripke semantics; recall that the logics $[\mathbf{Q}-\mathbf{H}+D]$, $[\mathbf{Q}-\mathbf{H}+D\&K]$, and $[\mathbf{Q}-\mathbf{H}+D\&K\&J]$ are Kripke-complete, while $[\mathbf{Q}-\mathbf{H}+D\&J]$ is Kripke-incomplete.

And here we claim that this similarity is not too close.

Recall that $[\mathbf{H} + P_2 \& J]$ is the greatest non-classical superintuitionistic propositional logic (here $P_2 = [Q_0 \lor (Q_0 \to Q \lor \neg Q)]$ is the axiom of height 2).

Lemma (Main Lemma). $[\mathbf{Q} \cdot \mathbf{H} + P_2 \& J + D^*] \not\vdash K.$

On the other hand, clearly, K is valid in every (I) frame of a finite height. Therefore,

Theorem. Let $[\mathbf{Q}\cdot\mathbf{H}+\boldsymbol{\Lambda}] \subseteq \mathbf{L} \subseteq [\mathbf{Q}\cdot\mathbf{H}+P_2\&J+D^*]$ for a superintuitionistic propositional logic $\boldsymbol{\Lambda}$ of a finite slice. Then \mathbf{L} is Kripke sheaf incomplete.

Corollary. The logics $[\mathbf{Q}-\mathbf{H}+\mathbf{\Lambda}+D^*]$ and $[\mathbf{Q}-\mathbf{H}+\mathbf{\Lambda}+D^-]$ are Kripke sheaf incomplete for every non-classical superintuitionistic propositional logic $\mathbf{\Lambda}$ of a finite slice.

Recall that the logics $[\mathbf{Q}-\mathbf{H}+\mathbf{\Lambda}+D]$ are Kripke-complete e.g. for all $\mathbf{\Lambda}$ being tabular logics or subframe logics (i.e., logics axiomatizable by \rightarrow -formulas) (see [4, Theorems 3.7 and 3.9]), while the logics $[\mathbf{Q}-\mathbf{H}+\mathbf{\Lambda}]$ are Kripke-incomplete for all non-classical $\mathbf{\Lambda}$ of finite slices [2, Theorem 3.2] (and moreover, they are Kripke sheaf incomplete as well, see [3, a Remark in Sect. 9]).

By the way, note that the logics $[\mathbf{Q}-\mathbf{H}+\mathbf{\Lambda}+D^*]$ and $[\mathbf{Q}-\mathbf{H}+\mathbf{\Lambda}+D^-]$ are different for every non-classical $\mathbf{\Lambda}$, since it was claimed in [6] that

$$\left[\mathbf{Q}\cdot\mathbf{H}+P_2\&J+D^{-}\right]\not\vdash D^*.$$

Also it was shown in [6] that every *I*-frame (i.e., every Kripke sheaf) validating $D^-\&J$ validates D^* as well. Here we claim even more:

Proposition. Let Λ be a superintuitionistic propositional logic. Then: (every *I*-frame validating $[\mathbf{Q}\cdot\mathbf{H}+\Lambda+D^{-}]$ validates D^{*}) iff $\Lambda\vdash\delta J$.

Here $\delta J = [Q_0 \lor (Q_0 \to \neg Q \lor \neg \neg Q)]$ (this formula states that J holds in all strictly future worlds: 'tomorrow J').

2 The proof of Main Lemma uses the functor semantics, see [1].

Namely, let \mathcal{C} be a category with a frame representation W; this means that $W = Ob(\mathcal{C})$ is the set of objects of \mathcal{C} pre-ordered by the following relation:

Weakened versions of constant domains principle

Dmitrij Skvortsov

 $u \leq v$ iff $\mathcal{C}(u, v) \neq \emptyset$, i.e., iff in \mathcal{C} there exists a morphism from u to v.

A *C-set* (a SET-valued functor, or a presheaf over *C*, inhabited, i.e., with non-emptiness assumption) is a triple $\mathbb{F} = (W, \overline{D}, \overline{E})$, in which $\overline{D} = (D_u : u \in W)$ is a family of disjoint non-empty domains and $\overline{E} = (E_\mu : \mu \in Mor(\mathcal{C}))$ is a family of functions with $E_\mu : D_u \to D_v$ whenever $\mu \in \mathcal{C}(u, v)$ (i.e., μ is a morphism from u to v), satisfying the usual requirements: $E_{\mu} = E_{\mu} \circ E_{\mu}$ for $\mu \in \mathcal{C}(u, v)$ $\mu' \in \mathcal{C}(v, w)$

$$E_{\mu \circ \mu'} = E_{\mu'} \circ E_{\mu} \quad \text{for } \mu \in \mathcal{C}(u, v), \ \mu' \in \mathcal{C}(v, w) \\ \text{(i.e., } E_{\mu \circ \mu'}(a) = E_{\mu'}(E_{\mu}(a)) \text{ for any } a \in D_u), \quad \text{and} \\ E_{1_u} = 1_{D_u} \quad \text{(the identity function on } D_u \text{ corresponds} \\ \text{to the identical morphism } 1_u \in \mathcal{C}(u, u), \ u \in W).$$

