
Reconstructing Information Retrieved from

Multiple Websites∗

Héctor Valero, Carlos Castillo and Josep Silva

Universitat Politècnica de València
Valencia, Spain

hecvalli,carcasg1@posgrado.upv.es, jsilva@dsic.upv.es

Abstract

This work presents a model for information retrieval from multiple webpages. This
model does not need to pre-process, parser or label the webpages; and thus, it can work
online and in real time. The model introduces two new techniques for visualization that
allow us to automatically reconstruct a new webpage with the information retrieved. This
page is structured taking into account the semantically related information. The technique
has been implemented and the implementation is discussed focussing on the main problems
that appear when the proposed algorithms are integrated into a commercial web browser.

Keywords: Information retrieval, HTML filtering, Webpages visualization.

1 Introduction

Currently, information retrieval is one of the hot topics in Internet; and indeed more in the
semantic web. However, the lack of online and real time applications able to retrieve information
automatically, is a sign of the difficulties of this task. Current techniques for information
retrieval in Internet are mainly specialized in retrieving webpages that are related to a particular
query [1]. In this context, search engines such as Google or Bing implement very accurate and
precise algorithms for finding the webpages related to a given query. Nevertheless, in many
cases, there is too much information contained in the webpage that is not related to the user’s
query. Thus, the granularity level of the answer is too big: a whole webpage.

In the context of the semantic web, it is frequent to produce more concrete results that
consist of texts that answer a given question. However, these techniques need to pre-process
the web pages that are used as the sources of information. A common approach is to build an
ontological model that is constructed and queried with languages such as RDF [2] and OWL
[3]. This imposes important restrictions on the webpages that are going to be processed; and
for this reason, the tools implemented with this approaches are often offline. The tools that use
microformats [4, 5, 6] have the same problem. In particular, webpages that use microformats
could be automatically processed thanks to the use of special meta-labels that qualify the
information and that are inserted in the (X)HTML code. But, unfortunately, the technology
that supports microformats is not mature enough, and this is the reason why much of the
webpages in Internet do not use microformats. Therefore, they cannot be processed in real
time.

In a previous work [7], we proposed an online and real time technique for information
retrieval that is able to automatically retrieve information related to a given query from a

∗This work has been partially supported by the Spanish Ministerio de Ciencia e Innovación under grant
TIN2008-06622-C03-02, by the Generalitat Valenciana under grant ACOMP/2009/017, and by the Universidad
Politécnica de Valencia (Program PAID-06-08).

L. Kovacs, T. Kutsia (eds.), WWV 2010 (EPiC Series, vol. 18), pp. 65–80 65



Reconstructing Information Retrieved from Multiple Websites Valero, Castillo, and Silva

single webpage. This technique is based on the use of syntax distances as a measure of semantic
relations. Roughly, the technique extracts from a webpage those elements that are syntactically
close to the terms specified by the user. Therefore, the technique assumes that those terms
that are syntactically close are more semantically related. The technique was implemented and
integrated into the Firefox web browser after it was approved by the Firefox experts developers
area. Its extensive use with hundreds of users has confirmed that the use of syntax distances is
a simple but powerful idea that works in practice [8].

Recently, we have developed a new information retrieval technique that generalizes the idea
of using syntax distances between elements of a same page to multiple webpages incorporating
page distances, domain distances, etc. This new distance has been named hyper-syntactic dis-
tance. The main problem of the new technique is the difficulty of automatically reconstructing
a new webpage with the final result. In particular, when working with different webpages, new
visualization problems appear such as the overlapping of elements with absolute positions, the
incompatibility of different layouts, the integration of CSS files; and others such as the security
imposed by the browsers, the time needed to load several webpages, etc.

In this work we face these problems and explain different approaches to solve them. When
retrieving information from multiple webpages, we find that showing the information to the user
is not as simple as joining together all the blocks of information retrieved from the webpages.
The information must be presented in a way that the interrelations between the information
from different webpages is explicit. In order to do this, we propose two visualization models:
the tabular model and the hierarchical model.

The main advantages of this new technique are that it does not need the use of proxies
[9], it can work online and in real time—with any webpage—without any pre-compilation or
pre-processing phase [10]; it can process multiple sources; and it can retrieve information with
a low granularity level: one single word.

