EPiC Series in Computing EPiC

Computing

Volume 46, 2017, Pages 474-489

LPAR-21. 21st International Conference on Logic for m
Programming, Artificial Intelligence and Reasoning (‘\

Coq without Type Casts:
A Complete Proof of Coq Modulo Theory

Jean-Pierre Jouannaud'? and Pierre-Yves Strub?

! INRIA, Project Deducteam, Université Paris-Saclay, France
2 LIX, Ecole Polytechnique, France

Abstract

Incorporating extensional equality into a dependent intensional type system such as
the Calculus of Constructions provides with stronger type-checking capabilities and makes
the proof development closer to intuition. Since strong forms of extensionality lead to
undecidable type-checking, a good trade-off is to extend intensional equality with a decidable
first-order theory 7', as done in CoQMT, which uses matching modulo 7" for the weak
and strong elimination rules, we call these rules T-elimination. So far, type-checking in
CoQMT is known to be decidable in presence of a cumulative hierarchy of universes and
weak T-elimination. Further, it has been shown by Wang with a formal proof in Coq that
consistency is preserved in presence of weak and strong elimination rules, which actually
implies consistency in presence of weak and strong T-elimination rules since 7T is already
present in the conversion rule of the calculus.

We justify here CoQMT’s type-checking algorithm by showing strong normalization as
well as the Church-Rosser property of S-reductions augmented with CoQqMT’s weak and
strong T-elimination rules. This therefore concludes successfully the meta-theoretical study
of CoQMT.

Acknowledgments: to the referees for their careful reading.

1 Introduction

Type checking for an extensional type theory being undecidable, as is well-known since the early
days of Martin-Lof’s type theory [16], most proof assistants implement an intensional type theory.
Coq [21] implements CIC¥, a type theory that extends the Calculus of Constructions of Coquand
and Huet (CC [10]) with inductive types in the style of the Calculus of Inductive Constructions
of Coquand and Paulin-Mohring (CIC [18]), and a predicative, cuamulative hierarchy of universes
in the style of the Extended Calculus of Constructions of Luo (ECC [15]), as reformulated by
Werner in [23].

The purely intensional version of type-theory may become awkward when it comes to
programming with dependent types. In the well-known example of “vectors”, one has the type
Vect(n) of lists of length n, a concatenation function @ such that v;@uy has length ny + ng
whenever v; and vy have length ny; and ns respectively. But showing that v@nil = v is not
possible because it is not even a well-typed statement: lengths n + 0 and n are not identified in

T.Eiter and D.Sands (eds.), LPAR-21 (EPiC Series in Computing, vol. 46), pp. 474-489

A complete proof of Coq modulo Theory Jouannaud and Strub

CoQ whenever + is defined recursively on the first argument (n here), which must therefore be
in the form of 0 or successor of something to generate the expected computation.

There are many ways to fix the problem: by adding rewrite rules to increase the computing
ability [7]; by building in full extensionality to the price of loosing decidability [19, 17]; by
building in a restricted form of extensionality taking advantage of equations present in the
typing context [8]; and by building in an even weaker form of extensionality restricted to an
object level first-order theory [20]. The difficulty is indeed to find the right trade-off between
the expressivity of the type system, the decidability of type-checking, and the efficiency of the
implementation. Among all these proposals, the last one only has been implemented as a proof
assistant named CoQMT for Coq Modulo Theory [20]. The formal theory underlying CoQMT
was fully described under the name of CoQMTU in [6]. An original feature of CogMTU
was its weak elimination rule using pattern matching modulo the first-order theory 7', called
T-elimination. In our example of Presburger arithmetic, this allows to pop up zero or successor
from a expression headed by +, regardless of the inductive definition of +. CoQMTU lacked
strong elimination which we were unable to justify at that time.

We then started a program aiming at a full formal proof of CIC¥(T) (w standing for the
cumulative hierarchy of predicative universes), our now favorite name for the theory obtained
by adding strong T-elimination to COQMTU. Proving Coq in Coq is an effort started long ago
by Barras, who completed it recently with a formal, semantic proof of strong normalization and
consistency of CIC* [4]. A major step in this success was Werner’s encoding of type theory
in Zermelo Fraenkel intuitionistic set theory IZF augmented by arbitrarily many inaccessible
cardinals [23], further improved by Barras [5]. This opened the way to a full proof of the meta-
theory of CIC¥, the theory underlying CoqQ, for which T'= @, via the elaboration of a complex,
structured, semantic model, building upon previous work of Altenkirch [1]. A major advantage
of Barras’ CoQ development is its modularity: starting with an appropriate realizability model
of CC based on IZF augmented with inaccessible cardinals, adding new semantic objects for each
new syntactic construct, and proving conservativity of the considered extension shows then both
that the obtained calculus is consistent, and also that the reductions are strongly-normalizing in
the extension. This approach has been taken for CC augmented with a predicative hierarchy
of universes first (CC¥), then with inductive types (CIC¥). It can be carried out smoothly,
provided successive extensions do not interact.

Applied to CIC¥(T), this modular approach has allowed Wang to get consistency and
strong normalization of a restriction of CIC*(T) for which elimination is classically fired via
plain pattern matching rather than matching modulo the theory T' [22]. The reason is that
T-elimination would make two different extensions depend on each other: inductive types and
T. But since the theory T is present via the conversion rule of CIC¥(T), this modular approach
shows indeed consistency of the whole calculus CIC*(T) as well as strong normalization of
B-reduction augmented with the classical plain elimination rules. This does not, however,
show strong normalization when including T-elimination, and therefore, the decidability of
type-checking in CIC*(T) does not follow from [22].

The crux of the problem is indeed to show that T-elimination and [S-reduction together
are strongly normalizing. Our approach relies upon the strong normalization property of
classical plain elimination together with S-reduction used as an induction principle in order to
derive, by syntactic arguments, the strong normalization property of S-reduction augmented
with T-elimination. This syntactic strong normalization proof, which then allows to show
decidability of type-checking by standard arguments, is our main contribution. Done outside
Barras’ model construction, it shows that his expandable semantic infrastructure forbidding
interactions between different semantic objects, can be extended again by solving interactions

475

A complete proof of Coq modulo Theory Jouannaud and Strub

between different semantic objects at the syntactic level.

