
EPiC Series in Computing

Volume 53, 2018, Pages 20–32

Vampire 2017. Proceedings of the 4th Vampire Workshop

An Inference Rule for the
Acyclicity Property of Term Algebras

Simon Robillard

Chalmers University of Technology, Sweden

Abstract

Term algebras are important structures in many areas of mathematics and computer
science. Reasoning about their theories in superposition-based first-order theorem provers
is made difficult by the acyclicity property of terms, which is not finitely axiomatizable.
We present an inference rule that extends the superposition calculus and allows reasoning
about term algebras without axioms to describe the acyclicity property. We detail an
indexing technique to efficiently apply this rule in problems containing a large number of
clauses. Finally we experimentally evaluate an implementation of this extended calculus
in the first-order theorem prover Vampire. The results show that this technique is able to
find proofs for difficult problems that existing SMT solvers and first-order theorem provers
are unable to solve.

1 Introduction
Term algebras are central to many areas of mathematics and computer science. In logic, they
are closely related to the concept of Herbrand structures, and in other areas of mathematics,
they can be used to formalize inductively defined structures. They are also useful in the study
of programming languages, particularly those that manipulate inductive data types. The ability
to reason about term algebras efficiently in an automatic prover is therefore of great importance.

The main difficulty in reasoning about their theory is caused by the acyclicity property of
terms, which states that a term cannot be equal to one of its own subterms. This property
cannot be described by a finite number of axioms in first-order logic, making it troublesome
for first-order theorem provers based on superposition. Such provers find refutation proofs by
saturating a set of clauses, and theory reasoning is accomplished by explicitly adding the theory
axioms to the set of clauses to be saturated. Term algebra reasoning has therefore often been
carried out by using dedicated decision procedures [15,17,18] which typically cannot be used on
problems containing other theories. More recently, support for term algebra reasoning has been
added to some SMT solvers [2,12], but these are usually not as efficient as superposition-based
provers on problems that contain heavily quantified formulas.

We previously tackled the problem of reasoning about term algebras in a superposition
prover [6] by introducing a conservative extension of their theories, in which an additional
predicate symbol is used to represent the subterm relation over terms. The predicate is defined
by additional axioms; in particular it has the property of being irreflexive, which corresponds

L. Kovács and A. Voronkov (eds.), Vampire17 (EPiC Series in Computing, vol. 53), pp. 20–32



An Inference Rule for the Acyclicity Property of Term Algebras Robillard

to the restriction that terms cannot be equal to their own subterms. This technique provides
an easy way to perform complete reasoning in the theory of term algebras using any first-order
theorem prover. However the subterm relation is transitive, which means that provers may
generate a large number of clauses containing the subterm predicate, most of which will not be
used in the proof.

In this paper we present an alternative solution to reason about the acyclicity property of
term algebras. Instead of relying on axioms, we extend the superposition calculus with a new
inference rule. The inferences that result from it are sound in all interpretations that satisfy
the acyclicity property. This enables the prover to generate useful new consequences while
minimizing the number of generated clauses, thus improving the efficiency of the proof search.

This paper is organized as follows. We define term algebras and their first-order theory in
Section 2 and recall some notions about superposition in Section 3. In Section 4, we describe
the new inference rule. Technical details allowing the rule to be efficiently implemented in a
first-order theorem prover are given in Section 5. Lastly in Section 6, we evaluate this approach,
as implemented in the first order-theorem prover Vampire, and compare it to other tools and
techniques.

2 Term algebras

In this section, we define term algebras and their first-order theories, and describe some of their
properties. The context of this presentation is unsorted first-order logic, but the results can be
extended to a many-sorted logic in a straightforward manner. Equality is part of the logic, the
notation ≈ stands for the equality predicate in first-order logic, and 6≈ for its negation.

2.1 First-order theory

Let Σ be a finite collection of function symbols containing at least one constant. We call these
symbols term constructors and denote them by the letters e, f, g, . . .We denote by T (Σ) the
set of ground terms constructed from Σ.

The Σ-term algebra is the algebraic structure whose carrier set is T (Σ) and in which terms
are interpreted as themselves:

• every constant symbol e is interpreted as the corresponding constant in T (Σ);

• every n-ary function symbol f is interpreted as the function from T (Σ)n to T (Σ) that
maps the tuple (t1, . . . , tn) to the element f(t1, . . . , tn).