The rest of the paper has been organized as follows. Section 2 presents our technique by
using a motivating example. Section 3 explains a novel technique for information retrieval from
multiple webpages. This technique uses two visualization models that are introduced in Section
4. In Section 5, we describe our implementation. The main problems are discussed and their
solutions explained. This section also presents the results obtained by a performance evaluation
of our tool. Finally, Section 6 concludes.

2 Motivation

This section presents a real example of information retrieval using the technique presented in
this work. Let us consider a user that is browsing in Internet and she loads the main webpage
of the United States Department of Labor searching for work .

In a normal scenario, the user reads the main webpage of the department (see Figure 1)
and, using the standard browser’s filter or the search box of the webpage (if it is provided),
she looks for the word searched in the page, and she loads a new page using the corresponding
hyperlink. If the information searched is found, the process finishes, but if the information is
not in the loaded webpage, the user has to return to the previous page and explore another
hyperlink. This is repeated successively until the desired information is found. During this
process, (i) the user is forced to read much information not related to what she is looking for.
This information appears in the webpages visited during the search, and (ii) she must explore
several hyperlinks until the relevant hyperlinks are found. This process is a time-consuming
task.

In a second scenario, the user uses our tool for information retrieval. She loads the main

66



Reconstructing Information Retrieved from Multiple Websites Valero, Castillo, and Silva

Figure 1: Main webpage of the United States Department of Labor

webpage of the United States Department of Labor, she types the filtering criterion (“work”)
and she clicks on the filtering button. With a simple click, the tool automatically constructs a
new webpage with all the information related to work in the main webpage and in the webpages
accessible from it. During the analysis of the webpages, the tool explores the relevant hyperlinks
to extract the desired information from each of them. With all the information retrieved, a
new webpage with the results is generated. This webpage, only contains information relevant
for the user.

In Figure 2 all the ocurrences of the filtering criterion are highlighted. This is the result
of using the standard search with the term “work”. Unfortunately, the information provided
by this search is poor; but it includes some useful hyperlinks such as “work hours” (at the
left). Our algorithm is able to automatically filter this webpage and explore each relevant
hyperlink to reach other pages in the same or in other domains in order to gather all the
relevant information according to the filtering criterion. With this information, the algorithm
produces a new webpage as the one shown in Figure 3.

In this case, the model used to reconstruct the final webpage is the hierarchical model .
The hierarchical model groups the retrieved information blocks according to their minimum
syntactical distance; placing them as close as possible. For this representation, the information
blocks are nested immediately after the hyperlink that points to the webpage to which they
belong. This process is recursively repeated with the new hyperlinks that are found inside these
retrieved blocks.

In the example, the first information shown is composed of the blocks retrieved from the
main webpage of the Department of Labor. From these blocks the hyperlinks are extracted and
ordered by relevance according to their syntactical distance. Then, these new webpages are
analyzed producing new relevant blocks that are placed next to their corresponding hyperlinks
in the already visualized webpage. Internally, a block with relevant information is a set of
HTML nodes (i.e., a DOM subtree of an HTML webpage) grouped inside an HTML container

67



Reconstructing Information Retrieved from Multiple Websites Valero, Castillo, and Silva

Figure 2: Ocurrences of word work

Figure 3: Results webpage after filtering the the United States Department of Labor’s website

(e.g., a table, a layer, etc.). In Figure 3 we can observe that some blocks are placed after their
corresponding hyperlink. For instance, at the top, we have a block after the “work hours”
hyperlink. This block has been extracted from the webpage that contains information about
work hours regulations in USA. The original webpage about work hours is shown in Figure 4.
Note that the results webpage only shows a part of the information of this webpage. The blocks

68



Reconstructing Information Retrieved from Multiple Websites Valero, Castillo, and Silva

of information extracted contain the information that is related to the filtering criterion. The
other information was discarded.

Figure 4: Work hours webpage

In Figure 3 the third block of information contains information related to worker’s com-
pensation. This block is placed after the block associated to work hours because it has been
extracted from the page pointed by the hyperlink after the one that pointed to the work hours
webpage. In particular, the webpage source of this information is shown in Figure 5. Some
blocks are nested in the final webpage (see Figure 3) because they are associated to a web-
page accessed from a hyperlink of the parent block. As a consequence of this scheme, in this
model the webpages are decomposed and their relevant blocks are mixed in a hierarchical shape
according to their navigational relations.

