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Abstract 
The aim of this paper is to introduce method of the robust reservoir performance 

evaluation under the climate change uncertainty. Water resources adaptation on climate 
change, drought management strategies as well as hydrological and reservoir modeling 
in the climate change uncertainty have been serious issues. Newly developed lumped 
water balance model and reservoir simulation model will be used. Based on these tools 
the approach of robust reservoir storage capacity reliability assessment will be 
introduced. The hydrological data under climate change will be constructed using the 
statistical downscaling tool LARS WG. Ensemble of 29 climate scenarios will be 
created. The hydrology analysis and the temporal reliability of reservoir storage 
capacity and its robustness assessment against the climate change uncertainty will be 
presented on the case study of the Vir I reservoir and Svratka river basin in the Czech 
Republic. 

1 Introduction 
The climate change represents a very serious topic and it has been discussed in academic, social 

and technical context. Hydrological extremes have been appearing increasingly in the Czech Republic 
and the fact even reinforces the discussion on the climate change issue. On one hand, Czech Republic 
has suffered severe flooding (years 1997, 2002, 2006, 2009 and further), on the other hand, there have 
been extreme droughts. Weather events that have appeared since 2012 only confirm the trend. The 
years 2011 and 2012 were evaluated as years with very low river flows (Zahradníček, et al., 2014); 
while in the spring 2013, some parts of the Czech landscape were flooded during three flood episodes. 
In the winter of 2013/2014, air temperatures were higher than long term averages; the snow cover 
height was very low and reached a 20-year minimum. Recently year 2015 was also extreme regarding 
the meteorological measurement, even on the global scale. It broke records also in the Czech 
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Republic: according to the Czech Hydrometeorological Institute (CHMI), mean annual air 
temperature reached 9.4°C, which is 1.9°C higher than the long-term average value. The total annual 
precipitation also reached the record level, only 532 mm which represents the decrease of 21% 
compared to the long-term average (Ministry of Agriculture of the Czech Republic, 2018). World 
Meteorological Organization announced the years 2015, 2016 and 2017 as the warmest years 
registered in the history of measurements. Lately, we can more often observe a trend of erasing the 
differences between seasons, which is typical for the temperate climate zone of the Czech Republic. 
The number of the winter days is declining and the transition between winter and spring is slowly 
dissipating. Gradual transformation of natural climatic, vegetational and hydrological cycles could be 
the consequence of these changes. It has been estimated that mean long-term river flows could drop of 
20-40% on Czech Republic due to climate changes (Kašpárek, Peláková, & Boersema, 2005). An 
expected redistribution of precipitation within the year and consequential hydrological cycle changes 
would be the cause of this phenomenon. 

The Czech Government, Ministry of Agriculture and Ministry of Environment including the River 
Basin Managers, began to react to the state induced by the lack of water in the catchments. Feasibility 
studies for water reservoirs in the endangered regions were ordered and performed. Current reservoir 
capacities are recalculated and the possibilities of water transfers to potentially threatened river basins 
are considered. Water resources adaptation on climate change, drought management strategies as well 
as hydrological and reservoir modelling in the climate change uncertainty are becoming crucial issues. 

