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Abstract

A key technology to analyze high volume spatio-temporal data streams is complex event
processing (CEP). CEP is unique in its ability to not only continuously process data as
it arrives through common operations such as aggregations, but also to support pattern
matching queries. Pattern Matching allows to detect a user-defined sequence of temporal
predicates on event streams. The high volume flight data as provided by the OpenSky
Network has a lot of characteristics that make it a perfect match for CEP. In particular,
pattern matching operators can be utilized to detect a plethora of movement (landing,
starting, evasion) and group patterns (airplanes closing in on each other) in a timely man-
ner. However, CEP queries can be complex in nature and may require a combination of
domain expertise and historical data analysis in order to deliver the desired results. In
order to address these issues, we have combined a database-backed CEP system (Chroni-
cleDB) with a scientific toolbox for interactive data exploration and geo visualization (Vat
System). This allows users to interactively execute CEP queries and visually confirm the
validity of their results, thus, simplifying the parameter tuning considerably.

In addition, our solution supports efficient and interactive time travel queries. It allows
to combine event streams with additional data sources (e.g., remote sensing images) and
processing technologies (e.g., machine learning models) to extract higher level knowledge.
Finally, our ongoing work on visual analytics explores extrapolating query results to provide
more timely feedback for critical situations and multi-query optimization techniques to
allow for an even more efficient system in general.

1 Introduction

The advent of high volume data streams has revolutionized traditional data processing paradigms
in a variety of ways. Data is no longer simply queried from well-defined relational tables, which
are constructed with rare to occasional updates from a couple of data producers. Instead, data
is produced continuously by a large number of sources. For those high-volume data streams,
continuous in-memory tuple-at-a-time processing has become commonplace in order to ex-
tract interesting information from events instantaneously, and thus, facilitate timely reactions
to situations of interest (e.g., potential threats). Furthermore, data is often associated with
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spatio-temporal information (location and timestamp) which requires specialized query seman-
tics. One of the key technologies to handle the new data landscape is complex event processing
(CEP). Event processing systems are designed to handle a variety of sources and one of its core
operations, pattern matching, is optimized for low latency detection of user-defined sequences
of temporal predicates on data streams.

Flight data as provided by the OpenSky Network [15] share a lot of the characteristics
described above. Due to large amount and variety of airplanes as well as high-frequency updates,
there is a plethora of movement (landing, starting, evasion) and group patterns (airplanes
closing in on each other), which can be continuously monitored with CEP to avoid potential
catastrophes like collisions. However, tuning the parameters of a CEP query to deliver the
desired results is challenging and typically requires a combination of domain expertise and
historical data analysis. Furthermore, in many cases pure CEP queries need to be combined
with additional data sources (e.g., remote sensing images) and processing technologies (e.g.,
machine learning models). To alleviate some of those challenges, this work utilizes an often
overlooked key characteristic for data analysis that flight data exhibits: It can be visualized.

Even though there are a lot of powerful tools that can deal with complex data challenges,
the presence of visual analytics in the overall workflow is often neglected while designing the
processing layer. Visualization is usually built on top of those solutions. However, especially
in the realm of spatio-temporal data, there are usually some inherent visual components users
can benefit from. Flight trajectories and weather information possess visual information that
helps both air traffic control and pilots to judge the current situation. In practice, the on top
solutions feature a user interface tailor made for showing results returned from a specific set of
pre-defined queries. Although those interfaces work great for handling the well-defined tasks
they are designed for, more intricate analytical tasks in a big data pipeline require a higher
level of interactive data exploration. A data scientist needs to try out advanced queries and test
out various data set combinations to find novel insights. In particular, this requires tuning a
multitude of parameters to achieve high quality results.

The results of the mindset described above are two extremes. On the one hand, there are
highly optimized user interfaces for precise functionality that lack flexibility and adaptability
to explore new ventures. On the other hand, data scientists searching for new solutions are
continuously building short-lived pipelines. Even though this approach has a high degree of
design freedom, a lack of reusable workflows for visual analytics results in a lot of repetitive
programming efforts. While searching for new insights, a lot of time is invested to enable
exploration (e.g., data conversion and one-off scripts) rather than the exploration itself.