In addition to the hierarchical model, in this work we propose another model called tabular
model . In contrast to the hierarchical model, the tabular model provides a representation with
a page granularity. That is, the information retrieval engine retrieves blocks with relevant infor-
mation from each analyzed webpage; but these blocks are maintained in the final representation
so that they keep their original structure. Both models will be presented in the next sections.

3 Information Retrieval from Multiple Webpages

This section presents an information retrieval algorithm able to extract information from mul-
tiple webpages. Our algorithm uses a previous algorithm to extract information from single
webpages. The details of this algorithm can be found in [11]. In the following, we will assume
the existence of a function getSlice(p,q) that implements this algorithm. Given a webpage p
and a filtering criterion q, getSlice extracts from p all the information related to q.

We provide now a precise definition of webpage and filtering criterion. We will assume that
a webpage is represented by a DOM tree [12].

69



Reconstructing Information Retrieved from Multiple Websites Valero, Castillo, and Silva

Figure 5: Night and shift work webpage

Definition 3.1 (DOM tree). A DOM tree t=(V,E) is a tree whose nodes V are labeled with
HTML labels, and they interconnected with a set of edges E according to the DOM specification
[12].

Definition 3.2 (webpage). A webpage is a tuple (u,t) where u is a URL and t is a DOM tree.

A filtering criterion is composed of one or more words associated to the information that we
want to retrieve; and one proximity measure that represents the syntax distance between what
we are looking for and what we retrieve.

Definition 3.3 (Filtering criterion). A filtering criterion is a pair (w, d) where w is a string
that represents the desired information; and d is an integer that represents the precision used
in the search.

Example 1. The webpage in Figure 6 (left) is the main webpage of the Technical University
of Valencia1. If we filter this webpage with the filtering criterion (“student”, 0), we get the
webpage in Figure 6 (right).

The DOM tree of this webpage is huge. Hence, we focus on a part of the webpage. Concretely,
if we observe the text in the gray column at the left, the part of the DOM tree that represents
this text is shown in Figure 7.

In the figure, the black node contains the word “student”. From this node, all its ancestors
and successors are kept in the filtered webpage. Because the required precision is 0, no more
nodes are retrieved, and thus, white nodes are discarded. The produced subtree corresponds to
the text in the gray area of the filtered webpage.

1This is the English version, but note that, since the technique is based on syntax distances, it works equally
with any language.

70



Reconstructing Information Retrieved from Multiple Websites Valero, Castillo, and Silva

Figure 6: Webpage of the Technical University of Valencia (left) and its filtered version (right)

Figure 7: DOM subtree of the Technical University of Valencia’s webpage

71



Reconstructing Information Retrieved from Multiple Websites Valero, Castillo, and Silva

3.1 The Hyper-syntactic Distance

Usually, there exist in a webpage many hyperlinks to other related webpages. An information
retrieval algorithm should be able to explore all these hyperlinks in order to reach the relevant
information of other webpages and then, reconstruct a new webpage with all the retrieved
information. However, we want our technique to work online and in real time. This means that
loading all the hyperlinks is not possible because it would require too much time. Therefore,
our technique must explore only some hyperlinks during the search and discard the others. In
order to solve this problem, in a previous work [13] we proposed a unit of measurement called
hyper-sintactic distance. It allows us to order the hyperlinks of a set of webpages by relevance
with respect to a filtering criterion. In essence, the hyper-sintactic distance determines the
relevance of a hyperlink H in a webpage p with respect to a DOM node n in a webpage p′

considering three fundamental measures: the distance in the DOM tree from H to n if p = p′,
or from H to the root of p if p 6= p′; the number of pages that must be traversed from p′ to p
and the number of domains that must be traversed from the domain of p′ to the domain of p.
The combination of these measures produces a value that is known as hyper-sintactic distance
and that approximates the semantic relation la between n and H.

In the following, we will assume the existence of a function getMostRelevantLink(links, q)
that given a set of hyperlinks links, and a filtering criterion q, it returns the hyperlink that is
more relevant considering its hyper-sintactic distance with respect to q. The interested reader
is referred to [13] where this unit of measurement is explained in detail.

For our purposes, in the rest of the article we can view an hyperlink as a directed arc between
two webpages.

Definition 3.4 (Hyperlink). An hyperlink is a pair (u,v) where u is the URL of a source
webpage and v is the URL of the target webpage.