However, the development of products and methods needed for climate change analysing targeted 
to water reservoir analysis is limited. Worldwide, a range of hydrological models used for climate 
change analysis of catchment hydrology and water resource management exist. The well - known 
models are, for example, HEC – HMS (Scharffenberg & Fleming, 2008), TOPMODEL, Soil and 
Water Assessment Tool (SWAT), HBV - 96, MIKESHE (Devia, Ganasri, & Dwarakish, 2015) or 
Czech model BILAN (Vizina, Horáček, & Hanel, 2015). Their disadvantage is a certain degree of 
complexity, catchment scale limits, open source limitations and etc., as well as integration with other 
external applications. The aim of this paper is to introduce lumped water balance model as well as 
reservoir simulation model suitable for robust reservoir performance assessment under climate change 
uncertainty. Hydrological data under climate change are construct based on statistical downscaling 
using LARS WG software. An ensemble of maximum 29 climate scenarios was created and the 
analysis of temporal reliability of reservoir storage capacity will be presented. Climate change 
uncertainties have been evaluated by the robustness of given temporal reliability of storage capacity. 
To illustrate the functions of the models the Svratka river basin and Vir I reservoir in Vysocina 
Region, in the central part of the Czech Republic have been studied. The main contributions of 
presented paper are: The new hydrological model was formed and connected to the reservoir 
simulation model, which is able to compute with data ensemble describing a climate change 
uncertainty. The water balance equations applied in (Wang, et al., 2013) on a large arid basin in China 
were modified for different hydrological conditions of Central Europe. Also, the method of robustness 
evaluation described in (Paton, Maier, & Dandy, 2014) and (Roach, Kapelan, Ledbetter, & Ledbetter, 
2016) was used to find an optimal temporal reliability assessment of reservoir storage capacity under 
climate change uncertainty conditions. 

2 Methodology 
Lumped water balance model as hydrological modelling tool is the basis of the paper. The 

hydrological model is based on the formulas described by (Wang, et al., 2013). These main rainfall-
runoff equations are described as follows: 
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𝑞",$ = 	𝑘" ∙
𝑆$*+
𝑆,-.

∙ ℎ",$ (1) 

where qs,i  is the mean monthly surface flow [mm] for i = 1, …, n, ks is the coefficient of surface 
flow [-]. Si-1 is mean soil moisture in i-1 time step [mm], Smax is the maximum soil moisture storage 
[mm], hs,i is total monthly precipitation [mm] i = 1, …, n. Equation (2) describes the groundwater 
flow qg,i: 

𝑞0,$ = 	𝑘0 ∙ 𝑆$*+ (2) 

where qg,i is the mean monthly groundwater discharge [mm], kg is the coefficient of groundwater 
flow [-] and Si-1 is the mean soil moisture in i-1 time step [mm]. In the next step the monthly 
evaporation Ei is evaluated using Equation (3): 

E2 = 	k4 ∙
S2*+
S678

∙ E9,2 (3) 

where Ei is the mean monthly evaporation from the basin in i time step [mm] for i = 1, …, n, ke is 
the coefficient of estimated evaporation [-], Ep,i is the potential monthly evaporation [mm], calculated 
by Thornthwaite method. Finally, the total runoff qc,i from the basin is estimated according to (4): 

𝑞:,$ = 	 𝑞",$ + 𝑞0,$ (4) 

where qc,i is the total discharge from the basin per month i [mm] for i = 1, …, n. The soil moisture 
content Si is estimated using (5): 

𝑆$ = 	𝑆$*+ + ℎ",$ − 𝑞:,$ − 𝐸$  (5) 

where Si is the soil moisture at the end of month i [mm] for i = 1, …, n. Si-1 is the mean soil 
moisture in i-1 time step [mm], hs,i is the total monthly precipitation [mm] in time step i = 1, …, n, qc i 
is the total discharge from the basin [mm] i = 1, …, n. Ei is the mean monthly evaporation from the 
basin in i time step [mm] i = 1, …, n. In all used formulas, n is the total number of months in the time 
series.  

37 parameters in the control equations had to be calibrated. The parameters are: 12 coefficients of 
monthly surface flow, 12 coefficients of monthly groundwater flow, 12 coefficients of monthly 
evapotranspiration and 1 parameter of initial surface soil moisture. These 37 coefficients were 
decision variables for model optimization. The Objective function was to maximize Nash–Sutcliffe 
model efficiency coefficient (NSE). The gradient optimization method was applied to solve the 
optimization problem. 

A calibrated and validated hydrological model was used for creating the hydrological data under 
climate change. The downscaled climatological datasets representing climate change scenarios of the 
studied river basin were put into the model. Statistical downscaling was made using the LARS WG 
software (Semenov, Pilkington-Bennet, & Calanca, 2013), (Racsko, Szeidl, & Semenov, 1991). The 
ensemble of 29 future scenarios was created. 