The Visualization, Analysis and Transformation (Vat) System [5, 6] aims to bridge the gap
between those two extremes through exploratory workflows. Vat was developed and optimized
for processing stationary vector and raster data, making it a prime candidate to work with
important flight-related data sets such as weather data. For interactive visualization and anal-
ysis of high volume event data as provided by the OpenSky Network, we connected Vat with
ChronicleDB [18, 17], a stream database system featuring high ingestion rates and operations
for CEP-style event processing.

In our previous work [3], we developed three types of use cases to showcase the synergy
between Vat, CEP and flight data. The first use case searches for flights in severe weather
condition as a way to explore data enrichment by combining flight data originating from event
streams with weather information originating from Vat’s raster data connectivity. For the
second use case, we looked at movement patterns (e.g., starting and landing) to demonstrate
the natural combination of CEP and flight data. Finally, the third use case deals with novel
group patterns, detecting aircrafts violating minimum distance requirements in real-time.
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Figure 1: This figure shows the overall architecture of the combined system components.

In this extension of our previous work, we expanded our system in two ways in order to
improve the performance and analytic capabilities of the three use cases sketched above. First,
while we previously focused on capturing the current status, e.g. showing flights currently in
severe weather conditions, we now present our first results for extrapolation, e.g. showing flights
potentially entering severe weather conditions in the near future. Through extrapolating event
queries, we are laying the foundation for a high potential controlling solution that simplifies
the process of preventing dangerous situations. Second, we introduce multi-query optimiza-
tion, which reduces the processing load for all involved components, and thus, enhances the
interactivity and user experience.

In summary, our solution offers the first important building blocks for visual event-based
flight analytics. Users can interactively try, adjust, and explore the results of a diverse com-
bination of spatio-temporal processing mechanics while finding the right setting of queries for
complex coherences between flight-related data sets. In particular, our contributions are as
follows:

• we present exploratory workflows for interactive time travel queries by integrating Chron-
icleDB into the Vat System;

• we extend analytic capabilities with predictions based on trajectory extrapolation;

• we introduce multi-query optimization to improve the overall system performance.

The rest of the paper is organized as follows: We give an overview of our system and describe
the newly developed components in Section 2. Afterwards, we describe three aircraft related
use cases and how they benefit from our proposed extrapolation and multi-query optimization
techniques in Section 3. We conclude our paper and describe potential future work in this area
in Section 4.

2 System Overview

This section first briefly describes the components of the proposed system. Afterwards, we
discuss the newly developed generic extrapolation framework which we use to predict flight
trajectories. Finally, we discuss opportunities for multi-query optimization.
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2.1 General Architecture

The overall system architecture is depicted in Figure 1. Our system consists of two major com-
ponents, each of which is specialized for a respective data domain (vector/raster and event data).
For the targeted use cases, users interact with the Visualization, Analysis and Transformation
(Vat) System. Vat is an interactive spatio-temporal processing platform consisting of a process-
ing backend (Mapping) and a web based frontend (Wave). Mapping supports heterogeneous
spatio-temporal data and offers composable operators for transformation and analysis tasks.
For instance, it supports geographical projections, spatio-temporal joins of different data types
and aggregation mechanisms [7]. For performance reasons, operators are designed to use par-
allel processing on manycore systems and GPUs [4]. Wave facilitates the exploratory usage of
Mapping. It depicts results of complex queries as layers on an interactive map. New layers
are generated on the fly by combining existing ones via operators. The system keeps track of
all processing steps taken by the user and stores this information as exploratory workflows.
Hence, users are able to return to any previous processing step and start over with new ideas.
Moreover, it follows reactive design principles such that all computations and their results are
restricted to the user selected map section and time interval. Because Vat treats all data sets
as time series, it is particularly beneficial for spatio-temporal analyses on sliding time windows.
In addition, Vat serves as an integrated repository for various spatial data sources including a
selection of vector and raster data sets, e.g. climate and surface data, and offers a connectivity
interface for data import from external systems.

While Vat is designed for processing static vector and raster data, flight data as provided
by the OpenSky Network is comprised of short lived continuously arriving event data. Since
the storage engine of Vat is not optimized for this kind of workload, we implemented a con-
nection from Vat to Java Event Processing Connectivity (Jepc), a middleware for uniform
event processing. As depicted in Figure 1, two of the core features in Jepc are the utiliza-
tion of the dedicated event storage system ChronicleDB and native, specialized CEP operators
for advanced temporal [12] and spatio-temporal pattern matching queries. To facilitate the
interaction between Vat and Jepc, ChronicleDB serves multiple roles. First, in order to not
overwhelm users with information, visual systems usually have a configurable refresh rate for
which they poll the latest data updates. For this purpose, ChronicleDB serves as a dedicated
queue with index support to speed up CEP replay queries. Second, since a user should be able
to adapt queries on the fly and to verify their validity on historical data, ChronicleDB supports
efficient time travel queries. In combination both features significantly reduce query response
times, resulting in a solid foundation for interactive visual event analytics.