Thanks to the hyper-sintactic distance, we could define a simple information retrieval algo-
rithm that repeats three fundamental steps:

1. Filter the current webpage (getSlice)

2. Find the most relevant hyperlink in the loaded webpages (getMostRelevantLink)

3. Load the webpage pointed by the most relevant hyperlink

Finally, when no more relevant hyperlinks exist, we could reconstruct a new webpage with
the retrieved information. Nevertheless, this scheme is not appropriate for an online tool.
The reason is that loading a webpage needs approximately one second. This means that the
previous scheme would not show to the user any result until all the webpages had been analyzed
and filtered, that implies too much time for a real time tool. Remember that web design
guidelines establish 10 seconds as the maximum response time [14]. Therefore, we propose
a more appropriate solution in which the information is reconstructed and shown to the user
incrementally as it is being retrieved. This means that the user can see the retrieved information
from the first second, and this information is increased as the analysis continues.

4 Visualization of the Retrieved Information

This section introduces a new technique to incrementally integrate and visualize the information
recovered from multiple webpages. This technique uses two independent (but very related)

72



Reconstructing Information Retrieved from Multiple Websites Valero, Castillo, and Silva

algorithms for the visualization of the information. The first one presents the information
tabularly, the second one uses a hierarchical representation.

Both algorithms are able to retrieve information from different webpages and show it incre-
mentally while it is being recovered. The main difference between them is the way in which the
information is visualized in the browser.

Tabular Visualization The lowest granularity level in this representation is a page. Basically,
the final webpage is a linear succession of the filtered webpages. Each filtered webpage
is considered as a whole, and thus, all the information that appeared together in the
filtered webpage, is also together in the final webpage. The filtered webpages are ordered
according to their navigational structure using a depth-first order.

Example 2. The next figure shows a set of linked webpages where the dark part represents
the relevant information. At the right, we see the tabular representation of this relevant
information.

Hierarchical Visualization The lowest granularity level in this representation is a word. In
this representation, the final webpage is a tree where the filtered webpages are organized.
In contrast to the tabular representation, the filtered webpages can be mixed because
each filtered webpage is placed next to the hyperlink that references it.

Example 3. The following figure complements Example 2 showing the hierarchical rep-
resentation of the same set of webpages.

4.1 Tabular Visualization

Algorithm 1 implements the tabular visualization model. This algorithm uses the following
functions:

timeout() This function controls that the algorithm is not executed more time than the specified
by the user in the configuration. When the specified time is reached it returns True.

73



Reconstructing Information Retrieved from Multiple Websites Valero, Castillo, and Silva

getSlice(p, q) It returns the slice produced after filtering webpage p with the query q. This is
done using the algorithm proposed in [11].

createIframe(d) This function creates and returns one DOM node of type iframe whose con-
tent is the DOM tree d received as a parameter.

append(n,m) It appends the DOM node m as a child of the DOM node n.

getLinks(nodes) It extracts all the hyperlinks of a set nodes of DOM nodes.

getMostRelevantLink(links, q) It extracts from the set links the hyperlink with a lower hyper-
syntactic distance with respect to the filtering criterion q. It is used to determine what is
the next hyperlink that should be processed.

load(page) It loads the webpage page.

getNode(l) It returns the DOM node associated to hyperlink l.

Function processWebPage is a recursive function that loads the most relevant pages from
a set of hyperlinks that are potentially processable. Each time a new webpage is loaded, it is
analyzed and new relevant hyperlinks are added to the set. Every loaded webpage is parsed,
then filtered, and the result produced is shown with function show. This implies that the final
webpage is shown incrementally, page after page. This process is repeated until a timeout is
reached.

Function show has been specialized for each model. In the tabular model, it creates an
iframe whose content is the webpage that has been just filtered, and this iframe is put next to
the webpage that contains the hyperlink that pointed to this webpage.

4.2 Hierarchical Visualization

Algorithm 2 implements the hierarchical visualization model. This algorithm, shares most of the
functions (including processWebPage) used in Algorithm 1 that were explained in the previous
section. In addition, it uses the following functions:

getParent(n) It returns the first ancestor of node n that is of type container (table, div, frame,
etc.).

createContainer() It creates and returns a DOM node of type table.

