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Abstract
Benchmark Proposal: We describe how a well-known backward reachability problem

with nonlinear dynamics and adversarial inputs—based on a pursuit evasion game with
two identical vehicles that have Dubins car dynamics—can be viewed as a robust controlled
backward reach tube. The resulting set is nonconvex with a surface that is nondifferentiable
in places, yet (mostly explicit) closed form solutions for points on the surface of this set
have been derived based on a classical differential game analysis, and so these points can be
sampled with high accuracy at arbitrary density. We propose this problem as a benchmark
because few existing reachability algorithms can tackle robust controlled backward reach
tubes despite their potential for proving the robust safety of systems, and this (almost)
analytic solution exists against which to compare prospective solutions. We then describe
some extensions to the problem to provide additional future challenges. Code is provided.

1 Introduction
The controlled invariant set is a common tool used to prove that systems can be controlled to
remain within some set of states, and the robust controlled invariant set is a version in which
the invariance can be shown despite perturbation of the dynamics. Similar problems have been
studied in reachability, although differentiating between research on reachability algorithms
which work for systems with no inputs, with a single input, or with two adversarial inputs
has been a challenging task because all use the generic term “reachability”. In [Mitchell, 2011]
we proposed notation to differentiate these cases—as well as whether the set includes states
reachable over an interval of time or at a single time, and whether the computation proceeds
forward in time from an initial set or backward in time from a target set—but the notation
is cumbersome, and unnecessary when considering algorithms which focus on solving a single
version of the problem. More importantly, notation cannot easily appear in titles, abstracts
or introductions, making it hard for others to easily identify which particular problem is being
solved in a given paper.
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Increasing use of the word “tube” for the case in which reachability is evaluated over an
interval of time has helped the situation, so to differentiate between reachability problems with
various treatments of inputs we propose to follow the lead of robust controlled invariant sets
and use the phrase “robust controlled” to identify the category of reachability problems with
adversarial inputs. In particular, in this paper we propose a benchmark problem for robust
controlled backward reach tubes (RCBRTs), in which we seek to compute the set of states giving
rise to trajectories which can be controlled by the input(s) of one player to reach a given target
set at a some time during a given time interval in a manner robust to the disturbance of the
second player’s input(s) on the dynamics. RCBRTs clearly share features with robust controlled
invariant sets as well as discriminating kernels from viability theory [Aubin et al., 2011], with
the key difference being the presence of a terminating target set (similar to viability theory’s
capture basins).

Impressive advances have been demonstrated in the scalability and accuracy of reachability
algorithms for systems with fewer inputs over the past decade; for example [Bak et al., 2019]
demonstrates a previously unimaginable billion dimensional problem, albeit for a system with
linear dynamics and no inputs. Much less progress has been made on RCBRTs; for exam-
ple, [Kaynama et al., 2015] demonstrates an analysis on a twelve dimensional linear system
with adversarial inputs.

Unlike reachability analyses without adversarial inputs, RCBRTs do not appear to be
amenable to efficient sampling approaches because (as demonstrated below) distinct optimal
trajectories may arise from a single point in the state space and/or lead to a single point in
the target set; consequently, two-point boundary value based or optimization based sampling
may miss such trajectories, and dense sampling of the competing inputs from all possible initial
states is generally infeasible.

And yet RCBRTs have considerable potential in analysis and synthesis of safe controllers
which will drive a system toward (or away from) target sets despite uncertainty in the model,
environment, or actions of other agents. Examples beyond the collision avoidance problem con-
sidered here include automated delivery of anesthesia [Yousefi et al., 2019], learning a Gaussian
process model of drone flight while maintaining safety [Fisac et al., 2018], and analysis of the
user interface of an automated landing system [Oishi et al., 2008].

With this benchmark proposal we hope to drive interest in developing more general and still
scalable algorithms for RCBRTs. The contributions of this benchmark proposal are to

• Describe an RCBRT whose boundary can be sampled analytically to arbitrary density.
The analytic solution can be used to validate and analyze the accuracy of potential solu-
tions. The RCBRT:
– Is derived from a collision avoidance problem involving two Dubins cars.
– Features nonlinear dynamics with bounded, adversarial inputs.
– Is nonconvex with a surface that is non-differentiable in places.
– Can be characterized in either three or six dimensions depending on whether a rel-

ative coordinate frame is used.
– Includes pairs of initial set / RBRT points connected by multiple distinct optimal

trajectories.
• Describe extensions to the basic problem for which the system dimension is larger. For

some of these extensions, the analytic solution for the basic problem can be used to find
under or over approximations of the true RCBRT.

