
Model checking Timed CSP

Philip Armstrong, Gavin Lowe, Joël Ouaknine and A.W. Roscoe

Oxford University

Abstract

Though Timed CSP was developed 25 years ago and the CSP-based refinement checker
FDR [25] was first released 20 years ago, there has never been a version of this tool for
Timed CSP. In this paper we report on the creation of such a version, based on the
digitisation results of Ouaknine [16, 17] and the associated development of discrete-time
versions of Timed CSP with associated models [19, 14, 11, 27].

Dedication: I have happy memories of chasing time in the 1980s with Howard
Barringer and others. Now it seems to be catching us up!

Bill Roscoe

1 Introduction

In this paper we report on what we believe to be the first attempt to create a model checking
tool for the Timed CSP language, introduced by Reed and Roscoe [23, 24] as a real-time
interpretation of Hoare’s CSP notation [10]. In its usual form, Timed CSP adds a single
construct to CSP, namely WAIT t which waits t units of time1 before terminating successfully
(X) like the SKIP process does immediately. It is possible to express a wide variety of time-
based operations such as time-outs in terms of WAIT t and standard CSP.

Thanks to the idea of digitisation introduced by Henzinger, Manna and Pnueli [9] and
developed for Timed CSP by Ouaknine [16, 17], it proves possible to do this by a relatively
modest modification to FDR along the lines suggested in [16, 27]. This modification takes the
form of a directive Timed(et){...} within FDR that tells it to interpret the syntax within the
{...} as a (discretely) Timed CSP.

In the next section we give a summary of the history of Timed CSP, the discretely-timed
dialect of CSP called tock -CSP and verification techniques for continuously timed systems. We
then summarise the main details of the semantic models of untimed, continuous time, and
discrete time versions of CSP. We show how the discrete variant of Timed CSP is related to the
continuous version by digitisation and some practical implications for correctness and refinement
checking. Section 5 describes the translation of Timed CSP into tock -CSP augmented by special
versions of the external choice 2 and interrupt 4 operators, and making use of the priority
features recently implemented in FDR [28]. Section 6 describes how this is embedded in FDR.
Finally, we give some case studies.

2 History

Timed CSP [23, 24] was developed by Mike Reed and Roscoe in the mid and late 1980s as
a formalism which added exact “real” time to the CSP process algebra of [10]. As such it
was one of a number of contemporaneous efforts to bring real time into formal semantics and

1It is generally left unspecified what the units of time are in Timed CSP and its models.

A. Voronkov, M. Korovina (eds.), HOWARD-60, pp. 13–33 13

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

formal methods. Many of those working on these developments, including Howard Barringer
and several people no longer with us, such as Rob Gerth and Amir Pnueli, collaborated on the
ESPRIT projects SPEC and REX, with Reed bringing Timed CSP to the group. It was of
course unrealistic to suppose that such an effort would bring agreement on a single appropriate
theory, but it was tremendously helpful in cross fertilising and comparing ideas. Indeed [24]
notes how similar the basic underlying assumptions of Timed CSP are to those of [2].

One of the key principles of Timed CSP, and one which will be hugely important in the
present paper, is maximal progress (which we paraphrase as “as soon as an internal τ action
becomes available, some action (which might be τ or a visible action) occurs”. Timed CSP was
originally given a continuous time domain (the non-negative real numbers R+), so events could
be recorded at arbitrary times in R+ and the t of WAIT t could similarly take any such value.

Timed CSP was developed in many further works such as [6], and was described extensively
in books by Davies [5] and Schneider [33]. A “retrospective” can be found in [18].

At the time of its creation, the continuous time domain was seen as a major barrier to auto-
mated tool support. However, in the context of other timed formalisms, it became understood
that techniques such as region graphs [1] could reduce certain questions about continuously
timed systems to finite-state decision procedures provided that delays, and constants used to
test and assign to clocks, were restricted to integers. (Thus time and clocks would still take
values in R+, but the range of operations and comparisons on them would be limited to ones
involving integers.) First developed in papers such as [1, 8], David Jackson [13] showed that
these same ideas could be applied to Timed CSP via action timed graphs.

In the meantime FDR had been developed for “untimed” CSP: it was and remains a tool
that supports the exploration of the large discrete state spaces that result from concurrent CSP
systems. The creation of a tool to support Jackson’s work on Timed CSP would have needed
to have been a separate exercise based on completely different modes of verification, and this
was never done since in any case other tools such as Uppaal [3] were developed to verify timed
systems using the region graph approach.

In 1992 Roscoe developed a discrete time dialect of “untimed” CSP based on using a special
event tock to represent the regular passage of time. This was done in response to the challenge [7]
to model a level crossing gate (subsequently used as an example in Chapter 14 of [26]), but later
became widely used across a range of practical applications such as fault tolerant systems [4]
and protocols [31].

This “tock -CSP” is syntactically very different from Timed CSP, because it includes this
event explicitly. It is possible to achieve a very wide range of timing effects in tock -CSP
including ones not achievable in standard Timed CSP, such as urgent states (ones that will not
allow time to progress until some other visible event has occurred). It is also possible to write
processes with contradictory timing models: ones that have no way of letting time progress,
called time-stops.

A translation from Timed Automata to tock -CSP was described in [12].

tock -CSP is probably the right CSP variant to use for describing systems where the clock
signal explicitly affects the control behaviour of the processes in a network. Then, including
tock as an explicit event that processes synchronise on becomes natural.

However, as described in Chapter 14 of each of [26, 27], it can also be used to describe
systems where regular tocks are rather some sort of external measure of elapsed time in a real
system, but where there is no explicit clock signal in the real implementation. The main problem
in that case is that there is a disconnect between the program representing a component of the
real system (where no tock event is mentioned) and the corresponding tock -CSP component
(where they are).

14

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

For example, the tock -CSP that corresponds most naturally to the simple one-place buffer
process COPY = left?x → right !x → COPY is

TCOPY 2 = left?x → tock → TCOPY 2′(x)
2 tock → TCOPY 2

TCOPY 2′(x) = right !x → tock → TCOPY 2
2 tock → TCOPY 2′(x)

which takes one time unit after inputting or outputting to move to a state where it can do
the next output or input respectively, and which can wait indefinitely to perform outputs and
inputs.

While that can be said to paint a reasonable picture of how a process behaves relative to
an external clock, it is remote from an actual implementation where there is no direct causal
relationship with that clock.

In fact Timed CSP is much better suited to this second purpose, since the underlying timing
model is one where we observe how processes behave as time passes rather than having them
directly signalled by it. Thus Timed CSP gives an interpretation to the syntax of COPY above
which is the same timed behaviour implied by the tock -CSP syntax TCOPY 2, at least on the
assumption that after performing a in a → P it takes one time unit before P starts: the
observer with a discrete clock must see at least one tock event between each left .x or right .x
and the next non-tock .