The behavior of this algorithm and Algorithm 1 is very similar. The main difference is
function show. In this case, show has been specialized to show the filtered webpage as a part
of the webpage that referenced it. This is done by creating a new container of type table. The
type table is a good selection because it allows us to establish relative sizes and because it has
a Z axis equal to zero; and thus, it is never superposed to the elements already shown in the
page. The new table is linked with the first ancestor node n that is a container. In this way,
the new webpage is integrated into the webpage that referenced it, exactly in the point of the
webpage where the hyperlink was (in the container of this hyperlink).

74



Reconstructing Information Retrieved from Multiple Websites Valero, Castillo, and Silva

Algorithm 1 Tabular Visualization

Input: A webpage P , and a filtering criterion q
Output: A webpage P ′

Initialization: link = ∅

function show(Node n,DOM d)
showTabular(n, d)

function showTabular(Node n,DOM d)
iframe = createIframe(d)
append(n, iframe)

function processWebPage(Link l,WebPage p)
relevantNodes = getSlice(p, q)
if (l 6= ∅)
then nodeC = getNode(l)
else nodeC = < BODY >
show(nodeC, relevantNodes)
links = links ∪ getLinks(relevantNodes)
if (timeout() ∨ links = ∅)
then exit()
else link = getMostRelevantLink(links, q)

links = links\link
newPage = load(URL2) where link = (URL1, URL2)
processWebPage(link, newPage)

return
< HTML >
< BODY >
processWebPage(link, P )
< \HTML >
< \BODY >

5 Implementation

In this section we describe the implementation of the algorithms proposed and we discuss the
main problems that emerge when integrating them into a browser.

The implementation is much more complex than the algorithms presented here because it
has to make some transformations of the filtered webpages in order to guarantee that they are
correct. For instance, the size attributes of the retrieved webpages must be changed to ensure
that they fit into the container where they are inserted. The CSS styles must be imported so
that the retrieved information keeps the original format, etc.

All the source code of our tool is open. Therefore, for concrete details about the design
decisions taken, we refer the interested reader to:

http://www.dsic.upv.es/~jsilva/webfiltering

The implementation has to perform some additional checks before it loads the webpages
pointed by the relevant hyperlinks. In particular, the information retrieval engine only pro-

75

http://www.dsic.upv.es/~jsilva/webfiltering


Reconstructing Information Retrieved from Multiple Websites Valero, Castillo, and Silva

Algorithm 2 Hierarchical Visualization

Input: A webpage P , and a filtering criterion q
Output: A webpage P ′

Initialization: link = ∅

function show(Node n,DOM d)
showHierarchical(n, d)

function showHierarchical(Node n,DOM d)
container = createContainer()
if (n 6=< BODY >)
then append(getParent(n), container)
else append(n, container)
append(container, d)

return
< HTML >
< BODY >
processWebPage(link, P )
< \HTML >
< \BODY >

cesses (X)HTML pages; hence, it is a waste of time to load files of type PDF, MP3, etc. 2 In
order to avoid the load of such files, the object XMLHttpRequest is used to inspect the headers
of the page before loading it, and thus, only loading those that contain useful information. For
that, we use the following functions:

r = newXMLHttpRequest();
r.open(“HEAD”, url);
r.send(null);
r.getResponseHeader(“Content− Type”);

In this section we focus on the two main problems that appear when we implement the
algorithms. These problems will appear in any platform or commercial browser where they are
implemented:

• Layers. One of the most important visualization problems is caused by layers, because
they use absolute positions. Concretely, during the filtering phase, it is frequent to find
various webpages with layers whose position is defined with absolute values. When this
happens, it is possible that, in the final webpage reconstructed from these webpages, the
positions of different layers (extracted from different webpages) overlap. An example is
shown in Figure 8.

The solution is to transform all layers with absolute positions to tables of the same size
that are placed in the same position than the layer in the original webpage, but they are

2We are currently implementing an algorithm which is able to extract information from text and PDF
documents, but the algorithm which is distributed in Firefox only processes (X)HTML.

76



Reconstructing Information Retrieved from Multiple Websites Valero, Castillo, and Silva

Figure 8: Problem caused by layers

relocated in the final webpage thanks to the use of relative positions.

• Security. Another of the main implementation problems is caused by the security sys-
tems of web browsers. In particular, there exists one kind of vulnerability of web browsers
called Cross Site Scripting or XSS, where an attacker could execute scripts from a page
or domain different from the loaded webpage. XSS has been avoided by current web
browsers with a security system that blocks the execution of dangerous code.