The paper is organized as follows: Section 2 describes the problem for which the (almost)
analytic solution is known, and how that solution can be characterized. Section 3 describes
a number of extensions to the basic problem and how they relate to the (almost) analytic
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solution. Section 4 briefly describes how these problems can be formulated as Hamilton-Jacobi-
Isaacs PDEs whose solutions can be numerically approximated, although these techniques scale
poorly with dimension. Source code can be found at https://bitbucket.org/ian_mitchell/
arch-2020-benchmark.

2 The Basic Version

In this section we describe the problem which leads to an RCBRT in three dimensions and
summarize an analysis which allows us to write closed form solutions for points on the boundary
of the tube. All of these elements have been examined in prior publications, so the purpose of
this section is to provide a cohesive overview and justification for use as a benchmark rather
than the details of the constructions; however, those details are available in the citations for
interested readers.

2.1 The Problem

The motion of a kinematic unicycle model is governed by the ODE

ẋ =
d

dt

x1x2
x3

 =

v cosx3v sinx3
ω


where

• The state x ∈ R2 × [−π, π) consists of the position in the plane (x1, x2) and heading x3.
• The inputs are the linear velocity v ∈ [v, v] ⊆ R and angular velocity ω ∈ [−ω, ω] ⊆ R.

Note that we assume symmetry of the angular velocity range.
In a Dubins car model [Dubins, 1957] the linear velocity is a fixed constant v = v = v,

often chosen as v = +1, while angular velocity is allowed to vary. In a Reeds-Shepp car
model [Reeds and Shepp, 1990] the linear velocity is chosen from two symmetric fixed values;
for example, v ∈ {−1,+1}. Both cases can equivalently be defined as a car with limited turn
radius (equal to ω−1 for unit linear velocity), whereas the unicycle can turn in place if the linear
velocity can be set to zero.

Numerous works have examined the reach sets of individual vehicles traveling under various
versions of unicycle dynamics—for example, in [Patsko and Turova, 2009] the authors examine
the case where v = +1 and v is allowed to vary—but in these cases all nondeterminism in the
input signal(s) seeks the same outcome (typically to make the reach set larger).

In this paper we consider an adversarial game scenario involving two identical vehicles in
which the input(s) of one are trying to bring the vehicles close together while the input(s) of
the other are trying to keep them apart. It can be thought of as a version of the homicidal
chauffeur problem [Isaacs, 1999], but with each of the two agents having identically limited
unicycle dynamics rather than one being a car and the other a pedestrian.

In order to distinguish between the two vehicles we will call the one seeking to drive the
vehicles together the pursuer and the one seeking to keep them apart the evader. In this basic
problem we will fix the linear velocity v = +1 (so the vehicles behave as Dubins cars) and the
bounds on the angular velocity as ω = +1. We will declare that the pursuer wins if the vehicles
pass within distance β > 0 of each other in the plane, regardless of their headings; otherwise,
the evader wins.
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Figure 1: Relative coordinate system with the evader at the origin.

Because the winning conditions depend only on the relative position of the vehicles, we can
recast the problem in relative coordinates. For reasons involving the algorithm discussed in
section 4, we choose to put the evader at the origin of the relative coordinate system; however,
the analytic solution can be derived with either vehicle at the origin (see section 2.2).

In the relative coordinate system shown in figure 1, the dynamics of the system are given
by the nonlinear ODE

ẋ =
d

dt

x1x2
x3

 =

−ve + vp cosx3 + ωex2
vp sinx3 − ωex1

ωp − ωe

 , (1)

where
• (x1, x2) ∈ R2 is the relative position in the plane.
• x3 ∈ [−π, π) is the relative heading,
• ve and vp are the linear velocities of the evader and pursuer respectively. These velocities

are constant and equal so they are not considered inputs in this version of the problem.
• ωe and ωp are the angular velocities of the evader and pursuer respectively. These are

drawn from the same interval [−ω, ω] and are the inputs for this version of the problem.
We will define the domain in which we compute the RCBRT as

X = R2 × [−π, π) (or R2 × S1) (2)

using this relative coordinate system.
The backward reach tube that we seek to compute represents the set of states from which

the pursuer can drive the system trajectory into the target set

T =

{
x ∈ X

∣∣∣∣√x21 + x22 ≤ β
}
. (3)

In the three dimensional state space, T is a cylinder because it does not depend on relative
heading x3. Figure 2 shows T .