When tock -CSP was introduced, no formal semantic connection with Timed CSP was known
or particularly anticipated, not least because Timed CSP had only its continuous time seman-
tics. However, in [16, 17], Ouaknine showed that Timed CSP could be given discrete-time
semantics in which the passage of time is represented by tocks in traces and that these se-
mantics could be related to the continuous time semantics using a version of the theory of
digitisation. In effect, each piece of Timed CSP syntax in which all delays are integers, and
all events take an integer time to complete, is mapped to the semantics of a piece of tock -CSP
syntax. COPY , under the assumptions above, is essentially mapped to TCOPY 2.

Proving properties of the discrete interpretation of a piece of Timed CSP syntax can, thanks
to digitisation, establish properties of the continuous interpretation. This is because one can
show that, for integer Timed CSP (i.e. where all delays introduced by WAIT t and other syntax
are non-negative integers), the continuous and discrete semantics are congruent to each other
in various interesting ways.

3 CSP’s and Timed CSP’s semantic models: a summary

To understand the relationship between CSP and Timed CSP, and between discrete and con-
tinuous Timed CSP, it helps to know something of their semantic models, in which a process
is represented as a set of observable behaviours.

The two most abstract (i.e., identifying most processes) models for untimed CSP (see [27])
represent processes either as a prefix-closed and nonempty set T of finite traces, or as the
pairing of such a T with an extension-closed subset D , representing the set of traces on which
the process can diverge. These are the traces model T and the divergence-strict traces model
T ⇓.

Divergence strictness means that as soon as a process can diverge, we ignore any detail
on extensions of the behaviour (here a trace) on which divergence happens. At first sight one
might think that adding divergence information in T ⇓ means that this model gives strictly

15

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

more information about a process than T , but in fact divergence strictness means that T ⇓
does not distinguish div u (a → STOP) and div (where div is a simply divergent process like
µ p.p u p), but T does.

The next most refined models of untimed CSP are the stable failures model F and the
failures divergences model N . These both use the concept of a failure (s,X), namely a finite
trace s coupled with a refusal set X that the process refuses in a stable (i.e. τ -free) state after s.
F also records a process’s finite traces, because there may be traces on which P never becomes
stable. N = F⇓ is a divergence-strict model and records the same divergence traces as T ⇓.

There is a hierarchy of untimed CSP models above these, as discussed in [27], the most
interesting of which from the point of view of Timed CSP are those based on Refusal Testing,
since these record a refusal set before every event. The stable refusal testing model RT models
a process via behaviours such as 〈{a}, b, •, b, ∅, a,Σ〉 in which observed ‘refusals’ and events
alternate. The observed refusal can take the value •, meaning that no actual refusal was
observed because the process was not seen to be in a stable (τ -free) state. This is different from
observing the refusal ∅, which can only occur in a stable state. • means the non-observation
of stability, rather than the observation of instability: wherever it is possible to observe the
refusal of X 6= • it is also possible to observe the refusal of any Y ⊆ X , or •. We will see this
model in action in Section 6.1.

The classic model for continuous Timed CSP is the Timed Failures model FT [24] which
represents a process as a sequence s of events with exact times attached (with the times increas-
ing, though not necessarily strictly), namely a timed trace, together with a record ℵ of a refusal
set at every moment. Technically, ℵ is the union of a finite collection of Cartesian products
X × [t1, t2) for X a set of events and 0 ≤ t1 < t2 real numbers, representing the refusal of X
from the moment t1 up to, but not including, the moment t2.

In fact a timed failure is equivalent to having an untimed failure at every moment, with all
but finitely many of them having an empty trace, and with the refusal sets belonging to these
failures only varying finitely over time.

Several consistent variants on the abstract semantics of discrete Timed CSP can be found
in [16, 17, 19, 14]. Like continuous Timed CSP, thanks to the demands of maximal progress,
any working semantic model of a process P needs to record what is refused at every moment
that time progresses. This means that a refusal set is recorded before every tock event. This
is necessary to get a compositional semantics for the CSP hiding operator, since in P \ X , we
must force all available X events to take place before letting a tock happen: in other words, we
cannot let tock happen in P \ X unless P is refusing the whole of X .

The papers mentioned differ in their extensions to the language and whether refusals are
recorded at other points in the traces.

There is therefore no model for Timed CSP – either discrete or continuous – that is as
simple as traces or even failures.

The most abstract model for discrete Timed CSP records a process’s behaviour as some
representation of a finite sequence of failures over the ordinary alphabet Σ (not augmented
by tock) followed by the trace that occurs after the last recorded tock .2 This is the discrete
timed failures model FDT. We will represent its behaviours in the same way as for refusal
testing, but now with refusal sets (proper ones, not •) occurring only before tocks; for example
〈{a}, tock , b, b, ∅, tock , a,Σ, tock〉.

In the continuous as in the discrete model, the process P \ X cannot progress through time
except when X is refused: in other words its behaviours derive from ones of P where X is

2It would be equivalent in expressive power to record the untimed failure that occurs after the last tock ,
because any (discrete) Timed CSP process necessarily becomes stable and never refuses tock .

16

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

refused at every tock in the discrete model and at every moment in the timed failures model.

To make this last construction work well theoretically, we need to be able to assume that P
cannot perform an infinite sequence of events (e.g. from X) in a finite interval. For otherwise,
when hiding X , we might require an infinite number of events in P to reach some finite time in
P \ X . To avoid this difficulty most presentations of Timed CSP find some way of specifying
the absence of Zeno behaviour: infinitely many events in a finite time interval.

Timed CSP can be given a semantics over either the discrete or continuous versions of
the timed failures model, the former only if all t ’s in WAIT t constructs, and all other delays
introduced by the semantics, are non-negative integers. We call that restricted language integer
Timed CSP. In that restricted case the theory of digitisation which we summarise in the next
section shows that there are strong relationships between a process’s continuous and discrete
semantics, and that we can frequently infer properties of its continuous semantics by analysing
its discrete semantics.

That type of result is one of the main motivations for the implementation of discrete Timed
CSP in FDR.

Time and priority in tock-CSP

In order to achieve maximal progress, as described earlier, we need to stop time progressing, or
tock events happening, while there are events enabled. Since the environment has the ability
to disable (by not offering) all other events, the only ones that need concern us are the invisible
event τ representing internal steps, and the termination signal X. Thus we need to adapt the
operational model of how LTS semantics are executed, just as we need to incorporate extra
refusal sets into abstract semantics.

If we connect the output of one TCOPY 2 to the input of another, hide the internal channel
and synchronise on tock , maximal progress is required to ensure that a data item input by the
first process ever reaches the second: otherwise an infinite chain of tocks could happen with the
τ action representing the transfer of this item enabled.

This form of prioritised execution is necessary for the correct behaviour of both tock -CSP
and the tock -CSP translations of Timed CSP.

The priority operator implemented in FDR3 takes either of the equivalent forms:

prioritise(P,X1,...,Xn)

prioritise(P,<X1,...,Xn>)

In other words, its arguments are a process and a number of sets of events, which can be
presented as a single list. The sets of events should be disjoint, and the first can be empty.
They need not cover all the visible events of P: other actions are outside the priority order.
There is no point in using this operator when n<2 since it is then the identity.