Definition 1. We now define the first-order theory TFT as the set of formulas that are conse-
quences of the following axioms:

∀x,
∨
f∈Σ

∃y (x ≈ f(y)) (A1)

∀xy, f(x) 6≈ g(y) (A2)

for every f, g ∈ Σ such that f 6= g;

∀xy, f(x) ≈ f(y)→ x ≈ y (A3)

21



An Inference Rule for the Acyclicity Property of Term Algebras Robillard

for every f ∈ Σ of arity ≥ 1;

∀x, x 6≈ t[x] (A4)

for every term t[x] 6= x in which x appears.

Axiom (A1), sometimes called the domain closure axiom, asserts that every element in Σ
is obtained by applying a term constructor to other elements. Axiom (A2) ensures that terms
constructed from different constructors are distinct, while axiom (A3) describes the injectivity
of term constructors. (A4) is an axiom schema: the resulting formulas assert that no term can
be equal to one of its own subterms, i.e., terms are acyclic. The Σ-term algebra is a model of
every formula in (A1)–(A4), and therefore of every formula in TFT .

We say that a formula is a pure term algebra formula if its language only contains function
symbols from Σ and the equality predicate symbol. Consider for example a term algebra
signature consisting of a constant z and a unary symbol s. The sentence

(∀xy, f(x, z) ≈ x ∧ f(x, s(y)) ≈ s(f(x, y)))→ ∀xy, f(x, y) ≈ f(y, x) (S)

is not a pure term algebra formula because it contains the function symbol f , which is not part
of the set of term constructors Σ.

The theory TFT is complete on pure term algebra formulas [8]: for any such formula ϕ,
either ϕ ∈ TFT or ¬ϕ ∈ TFT .

2.2 Acyclicity and induction
The acyclicity property is closely related to the notion of induction. In order to illustrate
this, we consider a theory TFT Ind , in which the acyclicity axiom schema (A4) is replaced by an
induction axiom schema.

Definition 2. TFT Ind is the set of formulas that are consequences of the axioms (A1)–(A3) and
of the formulas that instantiate the following axiom schema:∧

f∈Σ

(
∀x1 . . . xn, ϕ(x1) ∧ · · · ∧ ϕ(xn)→ ϕ

(
f(x1, . . . , xn)

))
→ ∀x, ϕ(x) (A5)

for every sentence ϕ(x) in the language in which x is the only free variable.

Lemma 1 (Properties of TFT Ind). The following properties hold:

1. TFT Ind is consistent;

2. for every formula ψ, if ψ ∈ TFT , then ψ ∈ TFT Ind ;

3. for every pure term algebra formula ψ, either ψ ∈ TFT Ind or ¬ψ ∈ TFT Ind ;

4. for every pure term algebra formula ψ, ψ ∈ TFT Ind if and only if ψ ∈ TFT .

Proof. (1) holds because T (Σ) is a model of TFT Ind . (2) holds because every formula of the
axiom schema (A4) is a consequence of the axioms of TFT Ind (the acyclicity axioms can be
proven by induction). (3) is a consequence of the completeness of TFT and of (2). Finally for
(4), one direction of the equivalence if is given by (2). For the other direction, we must show
that ψ ∈ TFT Ind implies ψ ∈ TFT . By contradiction, assume ψ ∈ TFT Ind and ψ 6∈ TFT . Then by
completeness of TFT , we have that ¬ψ ∈ TFT , and by (2) it follows that ¬ψ ∈ TFT Ind , which
contradicts the consistency of TFT Ind .

22



An Inference Rule for the Acyclicity Property of Term Algebras Robillard

Naturally, if we consider languages that include arbitrary predicate and function symbols,
TFT is a strict subset of TFT Ind . Consider again the sentence (S) given above: intuitively, the
term algebra generated by the signature Σ = {z, s} is isomorphic to the algebra of natural
numbers, and f can be interpreted as the addition on these numbers. The sentence, which
expresses the commutatitvity of f , belongs to TFT Ind but cannot be proven without induction,
and therefore does not belong to TFT .

From the previous results we gather that the acyclicity property is strictly weaker than the
principle of induction, while at the same time being sufficiently strong to ensure the complete-
ness of TFT on pure term algebra formulas.