2.2 Extrapolation Framework

With CEP we are able to detect situations of interest with low latency. For instance, we
notify users about an aircraft that faces severe weather conditions immediately after it sent a
position within a corresponding region. However, in many cases it is desirable to receive such a
notification before the actual situation occurs, i.e., predict that it will likely occur in the future.
In general, there are two options to achieve this. The first option is query rewriting. In this
case, the corresponding queries are modified such that they fire right before the actual situation
occurs. However, this often increases their complexity. In our example, we would need to track
distance of aircrafts to those weather phenomena, instead of doing a simple containment check
based on the current aircraft position. The second option is to leave the queries untouched,
but extrapolate the received event data into the future. This is the more general approach,
since it allows us to use the same query for both, alerts and predictions. However, the choice of
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Figure 2: Overview of the extrapolation framework.

the extrapolation method depends on the actual scenario and is critical for the quality of the
produced results.

We opt for the second approach and introduce an extrapolation framework into Jepc. The
framework is flexible regarding the specification of the extrapolation method, and hence app-
plicable to a wide range of use-cases. Figure 2 gives an overview of the framework. Its core
component is the so-called Extrapolator, which is implemented as a regular operator within
Jepc. While data arrives, the operator is passive. It builds an in-memory history of the re-
ceived events and forwards all data items downstream without any modifications. After the
end of the input stream is reached, the Extrapolator uses the in-memory history to extrapolate
future events according to its configuration. It is easy to see that this process is transparent for
the downstream operators, which allows us to insert extrapolation in between any two adjacent
operators of a query graph.

The Extrapolator is configured via a small set of parameters: Timespan, Count, Partition By
and Predictors. The meaning of those parameters is as follows. Timespan specifies how far to
extrapolate (e.g., five minutes from the last received event). Via Parition By, the input stream
is logically partitioned, and extrapolated events are generated for each of those partitions.
Count determines the number of events to extrapolate per partition. Finally, Predictors specify
how to forecast the attribute values of the generated events (e.g., last-known value or linear
extrapolation).

Assuming flight data consisting of an unique aircraft id (ID), the current location (LOC),
velocity (VEL) and a timestamp (T), a simple linear 5 minute extrapolation would be defined as
follows: Timespan=5 minutes, Count=1, Partition By=ID, Predictors=[ID=Last-known value,
LOC=linear, VEL=linear]. This configuration partitions the incoming data stream according
the ID attribute, i.e., generates one partition per aircraft. For each partition, it extrapolates
Count=1 event that linearly predicts LOC and VEL 5 minutes into the future while carrying
over the ID from the previous event. Note that for this example, the main-memory history
needs to hold only two events per partition for a linear extrapolation, making it very memory
efficient.

With the proposed framework, we enable Jepc to extrapolate arbitrary event queries. This
way, any existing query that detects situations of interest can seamlessly be turned into a
predictive query. The framework currently offers methods for last-known value, linear extrap-
olation and rotational extrapolation. Considering the values xt−h,...,t for the current history
of h prior events and y for the next (yet unknown) event, last-known value sets the predicted
next value ŷ = xt. This is particularly useful for non-changing values like the ID in the above
example. Linear extrapolation calculates the derivatives dx and dt for the last event (h = 1)
and sets ŷ = xt + Timespan · dxdt . This is a very basic extrapolation that assumes a steady
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Figure 3: Overview of multi query optimization process.

movement. Rotational extrapolation additionally calculates the angle θ between −−−−−−→xt−2xt−1 and
−−−−−−→xt−3xt−2 (h = 2). Then, it utilizes the output of the linear extrapolation and rotates it by
θ using a rotation matrix. This method augments the linear extrapolation by incorporating
rotational momentum of the trajectory. It should be emphasized that these three methods are
based solely on the in-memory history maintained by the Extrapolator.

For future work, we plan to introduce more advanced extrapolation methods from machine
learning like averaging and matching via clustering methods ([1, 2]) or recurrent neural networks
([19, 21]) that incorporate historical data and learn characteristics from a dataset. Besides
pre-defined extrapolators, we allow users to define custom extrapolation methods making our
framework applicable even for highly specialized use-cases.