The internal action τ and termination signal X are always given priority equivalent to all
the members of X1. The operator acts on the operational semantics of P by preventing any
action in Xi (for i>1) when τ , X or an action in some Xj (j<i) is possible.

So prioritise(P,{},{tock}) stops tock from happening when τ or X is available. This
is exactly what is required to impose maximal progress. For further uses of priority in CSP, see
Chapter 20 of [27] and [28].

3Priority in this form is a recent innovation, though modes supporting the use of priority in timed systems
have existed for some time.

17

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

4 Digitisation

The theory of digitisation enables one to formalise the relationship between the continuous
and discrete—or more precisely integral—behaviours of Timed CSP process, thereby reducing
verification questions about the former to automatable problems about the latter. Digitisation
was originally introduced by Henzinger et al. [9] to reason about timed systems equipped with
a timed trace semantics.

As stated in Section 3 the standard semantics for (continuous) Timed CSP is the timed
failures model, whereby to each process P one associates a set FT(P) of timed failures. Recall
that a timed failure consists of a pair (s,ℵ), where s is a timed trace and ℵ is a timed refusal,
i.e., a finite union of sets of the form X × [t1, t2), where X is a set of events and the ti ’s are
non-negative real numbers.

A timed failure is said to be integral if its timed trace comprises only integral timestamps
and its timed refusal only features integral endpoints. It is a simple observation that integral
timed failures are in one-to-one correspondence with refusal traces in which (proper) refusals
are only recorded immediately prior to occurrences of tocks: indeed, in this correspondence the
special event tock corresponds to the passage of exactly one time unit. Integral timed failures
can therefore alternatively be viewed as elements of the FDT model.

A real-time specification S can be expressed as a set of timed failures. A Timed CSP pro-
cess P is deemed to satisfy S iff FT(P) ⊆ S . This approach is of course entirely consistent
with the standard notion of refinement in CSP. Unfortunately, sets of timed failures are typi-
cally uncountably large, and it is often more convenient—especially from the point of view of
automation—to reason instead about integral timed failures.

For U a set of timed failures, let us therefore write Z(U) to denote the set of integral timed
failures in U . The theory of digitisation provides sufficient conditions to infer that FT(P) ⊆ S
from Z(FT(P)) ⊆ Z(S).

To this end, let us introduce one additional piece of notation. For t a real number, let us
write t = btc+ t ′ as its decomposition into integral and fractional parts. Now given 0 ≤ ε ≤ 1,
if t ′ < ε, let [t]ε be btc, and otherwise let [t]ε be dte. The [·]ε operator therefore shifts the value
of a real number t to the preceding or following integer, depending on whether the fractional
part of t is less than the ‘pivot’ ε or not. [·]ε naturally extends to timed failures by pointwise
application to the timestamps of timed traces and the endpoints of timed refusals (noting, for
the latter, that the operation is independent of the particular representation of the timed refusal
as a finite union of sets of the form X × [t1, t2)).

We say that a set of timed failures is closed under digitisation if, for any 0 ≤ ε ≤ 1, [U]ε ⊆ U .
It turns out that all Timed CSP processes in which all delays are integral are closed under

digitisation. A proof of this fact can be found in [16].
We say that a set of timed failures S is closed under inverse digitisation if, whenever a timed

failure (s,ℵ) is such that [(s,ℵ)]ε ∈ S for all 0 6 ε 6 1, then (s,ℵ) ∈ S .
The following is now a simple observation: for U and S sets of timed failures, if U is closed

under digitisation and S is closed under inverse digitisation, then U ⊆ S iff Z(U) ⊆ Z(S).
Combining everything together, let P be a Timed CSP process in which all delays are integral,
and let S be a specification (set of timed failures) that is closed under inverse digitisation. Then

FT(P) ⊆ S iff Z(FT(P)) ⊆ Z(S).

Examples of specifications closed under inverse digitisation include the following:

• Qualitative (i.e., untimed) properties. For example, the requirement that the event a
never occur.

18

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

• Bounded-response properties. For example, that every a be followed within k time units
by a b (for k an integer).

• Bounded-invariance properties. For example, that whenever an a occurs, the event b
should be refused over the following k time units (again, for integer k).

Further and more elaborate instances of specifications closed under inverse digitisation can be
found in [19].

Note that the use of digitisation is predicated upon the calculation of the set Z(FT(P)) of
integral timed failures of a Timed CSP process P . As noted earlier, integral timed failures are
in one-to-one correspondence with elements of the FDT model. This observation forms that
basis of our implementation of Timed CSP refinement checking into FDR, described in the
following two sections.

5 From discrete Timed CSP to tock-CSP

The semantics of discrete Timed CSP maps any process to a process that communicates both the
events that it is built out of and the special event tock . The first reaction of a CSP aficionado
would be to give it a semantics directly in the discrete timed failures model. However it is
also possible to give an equivalent semantics by translating to the tock -CSP language, namely
mapping each Timed CSP term to a process defined using the operators of untimed CSP from
this extended set of events.

These patterns can be described by a simple syntactic translation from Timed CSP to tock -
CSP provided we introduce two special operators that take account of the special role of tock ,
and provided we make appropriate use of priority to ensure that tock cannot happen when τ is
available. This translation is described below giving, as is traditional in semantics, a separate
clause for each Timed CSP construct.

As in [27], we will define a function time(·) that maps Timed CSP syntax into tock -CSP.
The timed analogue of STOP is TOCKS , the process that just lets time pass:

time(STOP) = TOCKS where
TOCKS = tock → TOCKS

CSP admits two different interpretations of the termination action X: in one (used in all
works on CSP prior to Roscoe’s 1997 book, including the main works on Timed CSP), X
behaves like an ordinary event and can be refused by the observer. In the other, advocated
in [26, 27], X can be observed, but not refused, by the environment: there X is a signal. That
distinction shows up rather clearly in Timed CSP, for in the first interpretation SKIP can wait
to perform X:

time(SKIP) = TSKIP where
TSKIP = (tock → TSKIP) 2 SKIP

whereas in the other X is bound to happen immediately and therefore time(SKIP) = SKIP .
The latter definition is set out in [27], but as pointed out in [26, 27], FDR follows the first
interpretation of X in its internal workings.4 We have to be careful about this distinction in
translating for FDR since in the world of tock -CSP the FDR operational semantics of parallel

4As pointed out in those references, in untimed CSP the semantics of P ; SKIP in the first interpretation are
equivalent to those of P in the second.