3 First-order logic and superposition

We now recall some definitions related to first-order logic and the superposition calculus. A
more complete overview of these topics can be found in [7].

First-order theorem provers work by applying inferences to a set of clauses and adding the
conclusions to that set. The typical application is to find refutation proofs, by deriving the
empty clause from a set that initially contains hypotheses and a negated conjecture. Satisfi-
ability results are also possible if the empty clause is not found and the set is saturated – no
new inferences are possible among its clauses. The calculi used by these provers are based on
the superposition calculus, which has the property of being refutationally complete: for any
unsatisfiable set of clauses, there exists a refutation proof in the calculus.

Terms appearing in clauses may contain variables (denoted x, y, z, . . . ) which are implic-
itly universally quantified. To perform inferences between such quantified clauses, rules in the
superposition calculus require the detection of unifiable terms and the computation of a substi-
tution under which those terms are equal. A substitution is a function from variables to terms.
Given a term t and a substitution θ, we denote by θ(t) the application of θ to t, in which all
occurrences of variables x1, . . . , xn in t have been simultaneously replaced by θ(x1), . . . , θ(xn).
Application of a substitution can be extended to literals and clauses. The composition of two
substitutions σ and τ is the function that takes every variable x to τ(σ(x)). It is itself a substi-
tution and is denoted τσ. An equation is a pair of terms, denoted s =? t, and a substitution θ
is a unifier of s and t, or a solution of the equation, if θ(s) = θ(t). Moreover, if for every unifier
τ of an equation E, there exists a substitution δ such that τ = δσ, then σ is a most general
unifier (mgu) of E. The notions of unifier and mgu can be applied to a finite set of equations,
if the substitution is a solution of every equation in the set.

To direct the proof search, first-order theorem provers use a selection function, a function
that selects a non-empty subset of literals in any non-empty clause. The selection function
is used to restrict the number of possible inferences (resolution is performed only on selected
literals, for example) while preserving refutational completeness of the system, provided that
the function satisfies certain properties. Different selection functions may be used, leading to
variations of the calculus. To indicate that a literal is among the selected literals in a clause,
we show it over a gray background, e.g., s ≈ t ∨A.

The calculus is also parametrized by an ordering on terms. This is another important
component to limit possible inferences and ensure the efficiency of the proof search. However
the rule described in the following does not use order restrictions, therefore we do not describe
the notion further.

23



An Inference Rule for the Acyclicity Property of Term Algebras Robillard

4 An inference rule for acyclicity

In this section we describe an inference rule that extends the superposition calculus and allows
reasoning about the acyclicity property without adding the corresponding axioms to the set of
clauses to saturate.

In the remainder of this text, it is important to distinguish symbols belonging to Σ (term
constructors) from other symbols. This distinction is necessary because the rule must be appli-
cable and sound even for problems that contain uninterpreted symbols or other theory symbols.
Indeed, even clauses resulting from the clausification of a pure term algebra formula may con-
tain non-constructor symbols, in particular those introduced by Skolemization. Constructors
are denoted by the letters e, f, g, . . . while we use s, t, u, . . . to denote arbitrary terms.

Definition 3. We say that a term s occurs under term constructors in a term t, if t is of the
form f(u1, . . . , un) and there exists ui with 1 ≤ i ≤ n such that either:

1. s = ui

2. s occurs under term constructors in ui.

We will use the notation p[s]Σ to denote a term in which s occurs under constructors. For
any ground terms s and p[s]Σ and any interpretation I that satisfies the instances of axiom
schema (A4), it must be the case that I(p[s]Σ) 6= I(s).

Definition 4. The inference rule Acycl+, which takes an arbitrary number n of premises, is
defined as follows:

t′1 ≈ p[t2]Σ ∨ C1 t′2 ≈ q[t3]Σ ∨ C2 . . . t′n ≈ r[t′1]Σ ∨ Cn

Acycl+
θ(C1 ∨ C2 ∨ · · · ∨ Cn)

where θ is an mgu of the set of equations {t1 =? t′1, . . . , tn =? t′n}.

In essence, this rule finds a set of equalities that contradict the acyclicity property under
a certain substitution. Since these equalities cannot all be true under the substitution, the
conclusion indicates that at least one Ci must be true. We first illustrate this principle with
some examples of concrete applications, then demonstrate the soundness of the inference rule
with Lemma 2.