We consider the set to be computed an RCBRT because the pursuer will use its input
ωp to try to control the system state toward T , but must do so in a way which is robust
to the efforts of the evader to steer away through its input ωe. Because we are operating in
continuous time, the question arises of what each vehicle knows about the other’s choices. We

245



A Robust Controlled Backward Reach Tube with Analytic Solution Mitchell

Figure 2: Two views of the surface of the RCBRT (red shape) for the basic problem. On the
left, the RCBRT surface is partially transparent and the target set is shown as a solid blue
cylinder. This set is the same as that shown in [Mitchell et al., 2005, Figure 3], [Mitchell, 2002,
Figure 3.5] and [Mitchell, 2001, Figure 8], but with relative heading in [−π, π) (instead of
[0, 2π)) and different values for β, ve and vp.

will give any potential informational benefit to the pursuer by allowing it to use a nonanticipative
strategy. The intuition for how this choice affects the problem is that at a given time instant
the evader knows the current state of the system and how the pursuer will respond to any given
evader input, while the pursuer knows both the state and the evader’s actual chosen input.
The notation for non-anticipative strategies becomes somewhat cumbersome, so the interested
reader is referred to [Mitchell et al., 2005, section 2] for more details.
Remark 1. The dynamics (1) are separable, meaning they can be written in the form

ẋ = f0(x) + fe(x, ωe) + fp(x, ωp),

where each of the component terms depends on no more than one of the inputs ωe and ωp. While
the details of the non-anticipative strategy information pattern is important to achieve math-
ematical rigour for cases with general dynamics, for separable dynamics it is equivalent to the
more intuitive state feedback information pattern; in other words, each player’s instantaneously
optimal input does not depend on the other player’s instantaneous choice.

The RCBRT is formally defined as

R ([−T, 0], T ) = {x ∈ X | ∃ωp(·),∀ωe(·),∃s ∈ [−T, 0], x(s) ∈ T } (4)

where
• The (backward) horizon is T > 0.
• An input signal u(·) : [T, 0]→ U is drawn from the set of measurable functions mapping

a time to a valid input value.
• With an abuse of notation, the pursuer’s nonanticipative strategy ωp(·) is a mapping from

evader input signals to pursuer input signals.
• The evader’s input signal ωe(·) is just a regular input signal.
The definition (4) may appear to give the information benefit to the evader since ωe(·) is

picked last, while at the same time restricting both input signals to be open loop since they are
both functions mapping time to input value. However
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• Because ωp(·) is a strategy it can respond to any particular choice of ωe(t) instantaneously
even though ωe(·) is chosen later.

• Because ωp(·) is chosen first, both players know how the pursuer will respond to any given
choice by the evader; hence both players can deduce the current state at any given time
and thereby have access to the necessary information to build closed loop input signals.

Measurable functions and non-anticipative strategies may seem like mathematically heavy
artillery when we might instead desire to impose more practical constraints on the input signals
for real problems, such as piecewise constant or linear state feedback. In fact, the optimal input
signals needed for the analytic solution of this basic problem turn out to be piecewise constant
(see section 2.2), but we call out the big guns here in order to enable the approximation of this
RCBRT and the RCBRTs for extended versions of this problem through viscosity solutions of
HJI PDEs in section 4.

At the same time, the need for these precise definitions should serve as a warning that the
definition and solution of this RCBRT is mathematically delicate in places. In particular, the
target set T is the closure of an open set, and in this case it can be shown that the RCBRT
is also a closed set (for example, see [Mitchell et al., 2005]). Given that the definitions all have
obvious complements, one might be tempted to deduce that the evader’s RCBRT is precisely
the complement of the pursuer’s RCBRT (4); however, the story is more complicated,1 and
the interested reader can find a rigorous treatment in [Cardaliaguet et al., 1999, section 4].
Fortunately, those interested in computing over and under approximations numerically can use
the benchmark formulation above and for the most part avoid these mathematical technicalities.

2.2 An (Almost) Analytic Solution
In [Merz, 1972] the author deduces the optimal trajectories for the problem described above,
albeit for the relative coordinate system with the pursuer at the origin. In [Mitchell, 2001] we
write out Merz’s equations in detail for his case, and then replicate the analysis for the relative
coordinate system with the evader at the origin. We provide accompanying Matlab code which
regenerates the figures and can compute points on the boundary of the RCBRT to an accuracy
comparable with the available implementation of the basic trigonometric functions.

Given the detailed exposition available in these manuscripts, the purpose of this section is
merely to highlight interesting characteristics and features of this analytic solution, and the
interested reader can find the details in [Merz, 1972, Mitchell, 2001].