19

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

operators are not consistent with the definition time(SKIP) = SKIP because, for example
time((WAIT (2); SKIP) ‖ SKIP) would deadlock (refusing even tock) immediately, rather
than terminating after two tocks as it should. Therefore we adopt the TSKIP version for the
translation in this paper.5

The WAIT n command is just an extended SKIP :

time(WAIT 0) = SKIP , time(WAIT n+1) = tock → time(WAIT n)

The semantics of sequential composition is very straightforward:

time(P ; Q) = time(P); time(Q)

We have defined WAIT t and sequential composition above because they are necessary to
define the version of prefixing that we have implemented. We assume that there is a function
et from Σ to N which represents the time it takes between the event a in a → P and similar
constructs, and the successor process starting. With that assumption we can define

time(a → P) = µ p.tock → p
2 a → (WAIT et(a); time(P))

time(?x : A→ P(x)) = µ p.tock → p
2 ?x : A→ (WAIT et(x); time(P(x))

Timed CSP recursions µ p.F (P) translate to the restructured recursion µ p.time(F)(p),
where time(F) is the function which, when applied to the formal identifier p which is not itself
changed by applying time (so time(p) = p), gives time(F (p)). All this says is that in applying
the time translation to a recursive definition, all one has to is to apply the usual transformations
to the constructs used in the recursion: the recursive structure itself is unchanged. Thus

time(µ p.left?x → right !x → p) = µ p.time(left?x → right !x → p)

Expanding this out tells us that time(COPY) is precisely TCOPY 2 if et(a) = 1 for all relevant
events.

The constants CHAOS and RUN are problematic to translate, since their natural interpre-
tations, namely

RUN t = tock → RUN t 2 ?x : Σ− {tock} → RUN t

CHAOS t = TSKIP u
(tock → CHAOS t 2

(STOP u ?x : Σ− {tock} → CHAOS t))

violate the principle that only finitely many events can happen in a finite amount of time: they
are Zeno processes. Note that, unless all events are reckoned to take zero time, these are not
the same as applying the operator time to the usual recursive definitions of

RUN = 2
a∈Σ

a → RUN and CHAOS = STOP u SKIP u2
a∈Σ

a → CHAOS

5In fact, provided the standard time priority operator that we describe below is always used at the outermost
syntactic level of Timed CSP, again P ; SKIP behaves identically to the signal interpretation of X.

20

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

In a strong sense there are no useful finitely nondeterministic processes which might plausibly
fill their roles that do satisfy this principle6.

Similarly divergence (div) causes problems, since (a) a process that diverges in a finite time
contradicts the idea that processes perform finitely many events up to any finite time, and (b)
a process that diverges over an infinite time (i.e. with infinitely many tocks on the way) is
indistinguishable from STOP (i.e. the tock CSP process TOCKS) in our timed theories. You
could regard div as a process which, by performing an infinite number of events before the first
tock , shows invisible Zeno behaviour.

In this paper we will assume that all completely formed Timed CSP processes are constructed
so that they can only perform a finite number of actions up to any finite time, though it is
sometimes convenient to use processes like RUN t and CHAOS t as parallel components on
the assumption that whatever they are put in parallel with will prevent them breaching this
principle. There is in fact a very simple FDR check on the resulting tock -CSP to prove this:
P \ Σ must be divergence-free.7

We can simply define time(P u Q) = time(P) u time(Q) since there is no reason why
nondeterministic choice should not be resolved immediately.

The most challenging basic operator to translate is external choice 2, because tock is not an
event that resolves P 2 Q . Rather, P and Q should run lockstep in time until one or other of
them performs any other visible event. This requires a new operator 2T whose SOS operational
semantics can be written:

P
τ−→ P ′

P 2T Q
τ−→ P ′ 2T Q

Q
τ−→ Q ′

P 2T Q
τ−→ P 2T Q ′

P
a−→ P ′

P 2T Q
a−→ P ′

[a 6∈ T]
Q

a−→ Q ′

P 2T Q
a−→ Q ′

[a 6∈ T]

P
a−→ P ′ ∧Q

a−→ Q ′

P 2T Q
a−→ P ′ 2T Q ′

[a ∈ T]

Here T is a set of events ({tock} in its use in time(P 2 Q)) that are synchronised between P
and Q rather than being allowed to resolve the choice. So

time(P 2 Q) = time(P) 2{tock} time(Q).

In fact 2T has a combinator operational semantics of the sort defined in [27]. The existence
of that semantics, which can be found in Chapter 15 of [27], implies that 2T can be translated
into the CSP language (involving the extra “throw” operator ΘA) used in [27]. In fact, Schneider
had anticipated this result by proposing the following translation for P1 2{tock} P2 by private
communication to Ouaknine as reported in [16]:

((P1[[R1]] ‖
{tock}

P2[[R2]]) ‖Σ1∪Σ2
(RUNΣ1 2 RUN (Σ2))[[R−1

1 ∪ R−1
2]]

6This topic has been much discussed in the literature of Timed CSP. Schneider [32, 15] pointed out for
continuous Timed CSP that the solution to defining CHAOS is to use infinitely long behaviours: you can then
specify that only finitely many things can happen up to any finite time without expressing a uniform bound on
how many. The same is undoubtedly true for discrete models and if proposing a purely mathematical model we
would be following this route. However, our motivation is to make Timed CSP accessible to FDR. This would
be made far more difficult if we allowed unboundedly nondeterministic basic constants.

7This is a version of the timing consistency check advocated in [26, 27].

21

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

where the injective functions R1 and R2 both map tock to itself and every other action x of
P1 and P2 to values in disjoint sets Σ1 and Σ2: say x maps to x .1 under R1 and x .2 under
R2. In fact this translation does not cope accurately8 with P1 or P2 terminating (given the
standard interpretation of ‖X) or diverging, and is therefore simpler than the one that the theory
developed in [27] creates.9 Both, however share the structure of running modified versions of
P1 and P2 in parallel and applying constructs including renaming to the outside.

As first pointed out by Tom Gibson-Robinson, this means that in practice one cannot use
this translation in conjunction with FDR in any case where a recursion reaches through the 2T

operators, such as

Q = a → Q 2{tock} b → Q

For as this process performs more and more actions, the parallel simulations of 2{tock} add
more and more layers of parallel and renaming constructs into the CSP that the FDR compiler
has to evaluate: it is not clever enough to spot that terms are semantically equivalent when
doing the compilation, and so the compilation fails to terminate.

We have therefore implemented 2T directly in FDR as the operator [+T+].
Exactly similar considerations apply to the interrupt operator:

time(P 4 Q) = P 4{tock} Q

where 4T is an operator with the following operational semantics:

P
τ−→ P ′

P 4T Q
τ−→ P ′ 4T Q

Q
τ−→ Q ′

P 4T Q
τ−→ P 4T Q ′

P
a−→ P ′

P 4T Q
a−→ P ′ 4T Q

[a 6∈ T]
Q

a−→ Q ′

P 4T Q
a−→ Q ′

[a 6∈ T]

P
a−→ P ′ ∧Q

a−→ Q ′

P 4T Q
a−→ P ′ 4T Q ′

[a ∈ T]

In other words it behaves just like the usual interrupt operator except that it synchronises
members of T between the arguments rather than letting them happen independently. So
P 4{tock} Q says that time passes in both processes together before eventually Q performs a
non-tock action and takes control.