Example 1. In this simple example, the rule has only one premise and the unifier is the empty
substitution:

s ≈ g(e, f(s)) ∨A
A

Example 2. Here is a more complex example of application of the rule, with three premises:

s ≈ f(t) ∨A t ≈ g(u(x), e) ∨B[x] u(s) ≈ f(s) ∨ C

A ∨B[s] ∨ C

The substitution {x 7→ s} is used as unifier and applied to the conclusion.

24



An Inference Rule for the Acyclicity Property of Term Algebras Robillard

Example 3. Consider the clause
s ≈ f(u(s)) ∨A

The rule may not be applied to this clause without additional premises, as s does not occur
under term constructors in the right-hand side of the selected literal. Since u is not a term
algebra constructor, there exist interpretations that associate u(s) with a term (in the domain
of discourse) not featuring s as a subterm, and in which s ≈ f(u(s)) holds.

Lemma 2 (Soundness of Acycl+). For any interpretation I that satisfies the instances of axiom
schema (A4), if the premises of the rule hold in I, then the conclusion holds in I as well.

Proof. Let θ be a unifier of the equations {t1 =? t′1, . . . , tn =? t′n} (in particular, θ may be an
mgu, although this is not required for soundness).

By contradiction, assume that θ(C1 ∨ C2 ∨ · · · ∨ Cn) does not hold in I. Instances of the
premises θ(t′1 ≈ p[t2]Σ ∨C1), θ(t′2 ≈ q[t3]Σ ∨C2), . . . , θ(t′n ≈ r[t1]Σ ∨Cn) hold in I, therefore it
must the case that θ(t′1 ≈ p[t2]Σ), θ(t′2 ≈ q[t3]Σ), . . . , θ(t′n ≈ r[t1]Σ) also hold. Since θ(ti) = θ(t′i)
for 1 ≤ i ≤ n, there exists at least one ground term p′[θ(t1)]Σ such that I(p′[θ(t1)]Σ) = I(θ(t1)),
which contradicts the hypothesis on I.

In addition to Acycl+, we can also add a rule to deal with disequalities:

t 6≈ p[t]Σ ∨A
Acycl−

∅
As denoted by the double line, this is a simplification rule, i.e., a rule that deletes its premise
after application. Here the rule generates no conclusion, but merely deletes a clause that is
always true in the theory. Such rules do not add to the deductive power of the calculus, but by
deleting useless clauses they lighten the load of the prover and thus play an important practical
role. Their application is also very inexpensive and should be carried out eagerly: every time a
clause is generated it may be tested against this rule and discarded when applicable.

5 Implementation
There exist different saturation algorithms, as described in [13], but in general a prover will
maintain a set of active clauses such that all possible inferences between these clauses have
been performed. Every time a new clause C is selected for inference, all active clauses must be
tested to check whether they can participate in an inference with C. In the case of the rule
Acycl+, this test is particularly difficult:

1. An arbitrary number of clauses can participate in the inference. Assuming that the
number of active clauses is k, an exhaustive test of the 2k possible combinations would be
very impractical, given that k is often large. In contrast, all other rules of the standard
superposition calculus are either unary or binary.

2. The rule requires computing an mgu over a set of equations, rather than over a single
equation like other rules of the calculus. While this problem is well-known and can be
solved efficiently [9], first-order theorem provers typically avoid solving it directly and
instead rely on term indexing [16] to retrieve, among a set of indexed terms, all of those
that are unifiable with a given term t.

In order to achieve a practical implementation of the rule, it is important to develop an indexing
strategy enabling the prover to retrieve sets of clauses to be used as premises. In this section
we describe an algorithm that accomplishes this.