2.3 Multi-Query Optimization

Since one of the core motivations for our work is interactive data exploration, the overall
performance of the combination of Vat and Jepc cannot be neglected. In order to facilitate a
smooth user experience, we need to minimize processing delays in order to encourage an ongoing
exploratory process. Given our overall architecture (Figure 1) and the event processing scope
of this work, this means optimizing the processing pipeline between Jepc and Vat.

As a first step in our ongoing work on query optimization, we target a couple of key char-
acteristics of exploratory workflows. In general, users will start creating their workflow by
requesting data from a data source. In the process of trying out different operators and com-
bining information to derive new insights, a user will create multiple branching workflow paths
from a data source. In essence, this operational pattern results in multiple Wave operators
requesting the same data source over and over again. This effect is amplified due to the spatio-
temporal nature of the systems - a worfklow is usually created and evaluated in a specified time
interval and region. Afterwards, the same workflow may be visually verified and changed in
other spatio-temporal bounding boxes.

Although repeated requests to the same data can be efficiently handled through caching
mechanisms (e.g., a LRU main memory cache), replaying high volume data streams such as
flight event data requires a very large cache to avoid cache misses. Furthermore, stateful event
processing operators such as joins, aggregation and especially pattern matching require interim
results, which further degrades the overall cache performance. Given the unknown target of
the data exploration process, dropping operators, changing regions and/or time intervals may
render ChroicleDBs system cache essentially useless with just a couple of clicks.

Therefore, we opt to support the caching mechanism with an additional optimization layer
targeted towards multi-query optimziation. The overall optimization process is depicted in
Figure 3. After receiving an event query issued through Vat, ChroncileDB does not start to
process this query immediately. Instead, after registering the first query, the system collects
up to x additional queries while waiting at most y timestamps for them to arrive. Based on
the collected queries, we merge overlapping components into one query graph. During merging,
we consider unique aspects of CEP queries to achieve better results - e.g., similar window
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constraints close to the source are merged and additional operators are placed within the query
graph to correct merged constraints at the output level.

This additional optimization layer enhances ChroncileDBs processing capabilities based on
the nature of exploratory workflows - utilizing shared query components of branched paths and
requesting the same spatio-temporal regions of a single Wave screen. Furthermore, this design
allows us to naturally share state of event processing operators. This is especially beneficial
for pattern matching, which features a potentially large state that has to be build up through
strictly sequential processing, limiting the ability to reuse interim results otherwise. Thus, we
open up our overall system for a variety of pattern matching optimization techniques ([13]).

3 Use Cases

In this section, we demonstrate a variety of functions of Jepc in combination with the Vat
System and highlight the benefits of the proposed extensions. First, we exemplify the combined
processing of flight event data from Jepc and raster data from Vat’s data repository by detect-
ing flights facing severe weather conditions. Then, we evaluate the quality of our extrapolation
methods by turning this query into a prediction. Afterwards, we present the realization and
visualization of pattern matching in Jepc and Vat in terms of starting and landing trajectories
in flight events. We also discuss the benefits of multi-query optimization in this context. Fi-
nally, we introduce advanced group patterns in Jepc and their integration in Vat by detecting
neighbouring flight trajectories. For all three use cases, we use a snapshot of the freely available
OpenSky Network dataset. The snapshot consists of 34 million flight events covering the 4th
of February 2019.

3.1 Spatio-Temporal Event Enrichment

In aviation, it is of interest to investigate weather information due to its impact on the start
and landing phase of aircrafts as well as routes in general, e.g., evasive maneuvers. Therefore,
this use case deals with the detection of flights facing severe weather conditions. The resulting
workflow combines the flight event data from ChronicleDB with two raster data sets from Vat.
The first raster data set is comprised of weather data originating from Eumetsat’s Meteosat
Second Generation, which provides a full scan of the hemisphere in 3 712×3 712 pixel resolution
every fifteen minutes [16]. This raw data can either be displayed directly or processed into cloud
information, e.g., using convolutional neural networks in a preprocessing step [9]. The second
raster data set is used to identify areas with high rain rates which indicate severe weather
conditions and thunderstorms. The data is available in a temporal resolution of five minutes
and a spatial resolution of 1 100 × 900 pixels, and can be obtained from the radar network of
the German weather agency (DWD)1. Different spatial and temporal resolutions are handled
automatically by the Vat System such that multiple data sets can be displayed and processed
together on the map of the user interface.