A reservoir simulation model was developed based on the mass balance equation described in 
(Marton, Starý, & Menšík, 2015), (Marton, Paseka, & Knoppová, 2016). General reliability of the 
water management system were described by (Hashimoto, Stedinder, & Loucks, 1982). During 
simulation the temporal reliability RT was evaluated used definition by (Klemes, 1967). 
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After reliability assessment of all hydrological time series, the robustness (ROB) of given 
reliability assessment of reservoir storage capacity was calculated. In this case the robustness could be 
considered as statistical evaluation of uncertain results under the uncertainty of climate change. 
Robustness was calculated according (7) and is based on (Paton, Maier, & Dandy, 2014), (Roach, 
Kapelan, Ledbetter, & Ledbetter, 2016), 

𝑅𝑂𝐵 =	
1
𝑁
C 𝑆D

E

DF+
 (7) 

where ROB is robustness, Sj is the system evaluation of boundary conditions loaded by 
uncertainty for j = 1, …, N. j is the number of input hydrological time series created by the input 
ensemble. The resulting value 1 means satisfactory evaluation while 0 stands for an unsatisfactory 
evaluation. System evaluation is defined as (8): 

𝑆D =	 G
1, 𝑅H,D ≥ 𝑅H, 𝑓𝑜𝑟	𝑗 = 1, … ,𝑁
0,𝑅H,D < 𝑅H, 𝑓𝑜𝑟	𝑗 = 1, … ,𝑁 (8) 

where RT,j is the temporal reliability for j = 1, …, N solutions and RT is the required temporal 
reliability. 

3 Case study 
For practical application the Vir I reservoir and the Svratka river basin have been chosen for many 

reasons. The location of Vir I reservoir is located in the central part of the Czech Republic, 
approximately 150 km south east of the capital city Prague. The reservoir is one of the main surface 
water resources in the South Moravia region. The basin and reservoir are covered by a long period of 
climatological and hydrological measurement, but a climate change analysis has never been made on 
this reservoir. It is known that the whole region is under hydrological stress caused by recent drought 
episodes. The reservoir volume serves mainly as the flood protections capacity, water supply capacity 
and capacity for the hydropower production. 

The Svratka river is the main water inflow into the reservoir. The mean long-term inflow into the 
reservoir Qa is 3.34 m3 s-1. The mean annual value of evaporation from the water surface EANNUAL is 
700 mm.  The total reservoir volume VTOTAL is 56.193 mil m3, the active storage volume VZ,max is 
44.056 mil m3 and the flood reservoir volume VFLOOD is 8.337 mil m3. The total outflow OP consists 
of the ecological flow OECO and the water withdrawal for water supply OWS (drinking water and 
industry). The total outflow OP is 2.53 m3 s-1, is divided to OECO = 0.53 m3 s-1 and OWS = 2 m3 s-1. The 
temporal reliability of reservoir storage capacity RT estimated by reservoir managers is 99.5%. 

The area of the Svratka catchment upstream the reservoir is 366.94 km2. The climatological data is 
measured at the climatological stations Policka and Svratouch by CHMI. The climatological 
observation covers daily air temperatures and daily precipitations. The hydrological data is in a form 
of mean monthly flows. The length of the time series is 1964-2016. Measurement is provided in the 
hydrometric profile Dalecin located on the river near to main tributary to reservoir. These stations are 
located in the catchment upstream the reservoir, see Figure 1. Model calibration was made using the 
40 years from 1964 to 2003. The model validation was made for 13 years from 2004 to 2016. The 
calibration inputs were mean monthly air temperatures, precipitations and river flows. 