25



An Inference Rule for the Acyclicity Property of Term Algebras Robillard

5.1 Data structures
The indexing strategy relies on the use of two auxiliary data structures to retrieve terms, literal
and clauses that appear among the set of active clauses.
Subterm index. This index must support queries over terms with the following invariant:
given a term s, the query subtermClause(s) must return all pairs (t, C) such that t is a term
and C is an active clause of the form s ≈ p[t]Σ ∨A. This index can be implemented straight-
forwardly as a map, and must be updated every time a clause is added to or removed from the
set of active clauses.
Unification index. This index supports a query over terms: given a term s, the query
unifiable(s) returns all pairs (t, σ) such that there exists an active clause s′ ≈ t ∨ A and s′
is unifiable with s under an mgu σ. Like the other one, this index must be updated every time
the set of active clauses is modified. The efficient implementation of such an index is not trivial:
unlike the subterm index, a query upon term s may return results even if s does not appear in
any of the active clauses. Efficient retrieval of unifiable terms is central to the implementation
of first-order theorem provers, and any state-of-the-art prover should offer data structures that
can be used to implement such an index.

5.2 Retrieving premises
Every time a new clause C is selected for inference, the procedure performInferences(C)
must perform all possible inference between C and active clauses. For this, the subterm and
unification indexes are first updated to include C, then a search is conducted to find the sets
of premises.

We give now a procedure to detect all sets of premises among active clauses – more precisely,
all minimal sets with respect to subsumption – and perform the corresponding applications of
Acycl+ among the active clauses (Algorithm 1).

Given two terms t1 and t and a substitution θ, the procedure enumerate(t1, t, θ, P ) applies
Acycl+ to all minimal sets of premises that include P . Every call to enumerate(t1, t, θ, P ) verifies
the following invariant: the selected literals in P imply an equality between θ(t1) and some term
p[θ(t)]Σ. The parameter P is used to collect the premises. The substitution is computed by
composing the mgus of each individual equation, starting with the empty substitution ε. The
correctness of this construction is proven in Lemma 3: the side condition of this lemma is
satisfied because variables from distinct clauses are always distinct themselves.

Lemma 3 (Correctness of the mgu). Let θ be an mgu of a set of equations E and σ an mgu
of an equation θ(s) =? t such that t does not contain variables appearing in E, then:

1. σθ is a unifier of E′ = E ∪ {s =? t}

2. σθ is a most general unifier of E′

Proof. Let us first note that since the variables of t do not appear in E, and θ is an mgu of E,
the variables of t do not belong to the domain of θ, from which we have that θ(t) = t.

For (1), we have that θ is a unifier of E, therefore for any substitution δ, δθ is a unifier of
E, so in particular this holds for στ . In addition, as θ(t) = t, σθ is also a unifier of θ(s) =? t.

For (2), we must show that for any α that is a unifier of E′, there exists a substitution δ such
that δσθ = α. As E is a subset of E′, α must also be a unifier of E. As θ is an mgu of E, there
exists δ1 such that δ1θ = α. δ1 is a unifier of {θ(s) =? t}, or equivalently of {θ(s) =? θ(t)}, and
consequently δ1θ is a unifier of {θ(s) =? t}. As σ is an mgu for that set, there exists δ2 such
that δ2σ = δ1. The substitution δ2 satisfies δ2σθ = α, showing that σθ is most general.

26



An Inference Rule for the Acyclicity Property of Term Algebras Robillard

Procedure performInferences(C1) is
for t s.t. C1 = t1 ≈ p[t]Σ ∨A do

enumerate(t1, t, ε, {C1})
end

end

Procedure enumerate(t1, t, θ, P ) is
for (t′, σ) ∈ unifiable(θ(t)) do

if t′ = t1 then
apply Acycl+ to P under σθ

else
for (ti, Ci) ∈ subtermClause(t′) do

if Ci 6∈ P then
enumerate(t1, ti, σθ, P ∪ {Ci})

end
end

end
end

end

Algorithm 1: A procedure to apply Acycl+ among active clauses

Lemma 4 (Termination). The procedure performInferences terminates.

Proof. Termination of the procedure follows from the following facts:

1. Queries to the subterm index and the unification index always return a finite number of
results, so that each call to enumerate(t1, t, θ, P ) only makes a finite number of recursive
calls.

2. The condition Ci 6∈ P ensures that the depth of the recursion is bounded by the number
of active clauses, as an element is added to P on every recursive call.

6 Experiments
We implemented the new inference rule in the first-order theorem prover Vampire. As described
in [6], Vampire already provides support for term algebra reasoning, relying on a conservative
extension of the theory to enforce the acyclicity property. Our new rule can be used instead of
this mechanism, and we compare the two approaches below.