Syntax and semantics of CIC*(T) are given in Section 2. Our syntactic strong normalization
proof is developed in Section 3 as well as the proof of the Church-Rosser property. An extended
example follows in Section 4.

2 Syntax of CIC¥(T)

Apart from cosmetic differences, this section follows the presentation given in [6].

The main novel feature of CIC*(T) and its predecessors with respect to CIC* is the embedding
of a type of first-order terms. Regarding the typing rules, the main difference is the extension of
the conversion relation by a decidable congruence ~7 on these first-order terms homomorphically
extended to arbitrary terms. Regarding now the computation rules, the main difference is the
use of pattern matching in the theory for firing the so-called T-elimination rules. There are
different version of CIC¥(T) incorporating different mechanisms.?

The present version of CIC*(T) does have strong elimination, which is witnessed by the fact
that the eliminator of natural numbers ELIMya (P, u,v,t), in the case of Presburger arithmetic,
can be used with a term P belonging to any sort s. Further, T-eliminations incorporate the
theory ~7 into reductions via pattern matching in the theory, which must therefore be assumed
to be decidable. CIC*(T) appears then as a generalization of CIC¥, the latter being an instance
of the former in case the theory ~p is syntactic equality.

The version of CIC¥(T) introduced in [6] under the name COQMTU, has weak T-elimination
only, obtained by restricting s to the sort of propositions. As a consequence, COQMTU provided
the induction principle of the natural numbers, but no possibility to define functions by structural
induction on them.

The version of CIC*(T) studied in [22] is intermediate: there are weak and strong elimination
rules, but the theory ~7 is not incorporated into reductions. Further, it uses a direct judgmental
presentation, instead of lifting the first-order equalities into equality judgments on terms via the
embedding of the type of first-order terms. The equivalence of both presentations is formally
proved in [4] in a restricted case, but does hold, as expected, in the general case.

2.1 First-Order Theory T

We consider a first-order mono-sorted algebra defined by a sort o, a non-empty set of constructor
symbols C, a set of defined symbols D, both equipped with arities, and a set of variables X.
Multi-sorted algebras would do as well. We denote by T(C W D, X)) (or simply T) the set of
(first-order) terms, T (C, X) the set of constructor terms, 7 (D, X) the set of defined terms, and
drop the letter X for the respective sets of ground terms. Constructors and defined symbols are
equipped with a fixed arity, denoted by arity(f) for the symbol f.

The semantics of the defined symbols is specified in an abstract form by a decidable congruence
~r over T(CWD, X), the so-called theory T. Terms s, ¢ such that s ~ t are called T'-convertible.
Congruences are extended to n-tuples of terms as expected. We assume that T satisfies the
following axioms:

Freeness. For all constructors C, C’ and terms @, v, C(u) ~r C’'(v) implies C = C’ and @ ~r T.

When the congruence ~r is generated by a set of equations, freeness is usually ensured by
constraining the generating equations (assuming for example confluence and that the equations
are oriented into rules whose left-hand sides are not constructor-headed). It is not enough to

1We reserve the acronym CoQMT for the implementation incorporating them all.

476

A complete proof of Coq modulo Theory Jouannaud and Strub

weaken the present assumption by assuming that equivalent constructor terms are syntactically
equal, as pointed out to us by Jesper Cockx.?

Non-triviality. 7(C) contains at least two different constructor terms.
Under the freeness assumption, this second assumption is equivalent to the existence of at
least two constructors. It will play an important role later.

Completeness. For all terms ¢ in 7(C WD), there exists a term w in 7(C) (unique by Freeness)
such that ¢t ~7 wu.

Completeness ensures that the quotient T'(C W D)/ ~p is isomorphic to T'(C). Although this
is undecidable, good tools exist such as SPIKE [9].

Example 2.1. Let a,c be constructors with arities 0,1, and f a defined symbol of arity 0. Let
T the theory defined by the equation f = c(f). T is decidable, since the rewrite system c(f) — f
defines unique normal forms, satisfies freeness and non-triviality, but is not complete: no finite
constructor term is equivalent to f.

Our paradigmatic first-order theory satisfying our axioms is Presburger Arithmetic, whose
alphabet is C = {0, S} and D = {+}. We indeed use here the unquantified fragment of
Presburger arithmetic, but could take the unquantified fragment of Peano arithmetic as well,
since that fragment is decidable.

2.2 Pseudo-Terms

Since our abstract calculus contains the calculus of constructions, universes, inductive types,
and a first-order theory ~p, its term language contains the usual term constructions of CC,
universes, eliminators, and terms from the first-order language. Incorporating the latter into the
type-theoretic language is easily done by declaring the first-order function symbol as higher-order
constants in the calculus.

Example 2.2. In the example of Presburger arithmetic, this gives 0 : nat, S : nat — nat, and
+: nat — nat — nat. Then, fully applied terms (like (+ 0 0)) correspond to first-order terms
(here, + (0,0)), while non-fully applied ones like (+ 0) do not.

Universes: our universes are classically Prop and Type;, where j is a (strictly) positive
integer. We shall identify Prop with Type, whenever convenient. This goes against the CoqQ
tradition of identifying Prop with Type_; and Set with Type, but is a natural fit with the
predicativity of Set. Then, s := {Type,};>o.

Variables are elements of a denumerable set)V containing X as a denumerable subset.

First-order constants: we denote by o the type of our first-order algebraic expressions,
and (abusing notations) by C and D the sets of higher-order constants corresponding to the
constructors and defined symbols respectively.

Eliminator: we denote by ELIM, the eliminator for the type o.

Pseudo terms:

tu,P,Qu=s]o|C|D|V|tu|AzxeX:Plt|VxeX:Pl.Q|ELM,(P1u,t).

2Who provided us with the following counter-example to Lemma I1.C.4 in [6]: let C def {0,5},D def {f. g}

and S(f(z)) ~r S(g(x)), f(0) ~1 0,9(0) ~7 0, f(5(0)) ~7 0,9(5(0)) ~7 0, but f(x) o7 0 and g(x) o7 0. Then
S(f(x)) ~r S(g(x)), but f(z) 1 g().