In the original paper, Merz parameterizes trajectory terminal points on the boundary of the
cylindrical target set T , and then claims that points on the barrier (the portion of the boundary
of the RCBRT which is not also the boundary of the target set) can be described as the initial
conditions of one or more optimal trajectories made up of segments along which both inputs
are fixed. Three types of parameterized segment exist, each having two versions depending on
the choice of input:

• Opposite inputs: In this type ωe = −ωp, and the two versions depend on whether ωe = +1
or ωe = −1.

• Same inputs: In this type ωe = ωp, and the two versions depend on whether ωe = +1 or
ωe = −1.

• Pursuer not turning: In this type ωp = 0, and the two versions depend on whether
ωe = +1 or ωe = −1.

1In particular, [Mitchell et al., 2005, Lemma 8, case 2] has a circular dependency which breaks the proof
(much thanks to Andre Platzer for spotting this error), but the version of the same lemma in [Mitchell, 2002,
section 2.4.3] works fine with a slightly weakened claim containing a strict inequality.
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Figure 3: Two views of slices at fixed x3 of the boundary of the RCBRT with β = 0.5 and
the evader at the origin. Note that the x1 and x2 coordinates are swapped compared to the
coordinate system in figure 1. The large circles are slices of the target set T . The star symbols
are the crossover points for each slice, the small circle symbols are the intersection of the barrier
and the target set slices, and the triangle / square symbols denote points on the barrier slices
where the combination of optimal trajectory segments to reach the barrier changes. Figure
taken from [Mitchell, 2001, figure 6].

The boundary of the RCBRT can be sliced along fixed values of x3 (horizontal slices in
figure 2), and the boundary of each slice divided into three smooth curves: Some half of the
circle which is the corresponding slice of the target set T , and two curves which start off
tangentially from the two ends of the half circle and meet at a crossover point where the barrier
is not differentiable.

The first step to compute points lying on a particular slice of the barrier is to determine the
crossover point. There are two possible optimal trajectories arising from this point on the left
and two on the right depending on which trajectory segments are involved, and the crossover
point can be found by equating each possible pair of left and right, and solving the resulting two
equations (one each for coordinates x1 and x2 since the slice x3 is fixed) for two unknowns (the
time durations of the two trajectories) to find the combination which is physically realizable.

The remainder of the points on the barrier arise from one of eight possible combinations
of trajectory segments, with a left-right asymmetry arising from the complementary shapes of
the RCBRT above and below x3 = 0. Each combination has a free parameter, so by sampling
these free parameters and the slices in x3 it is possible to generate points on the barrier to an
arbitrary density.
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Figure 4: Two views of slices at fixed x3 of the boundary of the RCBRT with β = 0.5
and the pursuer at the origin. The labelling is the same as that in figure 3. Figure taken
from [Mitchell, 2001, figure 5], and the left subplot recreates [Merz, 1972, figure 7].

Explicit, closed form equations for all of the points on the barrier can be written except
for the crossover points. The crossover points have closed form equations, but they must be
solved numerically because they are not explicit and involve nonlinear trigonometric terms;
consequently, we call Merz’s solution “almost analytic.” In practice the equations can be solved
to arbitrary accuracy using appropriate numerical methods, and are solved to nearly IEEE
double precision floating point accuracy in the accompanying Matlab code.

Figure 3 shows two views of slices of the RCBRT at

x3 = −
(
k

6

)
π for k = {1, 2, 3, 4, 5, 6}

with the evader at the origin and for β = 0.5. Note that the x1 and x2 axes are swapped for
figures in this section compared to the axes defined in figure 1 (the swapped axes agree with
the coordinate system from [Merz, 1972]). The x3 axis is also labelled in degrees rather than
radians. The figure shows that the RCBRT is not smooth at the crossover points. It is also
possible to deduce that the RCBRT is nonconvex: Consider the line joining x = (0, 0.5, 0) on
the top slice of the target set to the point x = (0, 2.9,−π) just below the crossover point for
the bottom slice. This line will pass through the point x = (0, 0.9,−π/6), which is clearly not
within the RCBRT slice for x3 = −π/6.

For comparison, figure 4 shows two views of the same slices of the RCBRT with the pursuer
at the origin.