As it was explained in previous sections, our algorithms retrieve content from multiple
webpages, they filter the content, and finally show a final webpage with the results.
Therefore, the final webpage can contain scripts from multiple webpages and domains.
When this happens, the security system anti-XSS is activated and it removes all the
content that is potentially dangerous. This makes the final result to be incomplete,
unstructured, or even completely empty.

The security system anti-XSS works as follows: When a user loads a webpage, the browser
explores the DOM tree to find script labels or nodes. If they are found, the script
interpreter executes the scripts only if they belong to the loaded webpage. If, contrarily,
the script belongs to another webpage, it is blocked. Concretely, the security system is
activated when we filter the retrieved webpages; and it blocks all the scripts (and some
other insecure elements), removing all the content that could be dangerous.

Our implemented solution is the creation of an iframe object in which we load each
filtered webpage. The iframe container does not activate anti-XSS because this container
allows the load of URLs, thus embedding webpages inside other webpages. This solution
works if we define the iframe object with some special properties:

frame = document.createElement(“iframe”);

...

frame.setAttribute(“type”, “content”);

...

77



Reconstructing Information Retrieved from Multiple Websites Valero, Castillo, and Silva

frame.webNavigation.allowJavascript = false;

frame.webNavigation.allowMetaRedirects = true;

frame.webNavigation.allowP lugins = false;

It is interesting to highlight that the iframe must be of type ‘content’. When a container
is defined of type content, the browser only draws the information of the webpage but
it does not execute any script. For this reason, we can retrieve the filtered information
avoiding the anti-XSS security system. When a DOM tree is filtered, we put the new
nodes inside a new container and we embed the container in the final webpage.

5.1 Performance Evaluation

The main bottleneck of this technique is the load of webpages; because it depends on the
connection speed, the current state of the network, and many other external factors that affect
the response time. In order to guarantee that the tool is able to work in real time, we must ensure
that the results are shown in a bounded time. For this reason, the tool uses function timeout()
(explained in Section 4.1). According to Jakob Nielsen’s web usability design guidelines [14],
in our implementation we established 10 seconds as the default value for the timeout. This
value can be changed at any time, but our experiments demonstrate that it is often enough. In
Table 1 we show the number of hyperlinks explored, with a timeout of 10 seconds, for several
webpages analyzed. The average result is 13,5 webpages analyzed for each URL.

URL Filtering criterion Links visited

www.iee.org student 12
www.upv.es student 18
www.who.int OMS 25
www.un.org Haiti 6
www.esa.int launch 13
www.nasa.org space 16
www.mec.es beca 18
www.edu.gva.es universitat 20
www.ilo.org projects 8
www.unicef.es Haiti 10
www.mityc.es turismo 9
www.mozilla.org firefox 7

Table 1: Number of analyzed webpages with timeout=10 seconds

Note that a timeout of 10 seconds is the maximum time used to complete the final results
webpage. But the visualization algorithms are incremental, thus, as an average, the first result
is shown in less than a second (10/13,5 seconds).

All figures and examples of this paper are real examples produced with analyses made by
our tool. More examples and information about the tool can be found at:

http://www.dsic.upv.es/~jsilva/webfiltering

78

http://www.dsic.upv.es/~jsilva/webfiltering


Reconstructing Information Retrieved from Multiple Websites Valero, Castillo, and Silva

6 Conclusions

This article introduces two new models of visualization for information retrieved from multiple
webpages. The tabular model is specially good for complex webpages, because it keeps the
original internal structure of the loaded webpages, and they are shown as unitary blocks. The
hierarchical model is particularly interesting for pages with a lot of textual content, and it works
very well, e.g., in forums, where it is able to find the relevant subjects and explore the threads
with the answers joining together all the related information.

We are currently studding the possibility of combining both models. This combination would
produce a hybrid model able to behave differently depending on the structure of the webpage
that has been processed. In addition, we plan to change the hierarchical representation with a
new tree-view that represents a personalized website map where the nodes of the tree are the
filtered webpages, and where the user could collapse or expand the paths to the information.
In this way, the generated web maps would be personalized with the user’s filtering criterion.