477

A complete proof of Coq modulo Theory Jouannaud and Strub

As usual, application associates to the left. We will systematically use the left form of a
sequence of applications. Positions in terms are defined as usual, using A for the root position.
We denote by FPos(t) the set of non-variable positions in the term ¢, by ¢t(p) the symbol at
position p in t —¢(A) being the head of t—, by Var(t) the set of free variables of a term ¢, and by
|t] its size, counting then the non-variable nodes of its tree representation.

Example 2.3. For Presburger arithmetic, ELIM o (P, u, v,t) stands for Géodel’s recursor at
higher type rec(P,t,u,v).

Pseudo substitutions: A (pseudo) substitution of domain Dom(0) = {z1,...,z,} is asequence
{z1 — t1,..., 2, — t,} where the x;’s are distinct variables and the ¢;’s are terms. A substitution
0 acts on a term u by replacing all free occurrences of the variables x;’s in v by the corresponding
t;’s, possibly renaming bound variables.

2.3 Embedding the Algebraic World

Definition 2.4. A pseudo-term is algebraic-headed if it is of the form (fty ... t,) where
f € CWUD and arity(f) = n. We also say that f is fully applied. It is algebraic if it is a variable,
or an algebraic-headed term (ft1 ... t,) whose pseudo-terms ty,...,t, are algebraic.

Algebraic pseudo-terms are identified with first-order terms in 7(C & D, V).

Definition 2.5. A pseudo-term is curried if none of its (non-strict) subterms is algebraic
headed.

For an example, if f has arity 2, then (f Az.x) is curried.

Definition 2.6. Algebraic and curried terms are said to be homogeneous, others are het-
erogeneous. Given a term t, an immediate alien is any mazimal strict subterm u of t such
that

e if t is algebraic headed, then u is not algebraic headed
e if t is not algebraic headed, then u is algebraic headed.
We denote by A(t) the multi-set of aliens of t.

Note that the head and immediate subterms (or super-terms) of a term must be defined
properly: the head and immediate subterms of (... (ft1)...t,) are f and all the ¢;’s in case
n = arity(f), but the application operator, (... (ft1)...t,—1) and ¢, otherwise.

We now decompose an arbitrary term s into an homogeneous cap s and an heterogeneous
alien substitution o such that s = so. To this end, variables in the cap are chosen according to
a one to one mapping £ from classes of pseudo-terms modulo renaming of bound variables and
the set V \ X of so-called fresh variables.

Definition 2.7 ([6]). Given a pseudo-term t, we define its cap t and alien substitution 6; as:
(i) = t[é(t|p)]pep, where P is the set of positions of the immediate aliens of t;
(i) 0; = {E(t]y) = tlp | t], s an immediate alien of t}.

Note that this definition trivially ensures the property ¢t = 10;.

478

A complete proof of Coq modulo Theory Jouannaud and Strub

1 or ¥ is not a variable

U=q4 0 U~ D 0y <7 0, T <5 W tpw
U T v 0, <7 00, M Tt <5 Az : W]w
T1 H;Wl TQ(—); W2 M(—);M/ N(—);N/
V[z: Th). Ts < Y[z : Wi]. W M N <5 M N
Q1 <5 Q2 15 ty <ty Va € Dom(6,) N Dom(6,). 0, (x) <7 0,(x)
ELIMO(Ql,ﬁa tl) H; ELIMO(Q%E? t2) 911« H; a’U

Figure 1: Inference rules for <7

Example 2.8. Let s = (+ (Az : nat.(Sz)0)(+ (+ 0)(+ 0))). Then, s =+ (y,+ (z,2)),
y,2 € V\ X, and 05 = {y — (Az : nat.(Sz)0),z — (+ 0)}.

Definition 2.9. Figure 1 extends the congruence ~r to a decidable conversion relation <.

Definition 2.10. The constructor size n¢(t) of a term t is the mazimum of the set
{lv|| veT(C,X) and t <+ v0 for some substitution 0}.

The relation <% is transitive [6], explaining our notation. Simpler formulation can be given,
the present one eases some proofs by induction. The coming properties are needed for our
normalization proof:

Lemma 2.11 ([6]). The constructor size of any term is finite.
Lemma 2.12 ([6]). Assume s <% t, where nc(s) = ne(t) > 0.

(i) There exists u = C(u) such that C is a constructor, s <45 u, t <5 u, and Var(u) C
Var(s) N Var(t).

(i1) Let s <% C(u) and t <% C' (V). Then C' = C' and U <% ©.

Definition 2.13. A term C(u) simplifies a term t iff (i) t = C(u), or (i) t(A) € C, t <% C(q)
and Var(u) C Var(t).

This definition strengthens the one given in [6] by assuming that C(%) is ¢ itself in case it is
constructor-headed. The usual elimination rule for inductive types becomes then a particular
case of the T-elimination rule of CIC*(T). This modification also eases the computation of C()
as well as some proofs to come.

Lemma 2.14 ([6]). Assume C(u) simplifies t. Then, nc(t) > ne(w).

Lemma 2.15. Let t be a term of a strictly positive constructor size. Then, there exists U such
that C(T) simplifies t.

Proof. If t = C(u), we are done. Otherwise, ¢t <»% C(u). The property then follows from
Lemma 2.12 (i). O

479

A complete proof of Coq modulo Theory Jouannaud and Strub

2.4 Reduction

There are three kinds of reduction in our calculus: S-reduction (—g), t-reduction (—,), and
vr-reduction (—,,.), whose union is denoted by — 5, . These reductions are generated by the
following rewrite rules:

[8 reduction] (A[z:T].u)t =g u{z — t}.

[¢ reduction] —, is the same as in CIC. It is reserved for big inductive types - inductive types
whose constructors take functional arguments - which cannot be declared as a first-order algebra
equipped with a (possibly trivial) decidable theory T

[¢r reduction] —,,. generalizes plain (-reduction in the sense that the latter is a particular
case of the former, for (small) inductive types whose constructors are first-order, when T is
trivial.

We oftentimes superscript rewrite relations by the position of the rewritten redex.

Example 2.16. For our example of Presburger arithmetic, we have:

fo if O simplifies t

ELIMNGt(Q?an fS7t) _>"T {fs U ELIMNat(Q7f07 fSau) Zfs U SlmpllﬁESt

With the traditional elimination rule, ¢ is identical to S u, and therefore, v has a smaller
size and is typable when ¢ is typable. Our requirement that S u simplifies ¢ is essential: it
ensures that u has a strictly smaller constructor size, and that it is again typable when ¢ is.
Furthermore, Lemma 2.15 ensures that such a term exists as soon as t is T-equivalent to a term
headed by a fully applied constructor.