Figure 5 shows a coarsely sampled set of optimal trajectories leading to one side of the
(pursuer at the origin) barrier for x3 = −5π/6. The set of trajectories closer to the origin
terminate at different points on the target set and comprise of only a single optimal trajectory
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Figure 5: Two views of a coarse sampling of trajectories whose endpoints form a slice of the
left barrier of the RCBRT with β = 0.5 and the pursuer at the origin. Note that the set of
trajectories starting from points closer to the crossover point all share a terminal trajectory
segment. Figure taken from [Mitchell, 2001, figure 4].

segment. The set of trajectories closer to the crossover point all comprise of two optimal
segments, the second of which is shared and terminates at a single point on the target set.
Finally, no portion of this side of the barrier for this slice is itself an optimal trajectory segment.

Figure 6 shows the two trajectories leading from the crossover points for two distinct slices
(again for the case with the pursuer at the origin). Notably, the trajectories leading from the
crossover point for the slice at x3 = −5π/6 not only diverge at first, but they then converge to
the same terminal point on the target set. The slice at x3 = −π/2 shows distinct features. First,
the trajectories leading from the crossover point terminate at different points on the target set.
Second, a portion of the left barrier is composed of an optimal trajectory segment.

Remark 2. From the problem definition in section 2.1 and the (almost) analytic solution de-
scribed here we can identify a number of features which make this reachability problem chal-
lenging:

• The dynamics (1) are nonlinear, with x1 and x2 coupled to all dimensions except them-
selves.

• The domain (2) is not of the form Rd for some d because x3 is periodic.
• The cylindrical target (3) couples x1 and x2, although it could be over or under approxi-

mated by a square prism if decoupling is desired.
• There are two inputs with competing goals. The dynamics are separable in the inputs

(see remark 1), so we can avoid some complications around non-anticipative strategies;
however, they are affine in the inputs and so discontinuous (or bang-bang) controls are
optimal (see section 4).

• The RCBRT is nonconvex and asymmetric, although there is an odd symmetry across
the x3 = 0 plane.
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Figure 6: Left and right trajectories leading from crossover points for slices x3 = −5π/6 and
x3 = −π/2 of the RCBRT with β = 0.5 and the pursuer at the origin. Slices of the target
cylinder are also shown at the terminal points of the trajectories. For the slice at x3 = −π/2,
the portion of the left barrier between the star symbol at the crossover point and the square
symbol is part of the left trajectory. Figure taken from [Mitchell, 2001, figure 3].

• The surface of the RCBRT is mostly smooth, but is non-differentiable along the curve of
the crossover points.

• Optimal trajectories which lead from points on the boundary of the RCBRT to points on
the boundary of the target set arise from piecewise constant input signals with a bounded
number of switches for any single trajectory; therefore, it should be possible to compute
the RCBRT using only this class of input signals even though it is defined (4) using
nonanticipative strategies over measurable input signals.

• Multiple optimal trajectories can start from a single point on the boundary of the RCBRT,
terminate at a single point on the target set, or both. Multiple optimal trajectories may
share segments. These features are likely to cause problems for algorithms which use two
point boundary value solvers to search for optimal trajectories.

We hope that readers will look upon these features as hurdles to overcome through design of
novel algorithms rather than insurmountable obstacles.

3 Problem Extensions

In this section we sketch out a few extensions to the basic problem, mostly with the goal of
increasing the dimension of the space in which the RCBRT must be found. In some cases an
analytic solution based on the solution of the basic problem can be deduced, while in others
that solution only provides some guidance.

It is also possible to break the assumption that the vehicles are identical by giving them
different bounds on their linear and/or angular velocity inputs. While potentially valuable
for solving real world pursuit evasion games, we do not consider this option further in the
benchmark because it breaks the derivation of the analytic solution.
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3.1 The No-Heading Projection

The “extension” in this section is actually a dimensionality reduction. As part of a general
exploration of how RCBRTs can be approximated by their projections into lower dimensional
subspaces of the state space, in [Mitchell and Tomlin, 2003, section 3.5] we consider the projec-
tion of the basic problem into the x1–x2 subspace; in other words, the two vehicles know their
relative position, but not their heading. Since x3 ∈ [−π, π), we can model x3 as an input to
the two dimensional system in the x1–x2 subspace.

If we treat x3 as an input that the evader can choose, then we are seeking the set of states
from which the evader can be captured for any possible relative heading. For identical vehicles
the evader can choose relative heading x3 = 0 and always escape unless the system starts inside
the target set; in other words, the two dimensional RCBRT is the target set. So this case is not
interesting as a benchmark problem.

If we treat x3 as an input that the pursuer can choose, then we are seeking the set of states
from which the evader might be captured for some possible relative heading. The optimal
choice of x3 will depend on the relative position of the pursuer, but it is easy to see that
the two dimensional RCBRT will be the projection along x3 of the basic problem’s RCBRT.
Consequently, an analytic solution for this pursuer’s choice RCBRT can be found by projection
of the solution described in section 2.2.