We have implemented 4T in FDR as the operator /+T+\ to enable us to handle the trans-
lation of time(P 4 Q).10

The only other CSP operators with interesting translations are parallel ones. In every case
we want the processes in parallel to synchronise on tock in addition to the events they already

8It was correct in the context where he used it, since the assumption of “well timedness” meant that divergence
was impossible, and he used a non-standard parallel operator in which either process could individually force
termination. FDR, in common with most work on CSP, uses distributed termination in which the parallel
composition only terminates when all components have done so.

9That, in addition to a construction similar to the above, uses the interrupt operator to turn off P2 or P1 at
the point at which P1 or P2 (respectively) performs an action other than tock , and a harness to allow either to
force the other to terminate.

10Technical point: at the time of writing we have only implemented 2T and 4T as low-level operators in
CSP, so FDR cannot efficiently deal as yet with these operators being applied to parallel combinations with
large state spaces.

22

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

synchronise on, so for example

time(P ||| Q) = time(P) ‖
{tock}

time(Q)

time(P ‖
X
Q) = time(P) ‖

X∪{tock}
time(Q)

This is simpler with the TSKIP model of termination than the signal one, meaning that the
above translations are more straightforward than those in [27].

The rest of CSP’s operators are easy to translate, though the ones for hiding, ; and � are
dependent on the use of priority as discussed earlier.

• time(P \ X) = time(P) \ X .

• time(P [[R]]) = time(P)[[R]].

• time(P � Q) = time(P) � time(Q)

• time(P ; Q) = time(P); time(Q)

• time(P ΘA Q) = time(P) ΘA time(Q)

6 Implementation in FDR

Our implementation produces an identical result to the translation set out in the previous
section except that the tock CSP is never generated directly. Instead, we have created a mode
in which Timed CSP is compiled into the same sort of internal FDR objects that the translation
would have been compiled into, including direct implementations of the delayed choice and
timed interrupt operators described there.

We have simply added the possibility of including Timed (et){ ... } sections into the
CSPM scripts that FDR uses. Any process defined in such a section is considered to be Timed
CSP and therefore interpreted as the corresponding translation into tock -CSP. The parameter
et, which we will discuss below, allows the user to define how long each action a takes to
complete in constructs such as a -> P. For the time being we will assume that each such event
takes one time unit (i.e. one tock) to complete, using:

OneStep(a) = 1

The event tock is not normally used inside Timed sections, but it (and the tock -CSP process
TOCKS = tock-> TOCK which corresponds to the Timed CSP process STOP) are automatically
made available outside them. One can mix Timed CSP and untimed (including tock -) CSP in
the same file. Timed and untimed CSP can be mixed in the same assert statement or even in
the same process definition. For example given the script (omitting channel declarations)

Timed (OneStep) {

P = a -> b -> P -- Timed CSP

}

P’ = a -> b -> P’ -- untimed definition

TP1 = tock -> TP1

[] a -> tock -> TP2

23

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

TP2 = tock -> TP2

[] b -> tock -> TP1

assert P [FD= TP1

assert TP1 [FD= P

assert P\{tock} [T= P’

assert P’ [T= P\{tock}

all of the assertions give answer true: TP1 is simply the tock -CSP translation of the Timed CSP
process P and, when we hide the event tock that the Timed section introduces into P, it gives
the same traces as P’.

In any Timed CSP process with τ actions, it is necessary to use the appropriate prioritisation
of τ over tock. FDR supplies, for scripts with Timed CSP included, a function timed_priority

that is equivalent to prioritise(P,{},{tock}) which is applied to any timed process that we
want to interpret under maximal progress. This function gives τ priority over tock, with all
other actions being independent of these, as discussed earlier. For example, the following script
builds chains of timed, one-place buffers and compares a particular chain (with 4 members)
against a specification.

Timed(OneStep){

COPY(ii,oo) = ii?x -> oo!x -> COPY

CS(1) = COPY(c.0,c.1)

CS(n) = (CS(n-1)[|{|c.n-1|}|]COPY(c.n-1,c.n))\{|c.n-1|}

}

Resp(n) = Resp’(n,n)

Resp’(n,0) = tock -> Resp’(n,0)

[] (|~| x:Sigma @ x -> Resp’(n,n)

Resp’(n,m) = tock -> Resp’(n,m-1)

[] (STOP |~| ([] x:Sigma @ x -> Resp’(n,n)))

assert Resp(4) [F= timed_priority(CS(4))

If one defines a Timed CSP process, such as CS(4) above, in which it is possible that both
τ and tock are choices from the same state, then one must apply time_priority to it to get
accurate Timed CSP semantics.

We have discovered that it is frequently helpful to define timed specifications of Timed CSP
behaviour in tock -CSP rather than Timed CSP: Resp(n) above says that, from the beginning
of time and from each non-tock event, some non-tock event must be offered when at least n
units of time have elapsed. In this case we could have expressed the same specification elegantly
in Timed CSP:

TResp(n) = (WAIT(n)[](

STOP |~| [] x:Sigma @ x -> TResp(n)));

(|~| x:Sigma @ x -> TResp(n))

where we assume that the built-in wait for each event is 0.

24

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

6.1 Timed Failures refinement

In practice most of the properties that we have checked of Timed CSP on FDR to date have
been formulated outside Timed CSP and checked over the traces or failures models of untimed
CSP. Since these models are not compositional for Timed CSP it follows that such results
cannot naturally be combined in the Timed CSP language. For stand-alone analyses this may
not matter. However it is clearly highly desirable to have a checkable theory of refinement with
respect to which Timed CSP has the usual compositional and monotonic properties. We need
to be able to check refinement in the (discrete) timed failures model, between a pair of processes
each of which is written in Timed CSP.

At the time of writing this function is not implemented directly in FDR. It will be imple-
mented in a future version, but at the expense of a little efficiency it can be calculated already
using FDR’s ability to check refinement over the stable refusal testing modelRT . For simplicity
we assume that the process P never terminates (X).

For a Timed CSP process P , we can devise a tock -CSP context TF [P] whose semantics in
RT is in natural correspondence with P ’s semantics in FDT. The latter differs from the RT
semantics of P (in which tock is treated as a normal event) in the following way.

• The behaviours recorded in the RT semantics are allowed to record refusal sets at the
end of a trace and before every event in the trace.

• The behaviours recorded in the FDT semantics are allowed to record refusal sets only at
the end of a trace and before tocks.

However, since Timed CSP processes never refuse the event tock , the following equation always
holds

FDT(P) = {β | β 〈̂tock , ∅〉 ∈ FDT(P)} (†)

The process

TFR = (?x : Σ→ TFR) � (tock → TFR 2 ?x : Σ→ div)

has all possible traces involving elements of Σ ∪ {tock}. It is a strict refinement of the process
RUNΣ∪{tock} over RT . However the only places where its RT behaviours have refusals are
(i) at the end of a trace (ii) immediately before a tock and (iii) immediately before the last
member (other than tock) of a trace that is not itself followed by a refusal. It follows that
C [P] = TFR ‖

Σ∪{tock}
P has just those behaviours of P which have these same three sorts of

refusals.