Among currently available benchmarks, few problems rely on the acyclicity property: many
of them are theorems that hold on term algebras as well as on similar structures that do not
satisfy the acyclicity property (such as algebras of rational trees, described in [8]). For example
in [12], the authors find that only 6 problems (among 4170) are solved exclusively when the
acyclicity rule of CVC4 is activated, a result confirmed by experiments with Vampire. More-
over, those 6 problems are very simple, and any prover implementing some form of reasoning
about the acyclicity property should be able to solve them. In order to provide a meaningful

27



An Inference Rule for the Acyclicity Property of Term Algebras Robillard

evaluation of the performance of the different techniques for handling the acyclicity property, we
generated 200 new problems1 of various size and complexity. The problems were constructed by
generating DNF formulas in which each disjunct contains literals that imply a cyclic equality.
The formulas generated in this manner contain between 1 and 20 disjuncts, each containing
between 1 and 20 literals. The signature of the algebra was also varied across the different
problems. We separated the problems in two sets: the first set contains 100 problems without
universal quantifiers, so that their clausified forms feature only ground terms; the remaining
100 problems include quantifiers, and therefore variables are present after clausification. No
other theories were involved, and the only uninterpreted symbols are constants which can be
seen as Skolem symbols, so that the problems belong to the decidable fragment of the theory
of term algebras.

While these problems do not correspond to real applications of theorem provers, they allowed
us to specifically evaluate reasoning about acyclicity. In contrast to other available benchmarks,
none of these problems can be solved without some non-trivial way to enforce this property of
term algebras.

We compare four solvers/configurations:

1. VampireInf uses the extended calculus described in this paper. Axioms (A1)–(A3) are
included in the set of clauses to be saturated (together with the problem hypotheses and
negated conjecture) but no axioms describing the acyclicity property are used.

2. VampireExt uses the standard superposition calculus, and instead relies on a conservative
extension of the theory of term algebras to reason about the acyclicity property. An
additional predicate symbol is added to the signature, which corresponds to the subterm
relation over terms. In addition to axioms (A1)–(A3), the initial set of clauses also contains
formulas that define the subterm relation.

3. CVC4 is an SMT solver that includes a theory solver for the theory of finite term al-
gebras [12]. This solver constructs equivalence classes for terms present in the problem,
checking that none of them correspond to infeasible values (cyclic terms).

4. Z3 [5] is another SMT solver with support for this theory.

Apart from the difference highlighted above, VampireInf and VampireExt share identical
parameters. Notably, simplification rules related to term algebra constructors (as described
in [6]) are activated, as well as AVATAR [20]. All experiments were carried out on a cluster
on which each node is equipped with two quad core Intel processors running at 2.4 GHz and
24 GiB of memory. The different solvers were run on each problem with a time limit of 60
seconds.

Initial tests with these problems led to some minor optimizations in the implementation of
the inference rule. After communication with its developer, the theory solver of CVC4 was
also improved on the basis of these benchmarks. The results that we give here take these
improvements into account. They are presented in Figure 1.

Among the 100 problems containing only ground hypothesis clauses, VampireExt was able
to solve 90 of the problems and exceeded the time limit for the remaining 10 problems. The
total time required to solve the 90 problems was nearly 800 seconds. VampireInf however
was able to solve all of the problems, and took less than 14 seconds to do so. Each individual
problem was solved in at most 0.6 second. CVC4 was able to solve all the problems within

1These benchmarks are available at http://www.cse.chalmers.se/~simrob/tools.html

28

http://www.cse.chalmers.se/~simrob/tools.html


An Inference Rule for the Acyclicity Property of Term Algebras Robillard

0 10 20 30 40 50 60 70 80 90 100

10−2

10−1

100

101

102

103

Number of ground problems solved

T
im

e
(s
)

CVC4
VampireExt

VampireInf

Z3

0 10 20 30 40 50 60 70 80 90 100

10−2

10−1

100

101

102

103

Number of quantified problems solved

T
im

e
(s
)

CVC4
VampireExt

VampireInf

Z3

Figure 1: Time required to solve a number of problems among both sets. Where no number is
given, the solver was unable to solve some of the problems within the 60-second limit imposed
on each run.

29



An Inference Rule for the Acyclicity Property of Term Algebras Robillard

the time limit, the combined time to solve these problems was 45 seconds. Z3 was the most
efficient, solving all the problems in less than 2 seconds.