In the sequel, we assume for simplicity of notations that all inductive types are given as
algebraic types equipped with a decidable equational theory, the trivial one for traditional (small)
inductive types. Accommodating big inductive types in the traditional way is no challenge: the
whole meta-theory including strong-normalization is the same, provided all inductive types are
at the propositional level. This is not the case for inductive types defined at the predicative level,
since proof-irrelevant interpretations cannot be used anymore for proving strong normalization.

Notations we use the notations: — for — Burs for the inverse of —, —* for its reflexive,
transitive closure, <+* for its symmetric, reflexive, transitive closure, and =~ for the conversion
relation defined as (<+% U <»*)*. Reductions and the like are extended to substitutions as
expected.

2.5 Typing

An environment I" is a sequence of pairs made of a (fresh) variable and a pseudo-term. We
denote by Dom(T") = {z; | z; : T; € I'} the domain of the environment I'. We often consider
environments as substitutions, writing «I' =T if x : T € I'. An environment A contains an
environment I') written ' C A, if all pairs in I" appear in A in the same order. An environment
IV simplifies an environment I' if 77 simplifies T for some pairs z: T € ' and z : T' € TV. An
environment I reduces to an environment I' if T' reduces to 1’ for some pairs z : T € I" and
x: T € I'. Two environments ', I are compatible modulo a relation R on pseudo-terms if for
any « € Dom(T") N Dom(I"), (2I') R («I).

Our typing rules given at Figure 2 come in three parts: rules for CC, rules for the universes,
and rules for the first-order symbols. These rules are the same for CoQMTU and CIC*(T). We
recall below the key result of [22]:

480

A complete proof of Coq modulo Theory Jouannaud and Strub

I'HFT:Type; 'tt:7T, T'HV:Type,
YPe; z ¢ Dom(T") [WEAK] YP

[VAR] —————
Tx:TkFx:T Fx:ViEt:T

x & Dom(T")

FzeX:U)Ft:V ['FV[z: ULV : Type,
F'FAz:UlL.t:V[z: ULV

[Lam]

'Fu:Vjz:ULV F'-v:U
[HIERARCHY >0

[ApP]
F'Fuv:Vizw— v - Type, : Type;

I'-T: Type;
I'=T:Type;,

I'-U: Type, INzeX:UFV:Type,
I'FVz:U].V: Type,

[CuM;>o] [Imp]

I'U : Type, FexeX:UEV:Typej,
t e
PEV[z: ULV : Type,,a.) [nat] F nat : Type,

S
5] F S : nat — nat] F+: nat — nat — nat

[PrRED]

[0]

F 0 : nat

=t:U L'~U': Type;

[Conv] S LUu~U
I'=t:U

I'+t:nat '+ P :V[z : nat]. Type,
'fo:PO 'k fs:V[z:nat].(Px— P (S z))

[ELiM]
'+ ELiMpy o (P, fo, fs,t) : Pt

Figure 2: CoQMTU typing rules

Theorem 2.17 ([22]). Bi-reductions are terminating, type preserving, and confluent (modulo
a) on typable terms.

Note that typable S¢T-conversions are proved to be joinable with St modulo T'U « [22]]. We
are not going to need this strong form of confluence here.

Given an arbitrary rewrite relation — , we denote by — _ the relation — Ur>. An
important property repeatedly used in the sequel is that the union of a terminating, monotonic
rewrite relation and strict subterm is terminating [11]. Monotonicity is required, which is the
case of any well-behaved rewrite relation, as is the case of — 4 , which is terminating on all
typable terms by Theorem 2.17. Hence, as a particular case, — g, is terminating on all typable
terms.

3 Decidability of Type-Checking in CIC“(T)

Decidability of type checking follows from two other properties: termination and confluence of
reductions.

We say that a term s is SN (—) if there is no infinite —-derivation originating from s,
and that the relation — is SN, or terminating, if every term is SN (—).

481

A complete proof of Coq modulo Theory Jouannaud and Strub

To reach our goal, we are going to study — g, -reductions issuing from well-typed terms,
and show that they are both SN and Church-Rosser, therefore allowing to decide convertibility
of well-typed terms. But instead of studying T-elimination directly, we shall actually encode
it by introducing a new rewrite relation, T-simplification, whose union with elimination will
contain T-elimination. To this end, we associate to the congruence ~7 on algebraic terms the
rewrite system:

T ={t— C(u) : C(u) simplifies t}

By Lemma 2.14, nc(t) > ne(@) > 0, hence ¢ cannot be a variable. Further, Var(u) C Var(t),
ensuring that t — C(u) is indeed a rule, actually a rule schema since there may be many different
terms C(u) simplifying ¢.

Lemma 3.1. T is a confluent and terminating rewriting system for <.

Proof. Since <} extends ~p by closure under contexts, and rewriting is closed under arbitrary
context by definition, it is enough to show that 7T is a confluent and terminating rewriting system
for ~r. Assume C(u) simplifies t. Then n¢(t) > ne(u) by Lemma 2.14, ensuring termination of
— . since ¢ is not headed by a constructor by definition of simplification. It follows that — .
is terminating, and therefore that (— .)mul is a well-founded relation (see for example [11]
for a precise definition and the properties of the multiset extension of a relation). To show the
Church-Rosser property, we interpret an equational proof as the multiset of origins of its proof
steps, and reason by induction on this multiset ordered in (— 7)mul. Assume s ~p t. If it
contains no local peak v <—u—w, we are done. Otherwise, standard arguments allow
reducing the general case to the joinability of a critical local peak for which v, w simplify u, hence
v =C(7) and w = C’'(w). By Lemma 2.12 (ii), C = C’ and v <3} w is a collection of strictly
smaller proofs. By induction hypothesis, there exists u’ such that 6—>*TU and w—7 u,
implying joinability of the critical peak: v —% C(u’) %-<—w. We have got a strictly smaller
proof to which induction applies. O

3.1 Strong Normalization in CIC*(T)
The next lemma is the basis of the coming strong normalization proof of — Bup’

Lemma 3.2. —; C *}ELT where — 5,1 = —rpgU— U—p.