The first two sorts are ones we need in the Timed Failures representation of P , but the third
is not. And it turns out that C [P] is (as a mapping from RT to itself) too discriminating to
capture FDT refinement just because it retains these extra failures.

One cannot – within the healthiness conditions of RT – remove these failures, so the ap-
proach we have taken is to add in sufficient refusals just before the end of a trace to ensure that
no distinctions are made on the basis of them.

Because of equation (†) we can safely add in any behaviours after the last tock a process
performs without removing any distinction between Timed CSP processes. We have therefore
taken the drastic approach – to concealing refusals of type (iii) – of adding in every possible
behaviour not involving a tock after the last tock in any given trace. This can be achieved with

25

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

the rather arcane tock -CSP construction

TF [P] = (C [tock → P][[tock , tock ′
/tock , tock]]

Θtock ′ CHAOS2(Σ))[[tock/tock ′]]

where CHAOS2(A) = STOP uu{a → CHAOS2(A) | a ∈ A}

CHAOS2(A) is the least refined process over alphabet A in RT . Every time TF [P] performs
tock , it can nondeterministically go into a state where it can do or refuse anything, but never
do another tock .

The behaviours of TF [P] that end in tock are precisely those of the FDT representation of
WAIT (1); P , and in general TF [P] vRT TF (Q) if and only if P vTF Q (with P and Q being
Timed CSP processes under the usual priority).

A file implementing this (including a way of handling termination) can be found amongst
those supporting this paper.

7 Case studies

As we write this paper the embedding of Timed CSP in FDR is new, and there have been few
case studies using it. Nevertheless those we have tried indicate good performance that scales as
well as FDR does on untimed examples. Code illustrating these case studies can be downloaded
via
http://www.cs.ox.ac.uk/people/publications/personal/Bill.Roscoe.html

Most of these files use the state space compression functions that are frequently critical
to the successful use of FDR on large problems. Where (as in most cases) we need to use
priority to enforce maximal progress, care is required in the use of compression. Of the func-
tions implemented at the time of writing, only strong bisimulation and the relatively new
divergence-respecting weak bisimulation described in [27] are permitted inside the priority op-
erator. Experiments have shown that in most cases the latter, wbisim, is nearly as good as
the popular combination of FDR’s diamond (disallowed inside priority) with sbisim (strong
bisimulation).

In several of the following example, the ability of bisimulation to eliminate symmetries
proves important.

7.1 Alternating Bit and Sliding Window protocols

The Alternating Bit Protocol (ABP) is extremely well known and studied.
A Timed CSP version of ABP was given in Chapter 15 of [27]. We can use FDR to prove

correctness properties of it, for example by showing that whatever errors are allowed, after
hiding tock it trace-refines a one-place buffer COPY .

It is more interesting to see how it behaves under patterns of errors that are limited by
time. For example, we can ascertain what rate of errors can be tolerated while still expecting
the protocol to limit transmission latency and bandwidth to any given value. The protocol
implementation we used is that from [27]:

SND = S(0)

S(s) = AC(1-s) /\ left?x -> S’(s,x,0)

S’(s,x,n) = AC(1-s) /\ S’’(s,x,n)

26

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

AC(s) = d.s -> AC(s)

S’’(s,x,n) = d.s -> S(1-s)

[] (WAIT(n);a.s.x -> S’(s,x,D))

RCV = R(0)

R(s) = b!(1-s)?x -> c.(1-s) -> R(s)

[] b!s?x -> right!x -> c!s -> R(1-s)

using a pair of channel processes which can lose and duplicate messages when (respectively) the
events loss and dup occur. We analysed the state of affairs when all events take one time unit,
except the error events, which take no time. Since this implies that at least 5 time units are
necessary for communication from SND to RCV to be acknowledged, the delay D (which starts
one unit after each send on a) used for retransmission was 4.

The error model we considered is one where we impose a limit k on how many errors can
occur in any consecutive N units of time. (To illustrate the symmetry-eliminating power of
bisimulation, this is implemented by interleaving k processes, each of which allows at most 1
error in N time units, and applying bisimulation.)

We can then obtain results such as that data transmission can be guaranteed provided there
is less than one error in every 5 tocks.11 The overall untimed behaviour of the alternating
bit protocol is equivalent to a one-place buffer provided there are sufficiently few errors, and
therefore inputs and outputs strictly alternate. Thus, a measure of latency is given by the
maximum length of time between an output and the following input being enabled, or an input
and the following output. These can easily be measured by FDR checks12: for example with up
to 5 errors in every 26 the system is guaranteed to be able to perform the next input or output
within 32 but not within 31.

The Sliding Window Protocol (SWP) [22] has both the sender and receiver work simul-
taneously on transmitting several different messages, so there is no need to wait to get one
acknowledged before sending the next. It is a direct generalisation of the alternating bit pro-
tocol (which corresponds to a “window” size of 1) and uses cyclic tags from {0, . . . , 2W − 1}
rather than just {0, 1}. The protocol is designed to keep these two windows aligned or nearly
so. In our example we used a window size W = 4 and programmed the sender to send the
unacknowledged messages it holds in rotation. Since this rotation in any case normally implies
a delay in the retransmission of each individual message, we did not introduce further delay as
above.

SWP tolerates a higher error rate than ABP: the limit is now one error in every two time
units. For example with one error per three tocks, the worst case latency is 40.

As might be expected, the bandwidth achieved by SWP is greater: for example allowing 2
errors in every 15 time units, and inputting and outputting data from the system as soon as
possible, gives a worst case of 5 messages transmitted in 100 time units for ABP as opposed to
12 for SWP.

These examples show that it is not only possible to verify timed implementations of systems,
but also carry out quantitative analysis on them using our Timed CSP model in FDR.

11Specifically, we can show that if this error rate is allowed then data might never be delivered. We can test
individual lower rates but cannot at present use FDR to demonstrate that any lower rate would work. This
would require fairness capabilities not implemented at present.

12As illustrated in the accompanying files, this can be done either by means of a series of checks designed
to identify the cut-off value, or by a single and more sophisticated single check that will give a single FDR
counter-example for each value less than the latency, thereby enabling the value to be calculated in a single
check

27

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

7.2 Soldiers on a bridge

Versions of the following problem – essentially a scheduling problem – can be found in [12, 30].

A group of soldiers are on one side of a weak and narrow bridge at night, and they
want to cross to the other side. To cross they need a torch, and there is only one
of these. The bridge can carry at most two of them at once. What is the optimal
time for all the soldiers to arrive on the other side, given that they all have different
crossing times – perhaps some of them slower due to injury?

The fact that Timed CSP can create efficient and concise models is illustrated by the fol-
lowing complete description of a case with 22 soldiers with seven different speeds:

D = {4,5,7,10,12,23,30}

Count(4) = 1 -- the number of soldiers

Count(5) = 3 -- with each given time to

Count(7) = 4 -- cross the bridge

Count(10) = 2

Count(12) = 1

Count(23) = 6

Count(30) = 5

channel enterL,enterR:D

channel done

AllZero(x) = 0

Timed(AllZero){

-- The light can be picked up by one soldier,

-- or two at the same time.