On the problems containing variables, the results are generally similar for the two approaches
based on superposition: VampireExt solved 93 of the problems before the time limit, taking
nearly 700 seconds to do it, while VampireInf solved all of the problems in less than 12 seconds.
The performance of SMT solvers is however noticeably different on this set of problems: Z3
solved 76 of the problems fairly quickly (103 seconds) but exceeded the time limit for the
remaining 24 problems, while CVC4 could only solve 12 problems, in 14 seconds.

The new inference rule clearly proves useful for solving difficult problems based on the
acyclicity property. In particular, it is the only approach that succeeded in finding proofs for
all 200 problems. This approach was also very fast on all benchmarks: in the worst case it took
2.5 seconds to find a proof, while all other problems were solved in less than 1 second.

The presence of non-ground terms in the hypotheses does not affect the performance of
VampireExt, nor that of VampireInf, despite the added complexity of finding relevant premises
among active non-ground clauses. This is in contrast with the performance of SMT solvers,
which is negatively affected by the presence of variables in the clauses.

7 Related work

The idea of replacing axioms by an inference rule is central to paramodulation [22], and con-
sequently to the advent of useful first-order theorem provers. Paramodulation is a rule that
replace the axioms of the equality predicate. While finite, the axiomatization of the equality
predicate is potentially large, as one additional formula is required for each symbol in the sig-
nature. It is theoretically possible to reason about equality without paramodulation, but in
practice only very simple problems can be solved that way.

In its form, the rule presented here shares some similarity with the hyper-resolution rule
introduced by Robinson [14], as it finds a resolvent among an arbitrary number of clauses. Ef-
ficient implementation of hyper-resolution is notoriously difficult, solutions have been proposed
by Overbeek [10]. However, hyper-resolution seems to have fallen out of favor among modern
provers, perhaps because it yields only small benefits compared to binary resolution.

The acyclicity property is of some importance in Prolog, where it corresponds to the occur-
check of the unification algorithm. For performance reasons, many Prolog implementations do
not enforce this check. This means that such implementations actually solve equations over
algebras of infinite trees [4]. This change in semantics has been formalized by van Emdem et
al. [19], while Plaisted [11] and Apt [1] establish criteria to determine whether the omission of
the occur-check modifies the semantics of a given program.

Decisions procedures based on quantifier elimination have been used to show the complete-
ness of the theory of term algebras, for example by Maher [8], or by Rybiana et al. in the
context of a theory extended with queues [15]. More practical decision procedures have been
described and evaluated [17, 18]. Barrett et al. have introduced a theory solver for inductive
data types in the SMT solver CVC4 [2] and the SMT solver Z3 uses a comparable theory solver
(unpublished work by de Moura). These developments allow reasoning about problems that
contain uninterpreted symbols, as well as mixed theories. Reynolds et al. have provided a the-
ory solver that can also reason about co-inductive data types [12], while Bjørner has included a
decision procedure for both inductive and co-inductive data types in STeP, the Stanford Tem-
poral Prover [3]. In his PhD thesis, Wand proposes an extension of the superposition calculus
with support for inductive data types and inductive reasoning over these types [21].

30



An Inference Rule for the Acyclicity Property of Term Algebras Robillard

8 Conclusion

We have presented an inference rule aimed at replacing the infinitely many axioms needed to
describe the acyclicity property of term algebras. Thanks to the indexing strategy described, an
efficient implementation of the rule can be achieved in theorem provers. In comparison to other
techniques applicable in saturation-based prover (in particular, the theory extension described
in our previous work [6]), this rule generates fewer consequences and does not needlessly expand
the search space, leading to better performance. The rule is not proven to be complete with
respect to the axioms of acyclicity, but it is empirically shown to outperform other approaches
for reasoning about the acyclicity property of term algebras.

Similar approaches could be used to reason about other theories without finite axiomatiza-
tions. In particular the theory of infinite trees [4] is a good candidate. This theory provides a
first-order semantics for co-inductive data types [12] and shares many similarities with the the-
ory of term algebras. Notably, its uniqueness property – which asserts the existence of unique
cyclic elements – is not finitely axiomatizable. A better characterization of that theory and its
properties, in particular from the point of view of automated theorem proving, would be helpful
for program verification and interactive theorem proving.