Proof. By definition of T-elimination, —, C(—;U—,)". The result follows. O

In the following, we use the short form “s, o is SN” for s, o is SN(—>[3L7-).

By Lemma 3.2, strong normalization of — 5, - implies strong normalization of — Bup> OUL
target. We therefore need to prove that all terms are SN, that is, SN for — 4, . The result
and its proof are given below, before the several essential lemmas used in the proof.

Theorem 3.3. —;, - is strongly normalizing.

Proof. Let s be a term. The proof that s is SN proceeds by induction on —4,_. Since a term
is SN iff all its reducts are SN by definition, the proof proceeds by inspecting all possible cases:

1. s —g,t. Then ¢ is SN by assumption.

2. s H’} t. There are three cases according to the cap of s and the position p.

482

A complete proof of Coq modulo Theory Jouannaud and Strub

(a) The cap of s is algebraic and p € FPos(s). Since T-rewrites are algebraic non-variable
terms on both sides, rewriting in the algebraic cap of s yields a term with an algebraic
cap as well whose set of aliens is a subset of the set of aliens of s by Lemma 3.4.
And since —>/3L>—reducts of s are SN, then 6, hence 0;, is SN. Then, ¢ is SN by
Lemma 3.7.

(b) The cap of s is algebraic and p ¢ FPos(5), hence A(s)(—7)mulA(t) by Lemma 3.4.
Since terms in A(s) are SN by assumption, their reducts in A(t) are SN, hence ¢ is
SN by Lemma 3.7 again.

(c) The cap of s is non-algebraic, hence p ¢ FPos(s) and A(s)(—>7)muA(t) by
Lemma 3.4. Since terms in A(s) are SN by assumption, their reducts in A(t)
are SN, hence ¢ is SN by Lemma 3.5.

o 0O

We are left with the various lemmas used in the proof of Theorem 3.3

Lemma 3.4. Let s—%-t. If p € FPos(s), then Yu € A(t) (u € A(s)). Otherwise,
A(s)(—7)mu A().

Proof. Since rewrite rules from 7 are headed by an algebraic symbol on both sides, the cap of s
cannot disappear. Hence aliens in s can only be duplicated or erased by an algebraic rewriting
step in the algebraic cap. On the other hand, 7T-rewriting in an alien of s yields an alien of ¢
because the non-algebaic cap of the alien will not disappear. O

We now show that a term whose aliens are SN is SN. A standard technique for such a proof
is to use the cap of ¢, compared in —U——5,, as a first argument of an interpretation of the
rewrite that is used to reason by induction. The difficulty here is that Si-rewriting does not
preserve algebraic caps, since it may pop up some subterm, which may itself have an algebraic
cap. The algebraic cap of the whole term get then enlarged, forbidding that sort of comparison.
A similar problem occurs with non-algebraic caps. The difficulty here is that rewriting in the cap
may swallow algebraic symbols heading some immediate alien in case of an ELIM,(,,)-rewrite,
then enlarge that subterm again by generating algebraic terms in the right-hand side of the rule,
or even collapse the entire non-algebraic cap resulting in a term which has now an algebraic cap.
These various problems make the standard technique fail.

As we have seen, there are two cases, depending whether the cap is algebraic or non-algebraic.
We start with the second which happens to be easier. In this case, the aforementioned difficulties
are solved by using the fact that the aliens are SN: SN terms have §¢7-normal forms. Since
—g,7 1s not known yet to be confluent, each SN terms will actually have a finite multiset
of normal forms, since any term has a finite number of immediate reducts. We therefore can
interpret a term ¢ whose cap is non-algebraic and aliens are SN by the set of terms obtained
from ¢ by normalizing its aliens in all possible ways. A difficulty is that identical aliens of ¢ may
become different normal forms in a term belonging to the interpretation of ¢. Assume now that
the cap of ¢ rewrites, necessarily with 8¢. Then, any of its normal forms will rewrite as well,
because the (i rules are left-linear. It would not be the case otherwise.

Lemma 3.5. Assume that t has a non-algebraic cap and SN aliens. Then t is SN.

Proof. Let tiglﬁls be the set of terms obtained from ¢ by normalizing its aliens in all possible
ways. Note that t—)’én-u with p # A implies u ¢glj$!18g tiglf‘}ns. We prove the result by
induction on the pair (¢ i%lbi‘;—ns,A(t» compared in ((*}ﬁb)mul; (*)ﬁfr)mul)lew This relation

483

A complete proof of Coq modulo Theory Jouannaud and Strub

is well-founded, since (i) for the first component of this lexicographic comparison, —pg, 18
terminating by Theorem 2.17 ; (ii) for the second component, aliens of ¢ are SN by assumption ;
and (iii) multiset and lexicographic extensions preserve well-foundedness (with the first multiset
extension applying here to sets). By definition of the SN predicate, a term is SN iff all its reducts
are SN. There are two cases:

L. If t — 5,7 u at an alien position, then uiahemc tiahe““, and A(t)(—7)muA(u). Hence

(t\L%lL‘%“S, A1) ((—g,)mut, (— 5,7 mul)1ex <u¢%lj$115,.,4(u)). We therefore conclude that u
is SN by induction hypothesis.

2. Let t *)ZB)L u at a cap position, then t¢%1j7el‘s *)ZB)L uiaﬁljs—ns. Therefore, u is SN by induction
hypothesis. O

O

The previous technique does not apply to terms whose aliens are SN but cap is algebraic, since
rules in 7 are not left-linear. To accommodate non-left-linear rules, we need an interpretation
provided by a confluent set of rules. We have one at our disposal, — Bus whose termination and
confluence are the result of Theorem 2.17. Some preliminary work is needed.

Lemma 3.6. Let s be an algebraic-headed term whose aliens are SN. Assume that s —'-t. If
p € FPos(s), then slg, —'tlg,. Otherwise, slg, (—% —5) .-

Proof. By Theorem 2.17, Si-reductions are Church-Rosser modulo a-conversions, a property
that we repeatedly use in the following without saying. Further, since a-conversion commutes
with all rewrites, they can always be pushed over them all, hence be simply omitted. A last
remark is that the rules in 7 have no critical pairs with the rules ¢, hence cannot apply at the
same position in s.