LightL = enterL?d1 -> (enterL?d2 -> WAIT(max(d1,d2));LightR)

[] enterL?d1 -> (WAIT(d1);LightR)

LightR = enterR?d1 -> (enterR?d2 -> WAIT(max(d1,d2));LightL)

[] enterR?d1 -> (WAIT(d1);LightL)

[] done -> LightR

-- The following light will only allow two left->right and one

-- right->left.

ALightL = enterL?d1 -> (enterL?d2 -> WAIT(max(d1,d2));ALightR)

ALightR = enterR?d1 -> (WAIT(d1);ALightL)

max(x,y) = if x > y then x else y

-- A soldier can move to and fro, and when it is at RHS

-- can cooperate on done.

SoldierL(d) = enterL.d -> SoldierR(d)

SoldierR(d) = done -> SoldierR(d) [] enterR.d -> SoldierL(d)

28

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

N 4 5 7 10 12 23 30 tocks Time
22 1 3 4 2 1 6 5 332 4s
30 1 3 4 4 3 8 7 463 23s
36 1 4 5 5 4 9 8 546 329s
44 2 6 8 4 2 12 10 619 865s

Table 1: Statistics for some different sets of soldiers.

transparent sbisim

Soldiers(d,1) = SoldierL(d)

Soldiers(d,n) = sbisim(Soldiers(d,n-1) [|{done}|] SoldierL(d))

AllSoldiers = [|{done}|] d:D @ Soldiers(d,Count(d))

System = LightL [|{|enterL,enterR,done|}|] AllSoldiers

ASystem = ALightL [|{|enterL,enterR,done|}|] AllSoldiers

}

assert TOCKS [T= timed_priority(System)\{|enterL,enterR|}

assert TOCKS [T= timed_priority(ASystem)\{|enterL,enterR|}

Running the above check takes less than 5 seconds on a laptop and reveals that the shortest
solution for this particular configuration takes 332 time units. This compares favourably for
speed with the Uppaal and CSP-based timed automata implementations quoted in [12]. A
wider range of results are shown in Table 1. The first column is the total number of soldiers,
with the following ones giving the distribution. The last two columns give the minimum time
that FDR calculates for the solution, and the elapsed time in seconds of the FDR run.

The fact that the counter-example found by FDR is as short (in time) as possible can be
deduced because (a) FDR always gives a shortest possible counter-example (in events) and (b)
one can demonstrate either mathematically or via FDR that temporally shortest (i.e. fewest
tocks) solutions always (except in the case of one soldier) have two soldiers moving across the
bridge in the intended direction and one backwards, repeatedly. This claim is justified in FDR
by checking that the solutions to the two asserts above have the same number of tocks.

The use of sbisim (i.e. strong bisimulation) in the script eliminates the symmetries between
different soldiers with the same speed: for example, if Bill and Jim are soldiers who both take
20 to cross the bridge, it does not matter for the purposes of solving the exercise which one
enters on any given occasion where they are both on the same side. This significantly improves
the efficiency of our analysis.

7.3 Fischer’s mutual exclusion protocol

This simple protocol has become a standard benchmark for comparing timed verification tools.
In it, each of N processes might want to perform a critical section to the exclusion of all
the others. They have identities 1, 2, . . . ,N . There is a single variable v shared between the
processes whose initial value is 0. When process i wants to perform a critical section it tests to
see if v = 0 and if not waits for this state to occur. If v = 0 then within D units of time, v is
assigned to be i . The process then waits T time units and tests if v = i . If so it performs the

29

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

critical section before resetting v to 0. If not it goes back to the initial state.
The parameters of this protocol are the delays D and T , and the number N of processes.

We can model this with the following simple Timed CSP processes:

Node(i) = [] j:{0..D} @ read.i.0 ->

(WAIT(j); write.i.i -> Node2(T,i))

Node2(x,i) = WAIT(x);(read.i?j ->

if i==j then

css.i -> cse.i -> write.i.0 -> Node(i)

else Node(i))

Note how this process has the option of performing write.i.i at any time between the
read.i.0 and D time units later because it can move after the read to different states that
delay the write by these amounts. Simply giving the choice (write.i.i -> Q) [] WAIT(D)

would not have this effect since in the complete system the write would be enabled and hidden
as a τ meaning that maximal progress would force it to occur at once: there would actually be
no possibility of it waiting beyond the moment it starts.

This sort of bounded time behaviour is arguably better expressed in tock -CSP without the
use of priority:

TNode(i) = read.i.0 -> TNode1(D,i)

[] tock -> TNode(i)

TNode1(0,i) = write.i.i -> TNode2(T,i)

TNode1(x,i) = tock -> TNode1(x-1,i)

[] write.i.i -> TNode2(T,i)

TNode2(0,i) = read.i?j -> if i==j then CS(i)

else TNode(i)

[] tock -> TNode2(0,i)

TNode2(x,i) = tock -> TNode2(x-1,i)

CS(i) = css.i -> CS’(i)

[] tock -> CS(i)

CS’(i) = cse.i -> write.i.0 -> TNode(i)

[] tock -> CS’(i)

Note that this process expresses the bounds on when write.i.i occurs directly rather than
relying on maximal progress. In fact it would be inappropriate to impose maximal progress on
this model since it would not explore all the timings we wish it to.

Fischer’s protocol works – in achieving mutual exclusion – provided D ≤ T and it is easy
to verify this on FDR for specific values of D , T and N using either of the above versions. In
these versions without the use of FDR’s compressions, D=2 and T=3 we see typical exponential
growth in N. On a single core of a Xeon 3.47GHz processor the times taken for the Timed CSP
version above were 23 seconds and 785 seconds for N = 6 and 7 respectively. The times for the
tock -CSP version were 0, 11, 138 seconds for N = 6, 7, 8

However FDR’s compression functions can improve this performance. We have found that
the most effective technique is to keep a separate copy of v for each process, enabling each

30

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

to do its reads locally, and synchronising all of them on the write actions. These can then
be arranged in groups before compressing these, and combining the groups. It is possible to
eliminate the symmetries between the different nodes in each group by renaming before the
compression.

The only compressions we can use in the Timed CSP version are strong and weak bisim-
ulation (the latter giving more compression but being slightly slower). The latter enables
N = 12, 15, 18 to be handled in 9, 43, 552 seconds. Not using priority in the tock -CSP version
gives us a free reign over compression and also removes the overhead of running under priority.
That enables N = 12, 16, 20 to be handled in 5, 54, 450 seconds.

8 Conclusions

Just as the creation of FDR inspired a huge amount of practical work and practically-inspired
theory relating to untimed CSP, we hope that this work will inspire a renaissance in the use
of Timed CSP. Our brief exposure to this new tool has already brought new practical insights
into the use of Timed CSP. The existence of the theory of digitisation means that properties
proved in our discrete setting – including all the analysis we did in the Case Study section –
are automatically proved of the continuous semantics of Timed CSP.