In order to identify flight positions near or within areas with high rain rates, we incorpo-
rate Vat’s visual analytics toolbox. By using a spatio-temporal join operator, we extract the
weather information from the raster image for each flight event. To extract characteristics of
the correlated data, the results could also be visualized in a data table or via plots (omitted
due to space constraints). Finally, we use a filter operation based on user-defined thresholds to
extract noteworthy events.

1www.dwd.de/EN/ourservices/radar products/radar products.html
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Figure 4: Yellow aircraft trajectories and aircrafts in
severe weather conditions (red points).
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Figure 5: The errors between predic-
tions and observations using different
extrapolation methods.

Figure 4 shows the results of this process within the user interface of the Vat System. The
layer list on the left side shows the different incorporated data sets and acts as the map legend.
The time selection on the top specifies the time window of the displayed data. For this use
case, the data is partitioned into ten minute intervals. The map shows an area covering Western
Europe and the Atlantic Ocean. The yellow lines indicate flight trajectories, with noticeable
hot spots in London and Paris. Furthermore, a big cloud band spans from the south of France
to the Baltic sea. In the radar data layer, a green color indicates radar coverage and the blue to
red gradient indicates the rain rate. In particular, areas with a high rain rate, which correlate
to severe weather situations, are visible over Northern Germany. In this case, the red points in
Figure 4 indicate the locations of aircrafts within the observed time span that experienced a
high rain rate.

With the extrapolation framework described in Subsection 2.2 this query can be turned
into a prediction. For this purpose, we replace layers dedicated to flight event data with
extrapolation queries, resulting in a forecast of flight positions. Additionally, the radar data
can be extrapolated with machine learning models [10]. A discussion of the weather data
extrapolation is beyond the scope of this paper. In order to measure the accuracy of our
event extrapolation, we have analyzed 2 211 flight trajectories with 218 127 segments in central
Europe, spanning a time frame of 20 minutes. For a given timestamp t, we predicted the aircraft
position at the timestamp t+X based on previous positions (2 for linear and 3 for rotational
extrapolation). We then compared the extrapolated positions with the ground truth.

Figure 5 shows our results for a varying X (x-axis) from 10 to 50 seconds. On the y-axis
of the upper graph, we show the mean absolute error as the deviation between the predicted
position and the actual position in kilometers. The y-axis of the lower graph shows the relative
error for which we have divided the absolute values by the distance traveled by the aircraft.
For example, the phenomenon that helicopters move less quickly than long-haul aircraft could
have led to a bias in the overall mean error. The relative error calculation takes this aspect
into consideration.

In contrast to the baseline last-known value, the linear extrapolation leads to a decent per-
formance and produces absolute errors of one to four kilometers, depending on how far the
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Figure 6: Pattern query results that identify the tracks
of starting (green) and landing (red) aircrafts.
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Figure 7: Two segment-wise illustra-
tions of trajectory predictions using
linear and rotational extrapolation.

prediction points to the future. In addition, the prediction of rotations reduces the error com-
pared to linear calculations. It is noteworthy that the relative error decreases with increasing
predication timespan. This means that the error of the extrapolator does not increase dispro-
portionately to the prediction interval.

3.2 Landing and Starting Pattern

Pattern queries, in particular, lend themselves for analyzing streams of flight data, since each
aircraft continuously reports data such as velocity or altitude, which change for certain flight
maneuvers. In this use case, we demonstrate how to detect starting and landing maneuvers via
a complex event processing query. For starting, we identify a gradual ascent of an aircraft. This
is expressed as a continuous increase in altitude and velocity before rising above 200% altitude
of the first event attributed with a detected increase. Landing is detected in an analogous
matter.

The visualization of the results is depicted in Figure 6 which shows the area around Frankfurt
airport. It features three layers based on queries running in ChronicleDB. Trajectories matching
the starting pattern are shown as green lines. Results for the landing patterns are displayed
as red lines. Furthermore, black lines are associated with a third query showing all flight
trajectories within the configured time frame.

The use case is a prime example for the benefits of multi-query optimization. All three
layers feature queries for the same data source within the same time frame. Furthermore, the
pattern queries are very similar and may benefit from shared operator states. While evaluating
the query on a time frame of 20 minutes, we measured a 1.6 speed up when applying our
optimization techniques. With an increasing numbers of layers, this speed up also grows. This
obviously improves the user experience for interactive data exploration.