References

[1] J.M. Gómez Hidalgo, F. Carrero Garćıa, E. Puertas Sanz. Named Entity Recognition for Web
Content Filtering International Conference on Applications of Natural Language, NLDB2005, pages
286-297, 2005

[2] W3C Consortium, Resource Description Framework (RDF). www.w3.org/RDF

[3] W3C Consortium, Web Ontology Language (OWL). www.w3.oeg/2001/sw/wiki/OWL

[4] Microformats.org. The Official Microformats Site. http://microformats.org/, 2009.

[5] R. Khare, T. çelik Microformats: a Pragmatic Path to the Semantic Web. Proceedings of the 15h
International Conference on World Wide Web. Poster Sessions pages 865-866, 2006

[6] R. Khare. Microformats: The Next (Small) Thing on the Semantic Web? IEEE Internet Computing,
10(1):68-75, 2006.

[7] J. Silva, Information Filtering and Information Retrieval with the Web Filtering Toolbar. Electronic
Notes in Theoretical Computer Science, vol. 235, pages 125-136, 2008.

[8] Web Filtering Toolbar. Add-ons for Firefox. https://addons.mozilla.org/en-US/firefox/addon/5823,
2009.

[9] Suhit Gupta et al. Automating Content Extraction of HTML Documents. World Wide Archive
vol.8 issue.2, 179-224, 2005.

[10] Po-Ching Li, Mind-Dao Liu, Ying-Dar Lin, Yuang-Cheng Lai. Accelerating Web Content Filtering
by the Early Decision Algorithm. IEICE - Transactions on Information and Systems vol. E91-D, pages
251-257, 2008.

[11] S. López, J. Silva. A New Information Filtering Method for WebPages. In-
forme Técnico DSIC - Universidad Politécnica de Valencia. Available at:
http://www.dsic.upv.es/ jsilva/papers/TechReport-IF.pdf

[12] W3C Consortium, Document Object Model (DOM). www.w3.org/DOM

[13] C.J. Castillo, H. Valero, J. Silva. Web Information Retrieval Based on Syntax Distances. Informe
Técnico DSIC - Universidad Politécnica de Valencia. Available at: http://www.dsic.upv.es/˜jsilva/-
papers/ TechReport-IR.pdf

[14] Jakob Nielsen. Designing Web Usability: The Practice of Simplicity; New Riders Publishing,
Indianapolis ISBN 1-56205-810-X; 2010.

[15] Filippo Ricca and Paolo Tonella. Web application slicing. In Proc. of International Conference
on Software Maintenance (ICSM’01), pages 148–157. IEEE Computer Society, 2001.

79



Reconstructing Information Retrieved from Multiple Websites Valero, Castillo, and Silva

[16] M. Baggi and D. Ballis. PHIL: A Lazy Implementation of a Language for Approximate Filtering
of XML Documents In Proc. of 16th International Workshop on Functional and (Constraint) Logic
Programming (WFLP’07), Electronic Notes in Theoretical Computer Science, vol. 216, pages 93-109,
2007.

[17] M. Hammami, Y. Chahir, and L. Chen. Webguard: A web filtering engine combining textual,
structural, and visual content-based analysis. IEEE Trans. Knowl. Data Eng, 18(2):272–284, 2006.

[18] Finn, Kushmerick, and Smyth. Fact or Fiction: Content Classification for Digital Libraries.
DELOS Workshop, 2001.

[19] Debnath, Mitra, and Giles. Automatic Extraction of Informative Blocks from Webpages. 20th
ACM Symposium on Applied Computing (SAC’05), 1722-1726, 2005.

[20] Gottron. Evaluating Content Extraction on HTML Documents. 2nd International Conference on
Internet Technologies and Applications. (ITA’07), 123-132, 2007.

[21] Gottron. Content Code Blurring: A New Approach to Content Extraction. 5th International
Workshop on Text-based Information Retrieval. (TIR’08), 29-33, 2008.

[22] Weninger and Hsu. Text Extraction from the Web via Text-Tag-Ratio. 5th International Workshop
on Text-based Information Retrieval. (TIR’08), 23-28, 2008.

80


	Introduction
	Motivation
	Information Retrieval from Multiple Webpages
	The Hyper-syntactic Distance

	Visualization of the Retrieved Information
	Tabular Visualization
	Hierarchical Visualization

	Implementation
	Performance Evaluation

	Conclusions