Acknowledgments

We acknowledge funding from the ERC Starting Grant 2014 SYMCAR 639270, the Wallen-
berg Academy Fellowship 2014 TheProSE, the Swedish VR grant GenPro D0497701, and the
Austrian FWF research project RiSE S11409-N23.

References
[1] Krzysztof R. Apt and Alessandro Pellegrini. Why the occur-check is not a problem. In Pro-

gramming Language Implementation and Logic Programming, volume 631 of LNCS, pages 69–86.
Springer, 1992.

[2] Clark Barrett, Igor Shikanian, and Cesare Tinelli. An abstract decision procedure for a theory
of inductive data types. Journal on Satisfiability, Boolean Modeling and Computation, 3:21–46,
2007.

[3] Nikolaj Bjørner. Integrating Decision Procedures for Temporal Verification. PhD thesis, Stanford
University, 1999.

[4] Alain Colmerauer. Prolog and infinite trees. Logic Programming, 16:231–251, 1982.
[5] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms

for the Construction and Analysis of Systems, volume 4963 of LNCS, pages 337–340. Springer,
2008.

[6] Laura Kovács, Simon Robillard, and Andrei Voronkov. Coming to terms with quantified reasoning.
In Symposium on Principles of Programming Languages, pages 260–270. ACM, 2017.

[7] Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In International
Conference on Computer Aided Verification, volume 8044 of LNCS, pages 1–35. Springer, 2013.

[8] Michael J. Maher. Complete axiomatizations of the algebras of finite, rational and infinite trees.
In Symposium on Logic in Computer Science, pages 348–357. IEEE, 1988.

[9] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Transactions on
Programming Languages and Systems, 4(2):258–282, 1982.

[10] Ross A. Overbeek. An implementation of hyper-resolution. Computers & Mathematics with Ap-
plications, 1(2):201–214, 1975.

31



An Inference Rule for the Acyclicity Property of Term Algebras Robillard

[11] David A. Plaisted. The occur-check problem in Prolog. New Generation Computing, 2(4):309–322,
1984.

[12] Andrew Reynolds and Jasmin Christian Blanchette. A decision procedure for (co)datatypes in
SMT solvers. Journal of Automated Reasoning, 58(3):341–362, 2017.

[13] Alexandre Riazanov and Andrei Voronkov. Limited resource strategy in resolution theorem prov-
ing. Journal of Symbolic Computation, 36(1):101–115, 2003.

[14] John Alan Robinson. Automatic deduction with hyper-resolution. International Journal of Com-
puting and Mathematics, 1:227–234, 1965.

[15] Tatiana Rybina and Andrei Voronkov. A decision procedure for term algebras with queues. ACM
Transactions on Computational Logic, 2(2):155–181, 2001.

[16] R. Sekar, I.V. Ramakrishnan, and Andrei Voronkov. Term indexing. In Handbook of Automated
Reasoning, pages 1853–1964. Elsevier, 2001.

[17] Philippe Suter, Mirco Dotta, and Viktor Kuncak. Decision procedures for algebraic data types
with abstractions. Acm Sigplan Notices, 45(1):199–210, 2010.

[18] Dao Thi-Bich-Hanh. Résolution de Contraintes du Premier Ordre dans la Théorie des Arbres
Finis ou Infinis. PhD thesis, Université Aix-Marseille 2, 2000.

[19] Maarten H. van Emden and John W. Lloyd. A logical reconstruction of Prolog II. The Journal of
Logic Programming, 1(2):143–149, 1984.

[20] Andrei Voronkov. AVATAR: The architecture for first-order theorem provers. In International
Conference on Computer Aided Verification, volume 8559 of LNCS, pages 696–710. Springer, 2014.

[21] Daniel Wand. Superposition: Types and Induction. PhD thesis, Saarland University, 2017.
[22] Lawrence Wos and George Robinson. Paramodulation and set of support. In Symposium on

Automatic Demonstration, volume 125 of LNM, pages 276–310. Springer, 1970.

32


	Introduction
	Term algebras
	First-order theory
	Acyclicity and induction

	First-order logic and superposition
	An inference rule for acyclicity
	Implementation
	Data structures
	Retrieving premises

	Experiments
	Related work
	Conclusion