This simplification can be used in concert with the extensions in the remainder of this section
to provide RCBRT problems in a range of dimensions. We will note in passing that problem
versions which project out either x1 or x2 yield RCBRTs which are either trivial or unbounded,
so these versions do not appear to be interesting as benchmark problems either.

3.2 Absolute Coordinates

We used relative coordinates for the two vehicles in section 2 because we could reduce the
dimension of the state space from six to three. But if we want a higher dimensional version of
the benchmark, we can work directly in the absolute coordinates of the two vehicles. Letting
x1, x2 and x3 be the coordinates of the evader and x4, x5 and x6 the coordinates of the pursuer,
we can substitute

X = R2 × [−π, π)× R2 × [−π, π)

T =
{
x ∈ X

∣∣∣√(x3 − x1)2 + (x4 − x2)2 ≤ β
}
.

for (2) and (3) respectively, and

ẋ =
d

dt


x1
x2
x3
x4
x5
x6

 =


v cosx3
v sinx3
ωe

v cosx6
v sinx6
ωp

 (5)

for (1) to create a benchmark problem in six state dimensions. Analytic slices of the RCBRT
for any fixed evader state can be evaluated by transforming into relative coordinates and using
the results from section 2.2. Furthermore, a four dimensional problem can be defined by using
absolute coordinates with the no-heading projection from section 3.1.
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3.3 More Vehicles
An easy way to increase the dimension of this pursuit-evasion game is to introduce more vehicles.
Writing down the dynamics is a straightforward replication of (1) or (5) depending on whether
relative or absolute coordinates are used. The definition of RCBRTs (4) requires that each
vehicle be assigned to either the evader or pursuer team. Most importantly, some care must be
taken to create a target set whose RCBRT will have appropriate semantics.

Single evader. This case is simplest to formulate in either relative coordinates (with the
evader at the origin) or absolute coordinates. The target set is the union (if any pursuer can
capture) or intersection (if all pursuers must capture simultaneously) of states where a pursuer
is sufficiently close to the evader; for example, to encode the case where either of two pursuers
can capture in relative coordinates, use

T =

{
x ∈ X

∣∣∣∣min

(√
x21 + x22,

√
x24 + x25

)
≤ β

}
, (6)

where (x1, x2, x3) are the relative coodinates of the first pursuer and (x4, x5, x6) are the relative
coordinates of the second pursuer. Encoding other semantics requires additional capabilities;
for example:

• State constraints (aka avoid sets) allow problems in which the pursuers cannot get too
close together, as well as problems in which there are obstacles in the environment.

• A hybrid state model can capture problems in which more than one pursuer must capture
but they can do so sequentially rather than all at once.

Single pursuer. This case is also easy to formulate in either relative coordinates (with the
pursuer at the origin) or absolute coordinates. Requiring a single pursuer to capture multiple
evaders simultaneously seems overly challenging, but a target allowing the pursuer to capture
any single evader can easily be encoded; for example, using (6) for the situation where there are
two evaders and the state variables are the coordinates of those evaders relative to the pursuer
at the origin. If the evaders must avoid one another, and we are willing to count an evader
collision as a pursuer win, then the target can be defined as, for example,

T =

{
x ∈ X

∣∣∣∣min

(√
x21 + x22,

√
x24 + x25,

√
(x1 − x4)2 + (x2 − x5)2

)
≤ β

}
,

where the third term in the minimum encodes that the evaders have gotten too close together.
A hybrid state model can be deployed if the pursuer must capture (a subset of) evaders in some
sequence.

Multiple pursuers and evaders. Absolute coordinates make more sense in this case because
there is no unique vehicle. Encoding an “any pursuer captures any evader” winning condition
is straightforward, but an “every evader is simultaneously captured” winning condition can be
managed; for example, with two pursuers and two evaders

T =

x ∈ X
∣∣∣∣∣∣∣max

min
(√

(x1 − x7)2 + (x2 − x8)2,
√
(x1 − x10)2 + (x2 − x11)2

)
,

min
(√

(x4 − x7)2 + (x5 − x8)2,
√
(x4 − x10)2 + (x5 − x11)2

)
 ≤ β

 ,

where
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• (x1, x2, x3) and (x4, x5, x6) are the two evaders’ absolute coordinates.
• (x7, x8, x9) and (x10, x11, x12) are the two pursuers’ absolute coordinates.
• The first minimum encodes the fact that the first evader is captured by one of the pursuers,

while the second minimum encodes the fact that the second evader is captured by one of
the pursuers. Note that one pursuer can capture both evaders.