We compute normal forms of s and ¢ in the following particular way: first, we normalize
subterms at positions which are disjoint from p, then below p, and finally above p, using
respectively, the disjoint peak property (DP), the ancestor peak property (AP) when the 7-
redex is above a fSi-redex , and the linear ancestor peak property (LAP) when the Si-redex is
above the T-redex. (DP), (AP) and (LAP) originate from [12], see also [14]. We upper-index
the down-arrow 81gn by a predicate specifying which positions get normalized.

Let s —, s —7, siﬁp By (DP), t —}, 1" and s’ —}, t'. By induction hypothesis (w.r.t.
Bi-rewriting of s into s'), s %L =5 im —% t’iﬁp: tigf.

We can now assume that s,¢ are normal at positions disjoint from p. If s = siﬁp, then

t= tigﬂ since the (non-algebraic headed) aliens of ¢|, are aliens of s|,, hence 3¢5L —>7-t¢BL

Otherwise, s —>q>p u. By (AP), ¢ —>gL ', and u —>§L s" —ht', where O, Q are sets of disjoint

positions bigger than p. We conclude by applying the induction hypothesis (w.r.t. Si-rewriting
of s into s’ in at least one step), that sigbpz s’J,;Lp — -t J,;Lp: ti;bp

We can now assume further that s, ¢ are normal at positions bigger than p. In case p € Pos(s),
then s, are in normal form and we are done, yielding the first conclusion of the lemma. If
p & 7705(5) but s is in fi-normal form, we are left rewriting ¢ to its normal form ¢]g,. This
is the cause of the introduction of Sn-steps in the lemma when p € Pos(5). If s is not in
Bie-normal form, let s—>qﬁ<p s’ —>7%,. Because s is algebraic-headed, ¢ is an alien position,
hence p is an alien position as well. We will use here the assumption that aliens are SN
to carry out the induction w.r.t. — 5 . Since Bu are left-linear rules, by (LAP), ¢ —)%L ',
and s’ —%, where P is a set of disjoint positions bigger than ¢q. Let s’ = s§ —% s/, = t'.
By repeatedly applying the induction hypothesis (w.r.t. ST -rewriting) to si,... we get

) Tl’

484

A complete proof of Coq modulo Theory Jouannaud and Strub

sbp=slsl= s A50 (=0 —p) s Lil= o= (=) s L= 1 U=t
yielding the result in case p & Pos(s). O

We can now prove our second lemma.
Lemma 3.7. Assume that t has an algebraic cap and SN aliens. Then, t is SN.

Proof. We show that immediate S¢T-reducts of ¢ are SN by induction on the pair (¢ |g,
; A(t)), compared in the relation (— 7, (— 5,7)Jmul)lex, Which is well-founded since — - is
terminating by Lemma 3.1 and terms in A(¢) are SN by assumption. If ¢ is not SiT-reducible,
we are done. Otherwise, either a reduction takes place at a position in the cap, which must then
be an algebraic reduction and the first argument of the pair decreases by Lemma 3.6, or it does
not, and by the same lemma, the second argument of the pair decreases while the first either
decreases or remains unchanged. Hence, by induction hypothesis, all 8T -reducts of ¢t are SN,
which implies that ¢ is SN by definition of the SN predicate. O

Using Lemma 3.2, we can now conclude:

Corollary 3.7.1. — 4, 1is strongly normalizing.

3.2 Church-Rosser Property in CIC¥(T)

We move to the last non-trivial step, showing the Church-Rosser property of the reduction rules
B, ¢ and T-elimination. Following [13], we show successively, in this order, the three properties
which imply the main result of this section: coherence modulo ~7, termination of computation
in T-congruence classes, and local confluence modulo 7. Our proofs here assume that T is
Presburger arithmetic for simplicity, the general case involving more notations.

Lemma 3.8 (Coherence). Assume s <37 8" — 5, __v. Then, s — 5, _w <7 v for some w.

Proof. The only delicate case is that of T-elimination, which may interact with the conversion
step from ¢ to u. Assume that s = ELIMnw(Q, fo, fs,t), s = ELIMNa(Q, fo, fs,t), and
v = fs u' ELIMNat(Q, fo, fs,u’) where C(v) simplifies ¢’. By Lemma 2.12 (ii), there exists C(u)

simplifying both ¢ and ¢ such that @ <>% «’. Then w = fs u ELIMpn4.(Q, fo, fs,u) satisfies the
claim. O

The above property is a strong form of coherence, also called commutation. Together with
Theorem 2.17, it readily implies, see also [11]:

Lemma 3.9 (Termination modulo T'). <% — g, is terminating.

Lemma 3.10 (Local confluence modulo T). (Vs,t,u)s —g, t and s —4, u, there exist
t',u' such that t —j, ', u—p, ', and v’ <3 v

Proof. The proof is as usual by discussion on the position of the redexes in s, the only non-
straightforward case being that of the only critical pair originating from the use of — . to
fire the T-recursors. It is then easily shown joinable thanks to Lemma 3.1. We illustrate the
computation in case of Presburger arithmetic. Consider the rule ELIMn.(Q, fo, fs,t) — .,
fs uw ELIMya:(Q, fo, fs,u) if S(u) simplifies t. Assume S(u) and S(v) both simplify ¢, hence
S(u) <% S(v), yielding the critical pair (fs u ELIMnq. (@, fo, fs,u), fs v ELIMNna (@, fo. fs,v)).
By lemma 3.1, S(u) and S(v) (hence w and v) have the same 7-normal form, implying u <% v.
Hence, by Definition 2.9: fs u ELIMpn.(Q, fo, fs,u) <5 fs v ELIMNa (@, fo, fs,v). O

485

A complete proof of Coq modulo Theory Jouannaud and Strub

Variable T : Type. Infix "@" := append.
Inductive dlist : nat — Type := Lemma appA nl n2 n3
| nil : dlist O (xs1 : dlist nl)
| cons : forall n, (xs2 : dlist n2)
T — dlist n — dlist (S n). (xs3 : dlist n3):
(xs @ ys) @ zs = xs @ (ys @ zs).
Fixpoint append nl n2 Proof.
(xs1 : dlist n1) (xs2 : dlist n2) induction xs as [|In x xs IH].
i= trivial.
match xs1 in dlist nl intros ys zs; simpl.
return dlist (nl + n2) with rewrite IH; reflexivity.
| nil = xs2 Qed.

| cons nl x xs1 =
cons x (append xsl xs2)
end.