Starting and landing patterns are also especially challenging for extrapolation purposes,
since they feature a sharp turn away or towards the airport as shown in Figure 6. Therefore,
we visually evaluated the quality of our extrapolation framework for those phases in isolation.
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For this purpose, we analyzed landing trajectories. In Figure 7, we have plotted the ground
truth trajectories (black) for two planes A and B against the extrapolated linear (blue) and
rotational (orange) trajectories respectively. Clearly, the rotational extrapolation better cap-
tures non-linear flight movements, e.g. for Plane B the mean absolute error is reduced by 0.18
km. Therefore, it is important to use expert knowledge to choose the right method for different
problem settings. The synergy of integrating Jepc into Vat facilitates this in an interactive
manner: Not only does Vat gain the ability to work with events, but through visualization in
Vat, it is also possible to set the parameters appropriately in pattern and extrapolation queries.

3.3 Detection of Group Movements

For the third use case, we use a group pattern query to detect potential threats on the route
of a flight. In aviation, there must be a considerably large distance between aircrafts (e.g., at
least 300m vertically, 5.4 km horizontally in Germany2). Hence, we are searching for aircrafts
flying on similar routes with a distance below those thresholds. More specifically, we search
for a group of two or more aircrafts, moving within a horizontal distance below 5.4 km and a
vertical distance below 300m for at least 10 minutes.

In order to detect groups, we utilize spatio-temporal group pattern queries. Those queries
originate from moving object databases [14]. So far, they have received little attention in
the streaming context. While there exist specialized solutions for certain movement patterns
[20, 8], a general approach has not yet been presented in literature. In Jepc, we adopted
the operators presented by Sakr et al. [14] to a streaming scenario, and thus, support a wide
variety of movement patterns. In this use case we present the cross-pattern operator, which
allows to relate moving objects to each other. The operator transforms the incoming event
stream into a temporal graph by applying a user-defined predicate to pairs of moving objects
(e.g., distance below a threshold). The vertices of the graph represent the objects and an edge
between two vertices states that the predicate evaluated to true. Edges remain valid until
the predicate evaluates to false. Groups are identified by scanning for sub-graphs of a specific
type (e.g., clique or connected component). For example, a group of objects that move closely
together is detected by scanning for cliques in a graph derived from a distance predicate. Since
the membership status of objects may change, the development of groups over time needs to
be monitored. This is done by tracking changes in the graph (edge additions/removals) and
analyzing their impact on the detected sub-graphs. To offer fine-grained control over group
detection, users can specify several additional parameters like the minimum group size or the
minimum duration a group must exist before it is reported.

The results of the pattern query are depicted in Figure 8. The user interface shows the area
around Bruxelles and a single layer containing flight trajectories for a time frame of the last 20
minutes. Trajectories of aircrafts that violated the minimum distance regulation are shown in
blue, while grey trajectories show flights with a sufficiently large distance to each other. In this
case, the query returns a single group of two US Air Force Black Hawk helicopters moving from
Chièvres Air Base, Belgium to Ramstein Air Base, Germany. This again highlights the benefits
of combining Vat with event processing: complex coherences are visualized in an intuitive way
and can be further investigated in an interactive manner. Furthermore, just like in the first use
case, we can utilize the extrapolation framework to predict distance constraint violations, and
thus increase aviation safety due to early warnings.

2https://www.dfs.de/dfs_homepage/en/Air%20navigation%20services/Safety/
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Figure 8: Blue trajectories highlight a group of adjacent aircrafts.

4 Conclusion

We showcased the potential of coupling a visual spatial analytics platform with a database
for managing massive event streams as provided by the OpenSky Network. Furthermore, we
discussed our first results for a generic event processing extrapolation framework and multi-
query optimization in the context of visual analytics. For the example of CEP-style pattern
and spatial group pattern queries on high volume aircraft event data, we developed three use
cases that highlight the strength of the combined system and the newly developed components.
For future work, we intend to increase the synergy between both components even further by
feeding more complex data (e.g., raster data) back into Jepc and by improving visual live
stream support in Vat (e.g., via specialized notifications in Wave). Furthermore, we intend to
develop more complex use cases for aircraft data based on our preliminary results on correlation
with weather data. To further improve performance, we also want to explore the benefits of
coprocessors for CEP-style query processing [11].
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