• The maximum encodes the fact that both evaders must be captured simultaneously.
Enumeration of all winning simultaneous combinations for the pursuers, including cases where
evader collision causes a pursuer win, can be encoded similarly, while winning sequential com-
binations can be encoded with a hybrid state space.

Analytic solution. The higher dimension and the interactions among the vehicles makes
it difficult to imagine how Merz’s approach could be extended to provide analytic solutions
to these cases; however, we can under or perhaps over approximate some of these solutions
using the solution from section 2.2 and pairwise consideration of the pursuers and evaders. For
example, if “capture any evader” is a winning condition for the pursuer(s), then every pursuer-
evader pair whose relative coordinates fall within the RCBRT for the basic problem is within
the RCBRT for the multivehicle problem; however, if there are multiple pursuers then it may
be possible for them to coordinate and herd the evader(s) to force a win, but this strategy
would not be captured by pairwise consideration. Consequently, the analytic solution for the
basic problem can generate an under approximation for this multivehicle case.

3.4 Unicycle Kinematics and/or Dynamics

The dynamics for the kinematic unicycle model are still given by (1), except that now the
evader has two inputs (ve, ωe) and the pursuer has two inputs (vp, ωp).

For vehicles with non-trivial inertia the obvious extension beyond a kinematic model is to
use linear accelerations as the inputs:

ẋ =
d

dt


x1
x2
x3
x4
x5

 =


−x4 + x5 cosx3 + ωex2

x5 sinx3 − ωex1
ωp − ωe
ae
ap

 ,

where the evader’s and pursuer’s linear velocities are now part of the state vector (x4 and
x5 respectively), and the linear accelerations (ae and ap) are the inputs (along with ωe and
ωp). A further extension shifts the angular velocities into the state vector and introduces the
angular accelerations as inputs (although this level of model is less often necessary because
many robots have comparatively small moments of inertia). It is therefore possible to create
versions of RCBRT problems in three, five or seven dimensions in relative coordinates (six, eight
or ten dimensions in absolute coordinates) with two inputs for each of the evader and pursuer.

The kinematic and particularly the dynamic unicycle are more realistic models of real world
robots, so efficient methods of approximating and representing their RCBRTs would be highly
beneficial. Unfortunately, there is no obvious way to extend Merz’s results to these higher
dimensional cases, so an analytic solution is not available.
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4 Approximations from Hamilton-Jacobi-Isaacs

We describe a formulation of RCBRTs as the sublevel sets of the viscosity solution of a Hamilton-
Jacobi-Isaacs (HJI) partial differential equation (PDE) in [Mitchell, 2002, Mitchell et al., 2005],
and provide open source Matlab code based on level set methods to approximate these so-
lutions in ToolboxLS [Mitchell and Templeton, 2005, Mitchell, 2007]. These approximations
may prove useful as another representation of the proposed benchmark RCBRTs against which
to compare prospective algorithms, although their memory and computational cost scales expo-
nentially with dimension. Code for the various extension problems will be added as it becomes
available.

4.1 Approximating the Basic Problem’s RCBRT

We start the section with a very brief sketch of the HJI formulation for the basic problem.
A more in-depth presentation of the formulation of this particular problem can be found
in [Mitchell, 2002, section 3.1], and implementation details are discussed in [Mitchell, 2007,
section 2.6].

The sets are represented by an implicit surface function φ : [−T, 0]×X → R such that

T = {x ∈ X | φ(0, x) ≤ 0},
R ([−t, 0], T ) = {x ∈ X | φ(t, x) ≤ 0},

for any t ∈ [0, T ]. We construct φ(0, ·) from the definition of T ; in this case

φ(0, x) =
√
x21 + x22 − β. (7)

The implicit surface function at times t > 0 is the solution of the HJI PDE

Dtφ(t, x) + min[0, H(x,Dxφ(t, x))] = 0.

In this case the Hamiltonian is given by

H(x, p) = −

 max
ωe∈[−ω,ω]

min
ωp∈[−ω,ω]

[
p1 p2 p3

] −ve + vp cosx3 + ωex2
vp sinx3 − ωex1

ωp − ωe

 ,

= −

(
max

ωe∈[−ω,ω]
min

ωp∈[−ω,ω]

[
p1(−ve + vp cosx3 + ωex2)

+p2(vp sinx3 − ωex1) + p3(ωp − ωe)

])
,

= p1(ve − vp cosx3)− p2(vp sinx3)

−
(

max
ωe∈[−ω,ω]

min
ωp∈[−ω,ω]

[ωe(p1x2 − p2x1 − p3) + ωpp3]

)
,

= p1(ve − vp cosx3)− p2(vp sinx3)− ω|p1x2 − p2x1 − p3|+ ω|p3|.