The ensemble of climatic data describing the climate change and the climate models and emission 
scenarios uncertainties for three future time periods and their combinations has been created. The 
mean daily air temperature and daily precipitation data represent inputs into the downscaling tool. The 
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adapted statistical characteristics data from 12 climate models for SRES emission scenarios A1B, A2 
and B1 implemented in LARS WG software were the basis of the input data. The ensemble of 29 
possible climate data scenarios containing mean daily temperature and daily precipitation were the 
outcome of the LARS WG. Then three time periods and their combinations were defined: P1 (2011-
2030), P2 (2046-2065) and P3 (2080-2099). The combinations of P1+P2 periods (2011-2065) and 
P1+P2+P3 periods (2011-2099) were modeled as well. Prior to usage in the hydrological model, the 
ensemble was recalculated to monthly values, so that the time step was uniform for all the 
computations. 

 

 
Figure 1. Location of the climatic and hydrometric stations in the Svratka river basin 

4 Results and discussion 
As first step, the calibration and validation of the hydrological model on the historical data time 

series was made. Resulting NSE for hydrological model calibration is 0.699. NSE for model 
validation is 0.6. The validation results of hydrological model are shown in Figure 2. 

 

 
Figure 2. Sample of hydrological model validation results. 

After that, the ensemble of climatic data representing the climate change was added into the 
model. The ensemble of hydrological data in the form of mean monthly inflow to the reservoir under 
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climate change is the result of hydrological transformation. Before the reservoir simulation model was 
used, the hydrological analysis in the catchment upstream the reservoir had been accomplished. To 
ensure that the output data could be used and then compared with real values, a simplified BIAS 
correction of the hydrological data was applied. The ratio between BIAS data and the historical data 
was found and the ensemble of hydrological datasets was modified according to it. Subsequently the 
ensemble was divided into the groups A1B, B1 and A2 according to the SRES scenario and 
statistically evaluated. Mean values of the long-term mean flow µ(Qa), minimal and maximal values 
min(Qa) and max(Qa) and the percent variance ΔQa have been determined for the P1, P2, P3 periods 
and then their combination P1+P2+P3. The results are compared to the real value of Qa in the Svratka 
river. Table 1 shows the results of the analysis. 
 

Scenario (period) µ(Qa) [m3 s-1] min(Qa) [m3 s-1] max(Qa) [m3 s-1] ΔQa [%] 
Real Qa (1950-2016) 3.280 - - - 
P1 - A1B 3.018 2.732 3.297 -7.970 
P2 - A1B 2.779 2.454 2.985 -15.279 
P3 - A1B 2.436 2.003 2.828 -25.722 
P1+P2+P3 - A1B 2.744 2.397 2.914 -16.324 
P1 - A2 3.087 2.875 3.460 -5.865 
P2 - A2 2.705 2.605 2.896 -17.524 
P3 - A2 2.218 1.998 2.393 -32.369 
P1+P2+P3 - A2 2.670 2.525 2.819 -18.586 
P1 - B1 3.055 2.731 3.522 -6.859 
P2 - B1 2.883 2.693 3.237 -12.104 
P3 - B1 2.727 2.269 3.312 -16.868 
P1+P2+P3 - B1 2.888 2.564 3.109 -11.944 

Table 1: The results of hydrological analysis of the Svratka river basin upstream the Vir I Reservoir. 

The last step of the computation is the analysis of the reservoir storage capacity in terms of the 
climate change uncertainties. The target of the analysis is to find the mean value of total outflow 
µ(OP), which would fit the requested criterion min {µ(RT) - (RT = 99,5%)}. When the optimal µ(OP) 
was found, resulting RT set gained from the input data ensemble calculation was statistically 
evaluated. The Standard deviation s(RT), intervals min(RT) and max(RT) were determined. Finally, 
the robustness ROB was evaluated for the optimal solution. ROB was computed for RT = 99.5% 
temporal reliability limit, or the system was evaluated as satisfactory when RT ≥ 99.5% and 
VZ,max  = 44.056 mil m3. The results of reliability assessment and the results of robustness can be seen 
in Table 2. 