Figure 3: Reasoning about Dependent Vectors in CoQMT

Theorem 3.11 (Church-Rosser property of — 5, modulo T). (Vu,v)u =~ v, there exists
u', v such that u—p, _u', v—5, V', and v’ <3 v

Proof. Follows from [13] by using Lemmas 3.9, 3.8 and 3.10. O

3.3 Decidability of Type Checking

We can now easily decide convertibility by rewriting to normal forms: taking two arbitrary
typable terms u, v, then, by the Church-Rosser property of — 4, _, u>~v iff ulg, <7 vlg., -
The technique for showing decidability of type checking in CIC¥(T) is then standard: by
incorporating conversion to the application rule, we get an equivalent syntax oriented type
checker whose decidability reduces to the decidability of conversion. See for example [6].

4 Programming with CoQMT

From its initial version, COQMT eases the development of libraries with dependent data-types,
as exemplified in the dependent vector case study of Figure 3, where statements and proofs
are canonically lifted from their non-dependent counter-parts. (The full development can be
obtained from the CoQMT webpage. This development does not currently include the new
version of COQMT with the reduction modulo T studied here. This is work in progress which
requires a non-trivial change in the reduction machinery of CoQ.) Because of its former lack
of strong recursion, COQMT failed to ease the development of libraries relying on dependent
data-types defined by (strong)-induction over an integer parameter.

A standard example of strong recursors computing over natural numbers is that of an iterated
structure. The type of multinomials over a fixed number of indeterminates, when built by
iterating the l-indeterminate case, is such a structure. Assuming we have a type constructor
poly : Type — Type such that poly K stands for the type of polynomials in 1 indeterminate
over K, we can construct the type mpoly K n, of multinomials over n indeterminates over K as:

Fixpoint mpoly (K : ring) (n : nat) : Type :=
match n with 0 = K | S p = poly (mpoly K p).

486

A complete proof of Coq modulo Theory Jouannaud and Strub

With this kind of structure, as in the vector case, it is common that some arithmetical
reasoning about the indexes (here, the number of indeterminates) occurs; and, the more indexes
we identify, the less type casts has to be used. Indeed, any type cast that involves identifying two
different indexes equal in 7 can be removed in COQMT. For instance, one may want to identify
mpoly K (n+1+p) with mpoly K (p+n+1). In plain CoQ, or in previous versions of CoQMT,
these types were considered unequal, either because n+1+p and p+n+1 were not identified (in
CoQ), or because their identification was not used by the (strong) recursor rule (in CoqMT).
This case can be exemplified with the multinomials evaluation function meval:

Definition meval (K : ring) (n : nat) : mpoly K n — dlist K n — K.
which has, for example, the following natural property:

Definition mevalS K n (p : mpoly K (S n)) (x : dlist K (S n))
meval p x = meval (eval p (dhead x)) (dtail x)

where dhead and dtail are the functions returning resp. the head and tail of a non-empty list
(i.e. of size greater than 0), eval is the evaluation function for univariate polynomials (i.e. for
objects of type poly). Note that by definition of mpoly, an object of type mpoly K (S n) is
identified, by ¢-reduction (using the recursor rules), with an object of type poly(mpoly K n).

Definition vhead (T : Type) n : dlist T (S n) — T.
Definition vtail (T : Type) n : dlist T (S n) — dlist T n.
Definition eval (K : ring) : poly K — K — K.

In the new version of COQMT justified here, not only mpoly K (n+1+p) and mpoly K (p+
n+1) are identified, but because n+1+p simplifies S (n+p), they compute to poly (mpoly K (n
+p)), providing some canonical form of our initial type which highlights that poly is iterated at
least once. This would allow, for instance, to easily use properties like mevalS on multivariate
polynomials without relying on unnecessary type casts. For instance, we noticed that such needs
arise quite naturally in the proof of the symmetric polynomials fundamental lemma, where all
type casts occurring in the proof could be effectively removed in CoQMT.! We also suspect that
the development of any library that does non-trivial calculations of multivariate polynomials
would be eased by the use of COQMT. For example, a formal library for the theory of Grébner
bases would be a good target for CoQMT.

Formally, given that the conversion can be decided by the syntactic equality of expressions
in normal form for the confluent T' reduction, no type cast is needed provided the theory T'
comes with all the vocabulary used in the formalization. The formalization could of course need
more vocabulary. For instance, multiplication over natural numbers would be needed as soon as
we formalize multiplication over polynomials. Then, we would need to include multiplication in
the theory T in order to avoid new type casts. Enriching the theory T can of course continue as
long as decidability is still satisfied, which pinpoints precisely when type casts become necessary.

5 Conclusion

Coq Modulo Theory (CogMT) implements a type theory in which conversion can be defined
extensionally at small (first-order) inductive types. COQMT is much closer to the developer’s
intuition because types depending on expressions which are extensionally equal become identifi-
able. In case of Presburger arithmetic, for example, 0 + z and x are extensionally equal, but not

LA formalization of this result, done in plain Coq at that time, can be found at https://github.com/
math-comp/multinomials

487

https://github.com/math-comp/multinomials
https://github.com/math-comp/multinomials

A complete proof of Coq modulo Theory Jouannaud and Strub

intensionally equal in case the function symbol + is defined by induction on its second argument.
This allows for a liberal type checker when dependent types come into play.

In this paper, we have shown that type checking is decidable in COQMT, even in presence of
strong elimination modulo a (decidable) theory. The proof is quite interesting, in that it relies
on the strong normalization of the calculus with strong elimination to show strong normalization
of the calculus with strong elimination modulo a theory. This syntactic proof reveals a new
mechanism that could be added to Barras semantic model construction used to prove strong
normalization and consistency of COQMT with strong elimination. This would enhance its
expressivity in case of interactions, like here, between different syntactic constructs which depend
on each other, here the theory 7" used both in the conversion typing rule, and in the weak and
strong elimination rules.