We have not yet looked at any industrial-scale Timed CSP case studies using FDR, but
it is clear that the tool is capable of handling practical systems. One interesting potential
application is analysing for the existence of covert channels based on timing in supposedly
secure systems. A second paper [29] will look more carefully into this possibility.

One of the advantages of building Timed CSP into the existing FDR tool, using only small
perturbations of the latter’s standard models, is that most of the machinery already created
to support untimed CSP will apply directly to Timed CSP. Thus, for example, it should be
possible to use the integration of SAT checkers [20] and CEGAR [21] into FDR, and to take
advantage of FDR’s use of state-space compression functions. The only obstacle to this is that
any such method needs to be consistent with the use of the prioritise function for Timed
CSP processes.

We have seen in the Case Studies section that Timed CSP, with the alternative of tock -CSP,
provides an extremely powerful tool for real-time analysis. Intelligent use of FDR’s compressions
can produce spectacular results, but this does require some skill on the part of the user.

All the novel features of FDR described in this paper, namely Timed sections, prioritise
and wbisim will be available in the next release of FDR (2.94).

Acknowledgements

The work in this paper was supported by grants from US ONR and EPSRC. The implementation
of prioritise was supported by Verum BV (www.verum.com). It has benefited from discussions
with Michael Goldsmith, James Worrell, Huang Jian and Tom Gibson-Robinson. The bridge-
and-soldiers case study (previously used with Uppaal) was suggested to us by Maneesh Khattri.

References

[1] R. Alur, C. Courcoubetis, and D. Dill, Model-checking for real-time systems, In Proceedings of the
Fifth Annual Symposium on Logic in Computer Science (LICS 90), pages 414-425. IEEE Computer
Society Press, 1990.

31

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

[2] H. Barringer, R. Kuiper and A. Pnueli, A fully abstract concurrent model and its temporal logic,
in: Proc. 18th POPL (1986) 173-183.

[3] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson and Wang Yi UPPAAL: a tool
suite for automatic verification of real-time systems, Proc Hybrid Systems III, LNCS 1066, 1996.

[4] S.J. Creese and A.W. Roscoe, TTP: A case study in combining induction and data independence,
Oxford University Computing Laboratory Technical Report, 1998.

[5] J.W.M. Davies, Specification and proof in real-time CSP, Cambridge University Press, 1993.

[6] J.W.M. Davies, D.M. Jackson, G.M. Reed, A.W. Roscoe and S.A. Schneider, Timed CSP: theory
and applications, in ‘Real time: theory in practice’ (de Bakker et al, eds), Springer LNCS 600,
1992.

[7] C.L. Heitmeyer and R.D. Jeffords, Formal specification and verification of real-time system re-
quirements: a comparison study, U.S. Naval Research Laboratory technical report, 1993.

[8] T.A. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for real-time systems,
In Proceedings of the Eighteenth Annual Symposium on Principles of Programming Languages
(POPL 90), pages 353-366. ACM Press, 1990.

[9] T.A. Henzinger, Z. Manna, and A. Pnueli, What good are digital clocks? In Proceedings of the
Nineteenth International Colloquium on Automata, Languages, and Programming (ICALP 92),
volume 623, pages 545-558. Springer LNCS, 1992.

[10] C.A.R. Hoare, Communicating sequential processes, Prentice Hall, 1985.

[11] Huang Jian, Extending non-interference properties to the timed world, Oxford University D.Phil
thesis, 2010.

[12] M. Khattri, J. Ouaknine and A.W. Roscoe, Translating Timed Automata to Tock-CSP Proceedings
of IASTED SE, ACTA Press 2011.

[13] D.M. Jackson, Local verification of reactive software systems, Oxford University D.Phil thesis,
1992.

[14] G. Lowe and J. Ouaknine, On Timed Models and Full Abstraction, ENTCS 155, pp 497-519, 2006.

[15] M.W. Mislove, A.W. Roscoe and S.A. Schneider, Fixed points without completeness, Theoretical
Computer Science 138, 2, 1995.

[16] J. Ouaknine, Discrete analysis of continuous behaviour in real-time concurrent systems, Oxford
University D.Phil thesis, 2001.

[17] J. Ouaknine, Digitisation and full abstraction for dense-time model checking, TACAS Springer
LNCS, 2002.

[18] J. Ouaknine and S.A. Schneider, Timed CSP: A Retrospective, ENTCS 162, pp 273-276, 2006.

[19] J. Ouaknine and J.B. Worrell, Timed CSP = Closed Timed epsilon-automata, Nordic Journal of
Computing, 10, 2003.

[20] H. Palikareva, J.Ouaknine, and A.W. Roscoe, Faster FDR counterexample generation using SAT-
solving, Proceedings of AVOCS 09, 2009.

[21] H. Palikareva, J. Ouaknine and A.W. Roscoe, Integrating CEGAR with FDR, Forthcoming 2012.

[22] K. Paliwoda and J.W. Sanders, An incremental specification of the sliding-window protocol, Dis-
tributed Computing, 5 (2), pp 83–94, 1991.

[23] G.M. Reed, A uniform mathematical theory for real-time distributed computing, Oxford University
D.Phil thesis, 1988.

[24] G.M. Reed and A.W. Roscoe, A timed model for communicating sequential processes, Theoretical
Computer Science 58, 249-261, 1988.

[25] A.W. Roscoe, Model checking CSP, in ‘A classical mind: essays in honour of C.A.R. Hoare’,
Prentice Hall, 1994.

[26] A.W. Roscoe, The theory and practice of concurrency Prentice Hall, 1997.

[27] A.W. Roscoe, Understanding concurrent systems, Springer, 2010.

32

Model checking Timed CSP Armstrong, Lowe, Ouaknine and Roscoe

[28] A.W. Roscoe, P.J. Hopcroft and P. Armstrong, Fairness analysis through priority, forthcoming
2012.

[29] A.W. Roscoe and Huang Jian, Checking noninterference in Timed CSP, forthcoming 2012.

[30] Theo C. Ruys and Ed Brinksma Experience with Literate Programming in the Modelling and
Validation of Systems, Proc TACAS 1998, LNCS 1384.

[31] P.Y.A. Ryan, S.A. Schneider, M.H. Goldsmith, G. Lowe and A.W. Roscoe, The modelling and
analysis of security protocols: the CSP approach, Addison-Wesley 2001.

[32] S.A. Schneider, Unbounded non-determinism in timed CSP, ESPRIT SPEC project deliverable,
1991.

[33] S.A. Schneider, Concurrent and real-time systems: the CSP approach, Wiley, 2000.

33

	Introduction
	History
	CSP's and Timed CSP's semantic models: a summary
	Digitisation
	From discrete Timed CSP to tock-CSP
	Implementation in FDR
	Timed Failures refinement

	Case studies
	Alternating Bit and Sliding Window protocols
	Soldiers on a bridge
	Fischer's mutual exclusion protocol

	Conclusions