 
Period µ(OP) [m3 s-1] µ(RT) [%] s(RT) [%] min(RT) [%] max(RT) [%] ROB 
P1 2.491 99.509 0.630 97.620 99.940 0.690 
P2 2.282 99.504 1.047 95.400 99.940 0.793 
P3 1.923 99.505 1.292 94.100 99.940 0.897 
P1+P2 2.362 99.502 0.859 96.130 99.970 0.759 
P1+P2+P3 2.035 99.503 1.139 95.410 99.980 0.862 

Table 2: The results of storage reliability assessment and robustness. 
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As assumed, the results show that river flows in the basin will go down. In Table 1 we can see the 
decline about 8% in P1 period and 26% in P3 period for A1B emission scenario, which is considered 
as balanced. For the A2 scenario, so called pessimistic, a flow drop effect is in P1 to P3 between 6 
and 32%. Optimistic B1 scenario shows decreasing flow from 7 to 17% in P1 to P3 periods. It is 
obvious, that the long-term river flows will decline significantly in the future years according to used 
climate change scenarios. This fact will certainly influence the reservoir outflow. The mean value of 
total outflow will decrease of 1.54% with ROB = 0.690 in P1 period compared to the present value 
OP = 2.53 m3s-1. That means, that 20 out of 29 scenarios will satisfy the RT and VZ,max requirements. In 
P2 period, the reservoir outflow will decrease amount 9.8% with ROB value 0.793. Consequently, 23 
out of 29 scenarios will fulfil the water demands. In P3 period, the percent outflow decrease will be 
the largest and it reaches the value 24% with ROB = 0.897, which matches 26 out of 29 scenarios. 
P1 + P2 period combination shows decrease 7% with ROB = 0.759, which matches 22/29 scenarios. 
In the period combination P1+P2+P3 the outflow decreases of 19.6% with ROB = 0.862, which 
matches 25/29 climate change scenarios. 

5 Conclusions 
The results show the falling trend of river flows and reservoir outflows. Resulting river flow 

recession in the catchment correspond to the emission scenarios according to their anthropogenic 
influence on the climate change magnitude. The pessimistic A2 scenario shows the highest flow 
decrease, on the other hand, B1 scenario river flow decreases are the lowest. The reservoir outflow 
results indicate that for the input RT and VZ,max, the total outflow will drop. However, taking into 
account uncertainties of the climate change, which was described by climatic and hydrological data 
ensemble, the final outflow values are quite robust, and they should be satisfactory even under the 
future climate change conditions. 

If we look beyond the detailed results, which are interesting rather for reservoir and river basin 
managers, the following main conclusions of this paper are: The governing equations of lumped water 
balance model were successfully tested in the Central Europe hydrology conditions. Compared to the 
original use territory conditions, these are specific by large temporal and spatial rainfall variability 
and the greater variability of the flows in the catchment. If the model is set up conveniently, good 
calibration and validation dataset ratio is found, and appropriate optimization method is used, the 
water balance model equations are applicable to other catchments with different climatic and 
hydrological conditions. In the case study described in this paper, suitable number of calibration 
coefficients was 37 and the calibration/validation dataset ratio was 40/13 years. The paper also 
showed a convenient link between the hydrological model and the reservoir simulation model with 
climatic system uncertainties taken into account. Also the method of expressing the uncertainties of 
the hydrological reliability with the resulting robustness connection has been found. Currently, the 
hydrological model is programmed as an integrated algorithm and it is universally applicable to all 
types of the catchments in the Czech Republic and possibly Central Europe. Present algorithm version 
uses a new coefficients optimization based on the modified differential evolution method. The 
reservoir simulation model can be also described as universal algorithm, which might be adapted for 
any reservoir under hydrological stress of climate change condition if the inflows data and the 
reservoir area and volume curves are available. The models could also be used for future application 
of integrated sediment management, which is going to be a key issue in a sense of sustainable water 
resources management and drought management strategies. 
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