(8)

For ve = vp = ω = +1, this results in the relatively simple H(x, p) = p1(1− cosx3)−p2 sinx3−
|p1x2−p2x2−p3|+ |p3|. There are a number of additional parameters to the level set algorithms
which must be chosen before ToolboxLS can compute an approximation of this PDE—most
notably bounds on the partial derivatives of H with respect to p—but code is provided and the
results are illustrated in figure 2.
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Figure 7: The pursuer’s choice RCBRT for the two dimensional no-heading version. The outer
red solid curve is the RCBRT, the inner dotted blue circle is the target set, and the intermediate
magenta dashed curves are slices of the analytic solution (the same slices as figure 3, but with
x1 and x2 swapped).

4.2 Approximating the Extension RCBRTs
In theory the HJI formulation is general enough to represent the RCBRTs from all of the
extensions in section 3, but because level set methods require gridding the state space com-
putation is only feasible in state space dimensions beyond four or five by various reformula-
tions, such as those described in [Mitchell and Tomlin, 2003, Mitchell, 2011, Chen et al., 2018,
Lee et al., 2019].

The No-Heading Extension. For this extension from section 3.1, X = R2 (without the
relative heading dimension) and we can easily compute an approximation of the corresponding
HJI PDE. The target set is defined as in (7). We start from the Hamiltonian (8) and make the
following adjustments:

• Any term involving p3 is set to zero. The justification for this cancellation can be found
in [Mitchell and Tomlin, 2003].

• The value of x3 in any term is chosen to minimize (to give the advantage to the pursuer)
the inner product term. In particular, that means finding

min
θ∈[−π,π)

−vp(p1 cos(θ)− p2 sin(θ)). (9)

A quick bit of calculus can find that the optimal θ∗ satisfies tan(θ∗) = −p2/p1, so we
evaluate the functional for both possible values of θ∗ ∈ [−π, π) and substitute the one
which generates the minimum into the Hamiltonian.

The resulting Hamiltonian is

H(x, p) = p1ve − vp [p1 cos(θ∗)− p2 sin(θ∗)]− ω |p1x2 − p2x1| ,

and figure 7 shows the resulting two dimensional RCBRT. A few things to note about this
version of the problem:

• Although it is not obvious in the derivation above, the pursuer’s angular velocity ωp
disappears from the problem. Some intuition for this outcome can be gleaned from the
fact that we are choosing the relative heading x3 ∈ [−π, π) to be the best value for the
pursuer. If the pursuer can always choose the best relative heading, then its turn rate is
irrelevant.
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• If we seek to give the advantage of the unknown heading to the evader then we can find
the θ which maximizes the functional in (9). It is again not obvious, but for the given
initial conditions (7) the resulting Hamiltonian is strictly positive, the solution to the
resulting HJI PDE is φ(t, x) = φ(0, x), and the RCBRT is exactly the target circle in
figure 7.

Other Extension Cases. We will add HJI PDE approximations for these cases as they
become available.

5 Conclusions

We have described a robust controlled backward reach tube (RCBRT) problem in three dimen-
sions with nonlinear, nonconvex dynamics involving adversarial inputs. The resulting RCBRT
is nonconvex and nonsmooth in places. A closed form solution for points on the boundary
of this RCBRT is known. From this closed form solution we know that optimal trajectories
leading from a boundary point to the target set may be nonunique, may share segments and
terminal points with optimal trajectories arising from other points on the boundary, and require
only piecewise constant but often bang-bang control signals (a detailed list of the challenging
features of this problem can be found in remark 2 in section 2.2). Consequently, this problem
appears to be an excellent benchmark for pushing the limits of reachability algorithms.

We listed several extensions to this problem, most of which involve higher state space di-
mension and some of which have solutions or approximations which can be derived from the
analytic solution to the basic problem. Finally, we sketched out an existing algorithm for ap-
proximating the solution to these RCBRTs based on HJI PDEs which is quite general but is
not scalable. This algorithm is demonstrated on two RCBRT problems, and more can be added
depending on interest and computational resources.

Impressive advances have been made in reachability algorithms in the past few years, but
most have been limited to systems with a single (or even no) input. We hope that this bench-
mark proposal will spur further work on robust controlled reachability.
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