A valuation $u \models A(\mathbf{a})$ (for $u \in W$ and $\mathbf{a} = (a_1, \ldots, a_n) \in (D_u)^n$) in \mathbb{F} satisfies the monotonicity:

 $u \vDash A(\mathbf{a}) \Rightarrow v \vDash A(E_{\mu}(\mathbf{a})) \quad \text{for } u \leq v \text{ and } \mu \in \mathcal{C}(u, v),$ and the usual inductive clauses for connectives and quantifiers, e.g. $u \vDash (B \to C)(\mathbf{a}) \Leftrightarrow \forall v \geq u \forall \mu \in \mathcal{C}(u, v) [v \vDash B(E_{\mu}(\mathbf{a})) \Rightarrow v \vDash C(E_{\mu}(\mathbf{a})],$ $u \vDash \forall x B(\mathbf{a}, x) \Leftrightarrow \forall v \geq u \forall \mu \in \mathcal{C}(u, v) \forall c \in D_{v} [v \vDash B(E_{\mu}(\mathbf{a}), c)],$ etc. (here we write $E_{\mu}(\mathbf{a}) = (E_{\mu}(a_{1}), \ldots, E_{\mu}(a_{n}))$ for $\mathbf{a} = (a_{1}, \ldots, a_{n})$).

A formula $A(\mathbf{x})$ is valid in a C-set \mathbb{F} if it is true w.r.t. all valuations in \mathbb{F} , i.e., if $u \models A(\mathbf{a})$ for all $u \in W$ and $\mathbf{a} \in (D_u)^n$. The predicate logic of a C-set \mathbb{F} is the set

 $\mathbf{L}(\mathbb{F}) = \{ A \mid \text{all substitution instances of } A \text{ are valid in } \mathbb{F} \};$

note that the set of formulas valid in \mathbb{F} in general is not substitution closed (cf. e.g. [3, Remark in Sect. 5]).

Lemma. Let \mathcal{C} be a category with one object 0 and two arrows: 1_0 and μ_0 . Let \mathbb{F} be a \mathcal{C} -set with two-element domain $D_0 = \{a, b\}, E_{\mu_0}(a) = E_{\mu_0}(b) = b$. Then $P_2 \& J \& D^* \in \mathbf{L}(\mathbb{F})$, and $K \notin \mathbf{L}(\mathbb{F})$.

To conclude, let us mention the following well-known

Fact. Let W_0 be a (rooted) poset. Then the following conditions are equivalent:

- (1) $K \in \mathbf{L}(M)$ for every Kripke frame M based on W_0 ,
- (2) $K \in \mathbf{L}(M)$ for every *I*-frame *M* based on W_0 , and
- (3) W_0 satisfies the *McKinsey property*: $\forall u \exists v \geq u \ [v \text{ is maximal in } W_0]$.

On the other hand, K is valid e.g. in every frame M with a finite constant domain (based on an arbitrary W).

Now we can give a counterpart to this fact for the functor semantics:

Claim. Let C_0 be a category. Then the following conditions are equivalent:

(1) $K \in \mathbf{L}(\mathbb{F})$ for every \mathcal{C}_0 -set \mathbb{F} , and

(2) $\forall u \exists v \ge u [\forall w \ge v (v \ge w)]$ (i.e., v lies in a maximal cluster

of the frame representation W_0 of \mathcal{C}_0) and

for every v in a maximal cluster of W_0 : $\forall \mu \in \mathcal{C}(v, v) \exists \mu' \in \mathcal{C}(v, v) [\mu \circ \mu' = 1_v].$

Note that every frame M = (W, U) (with a finite constant domain) can be represented as an isomorphic C-set (for any category C based on W).

References

 S. Ghilardi. Presheaf semantics and independence results for some non-classical first-order logics. Archive for Math. Logic, 29:125–136, 1989. Weakened versions of constant domains principle

- [2] H. Ono. Model extension theorem and Craig's interpolation theorem for intermediate predicate logics. *Reports on Math. Logic*, 15:41–58, 1983.
- [3] V. Shehtman and D. Skvortsov. Semantics of non-classical first order predicate logics. In P. Petkov, editor, *Mathematical Logic*, pages 105–116, N.Y., 1990. Plenum Press. (Proc. of Summer school and conference in mathematical logic 'Heyting'88').
- [4] T. Shimura. Kripke completeness of some intermediate predicate logics with the axiom of constant domain and a variant of canonical formulas. *Studia Logica*, 52:23–40, 1993.
- [5] D. Skvortsov. The Kripke sheaf completion of superintuitionistic predicate logic with a weak version of the axiom of constant domain. In preparation.
- [6] D. Skvortsov. On the predicate logic of linear Kripke frames and some its extensions. Studia Logica, 81:261–282, 2005.
- [7] D. Skvortsov. Kripke sheaf completeness of some superintuitionistic predicate logics with a weakened constant domains principle. *Studia Logica*, 100:361–383, 2012.