Since (the formal model of) CoqQ can be faithfully embedded in (the formal model of)
DEDUKTI, one can ask whether COQMT can also be faithfully embedded in DEDUKTI [2]. Since
DEDUKTI does not have a primitive extensional equality, this implies that the embedding should
use explicit casts. Eliminating these casts would of course be possible by extending DEDUKTI
capabilities with a decidable extensional conversion as we did for CoQ. This would of course
impact the meta-theory of DEDUKTI. We can expect that the strong normalization can be
carried out as we did here. But in DEDUKTI, another important difficulty is the confluence
property because of the presence of rewrite rules which may have critical pairs. This implies
that the confluence proof has to be carried out on untyped terms [3]. Adding an extensional
equality as in COQMT would be a important challenge for the confluence proof that has not be
considered yet for DEDUKTI.

References

[1] Thorsten Altenkirch. Proving Strong Normalization of CC by Modifying Realizability Semantics.
In Henk Barendregt and Tobias Nipkow, editors, TYPES, volume 806 of Lecture Notes in Computer
Science, pages 3—18. Springer, 1993.

[2

Ali Assaf. A calculus of constructions with explicit subtyping. In Hugo Herbelin, Pierre Letouzey,
and Matthieu Sozeau, editors, 20th International Conference on Types for Proofs and Programs,
TYPES 2014, May 12-15, 2014, Paris, France, volume 39 of LIPIcs, pages 27—46. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2014.

3

Ali Assaf, Gilles Dowek, Jean-Pierre Jouannaud, and Jiaxiang Liu. Untyped confluence in dependent
type theory, 2017. submitted.

Bruno Barras. Semantical Investigations in Intuitionistic Set Theory and Type Theories with
Inductive Families. Habilitation thesis, http://www.lix.polytechnique.fr/ barras/habilitation/.

[5] Bruno Barras. Sets in Coq, Coq in Sets. J. Formalized Reasoning, 3(1):29-48, 2010.

[6] Bruno Barras, Jean-Pierre Jouannaud, Pierre-Yves Strub, and Qian Wang. CoQMTU: A Higher-
Order Type Theory with a Predicative Hierarchy of Universes Parametrized by a Decidable
First-Order Theory. In LICS, pages 143-151. IEEE Computer Society, 2011.

Frédéric Blanqui. Inductive Types in the Calculus of Algebraic Constructions. In Martin Hofmann,
editor, TLCA, volume 2701 of Lecture Notes in Computer Science, pages 46—59. Springer, 2003.

[4

[7

B

Frédéric Blanqui, Jean-Pierre Jouannaud, and Pierre-Yves Strub. From Formal Proofs to Math-
ematical Proofs: A Safe, Incremental Way for Building in First-order Decision Procedures. In
Giorgio Ausiello, Juhani Karhuméki, Giancarlo Mauri, and C.-H. Luke Ong, editors, IFIP TCS,
volume 273 of IFIP, pages 349-365. Springer, 2008.

[9] Adel Bouhoula. SPIKE: a system for sufficient completeness and parameterized inductive proofs. In
Alan Bundy, editor, Automated Deduction - CADE-12, 12th International Conference on Automated

488

A complete proof of Coq modulo Theory Jouannaud and Strub

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
21]

[22]

23]

Deduction, Nancy, France, June 26 - July 1, 1994, Proceedings, volume 814 of Lecture Notes in
Computer Science, pages 836—840. Springer, 1994.

Thierry Coquand and Gérard P. Huet. The Calculus of Constructions. Inf. Comput., 76(2/3):95-120,
1988.

Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite Systems. In North Holland, editor,
Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B), pages
243-320. J. van Leuven, 1990.

G. Huet. Confluent reductions: abstract properties and applications to term rewriting systems.
Journal of the ACM, 27(4):797-821, October 1980.

Jean-Pierre Jouannaud and Héléne Kirchner. Completion of a Set of Rules Modulo a Set of
Equations. SIAM J. Comput., 15(4):1155-1194, 1986.

Jean-Pierre Jouannaud and Jianqi Li. Church-Rosser properties of normal rewriting. In Patrick
Cégielski and Arnaud Durand, editors, Computer Science Logic (CSL’12) - 21st Annual Conference
of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau, France, volume 16 of LIPIcs, pages
350-365. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

Zhaohui Luo. ECC, an Extended Calculus of Constructions. In LICS, pages 386-395. IEEE
Computer Society, 1989.

Per Martin-Lof. Constructive mathematics and computer programming. In H. Pfeiffer L.J. Cohen,
J. Los and K.-P. Podewski, editors, in Logic, methodology and philosophy of science VI, Proceedings
of the 1979 international congress at Hannover, Germany, page 153—-175. North- Holland, 1982.
Nicolas Oury. Extensionality in the Calculus of Constructions. In Joe Hurd and Thomas F. Melham,
editors, TPHOLs, volume 3603 of Lecture Notes in Computer Science, pages 278-293. Springer,
2005.

Christine Paulin-Mohring. Inductive Definitions in the system Coq - Rules and Properties. In Marc
Bezem and Jan Friso Groote, editors, TLCA, volume 664 of Lecture Notes in Computer Science,
pages 328-345. Springer, 1993.

Mark-Oliver Stehr. The Open Calculus of Constructions (Part I): An Equational Type Theory
with Dependent Types for Programming, Specification, and Interactive Theorem Proving. Fundam.
Inform., 68(1-2):131-174, 2005.

Pierre-Yves Strub. Coq Modulo Theory. In Anuj Dawar and Helmut Veith, editors, CSL, volume
6247 of Lecture Notes in Computer Science, pages 529-543. Springer, 2010.

The Coq Development Team. The Coq Proof Assistant, Reference Manual, Version 8.4. Technical
report, INRIA, Roquencourt, France, 2012.

Qian Wang and Bruno Barras. Semantics of Intensional Type Theory extended with Decidable
Equational Theories. In Simona Ronchi Della Rocca, editor, CSL, volume 23 of LIPIcs, pages
653-667. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

Benjamin Werner. Sets in Types, Types in Sets. In Martin Abadi and Takayasu Ito, editors, TACS,
volume 1281 of Lecture Notes in Computer Science, pages 530-346. Springer, 1997.

489

	Introduction
	Syntax of CICw(T)
	First-Order Theory T
	Pseudo-Terms
	Embedding the Algebraic World
	Reduction
	Typing

	Decidability of Type-Checking in CICw(T)
	Strong Normalization in CICw(T)
	Church-Rosser Property in CICw(T)
	Decidability of Type Checking

	Programming with CoqMT
	Conclusion

